ECE276A: Sensing \& Estimation in Robotics Lecture 15: Kalman Smoothing and Factor Graphs

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Visual-Inertial SLAM

Simultaneous Localization and Mapping

- Goal: estimate the robot pose while creating a map of the environment
- Known as Structure from Motion (SfM) in computer vision.
- In SfM usually the only available sensor is a camera, while in SLAM the robot might have odometry (e.g., IMU) and other sensors (e.g., lidar)
- 2-D Landmark-based SLAM: maintains a robot state $x_{t}:=\left(p_{t}, \phi_{t}\right) \in S E(2)$ and n landmark states $I_{t, i} \in \mathbb{R}^{2}, i=1, \ldots, n$:

$$
s_{t}:=\left(\begin{array}{c}
p_{t} \\
\phi_{t} \\
I_{t, 1} \\
\vdots \\
\vdots
\end{array}\right) \in \mathbb{R}^{3+2 n} \quad s_{t} \sim \mathcal{N}\left(\binom{\mu_{t \mid t}^{x}}{\mu_{t \mid t}^{\prime}},\left[\begin{array}{cc}
\Sigma_{t \mid t}^{x} & \Sigma_{t \mid t}^{x \mid} \\
\Sigma_{t \mid t}^{\mid x} & \Sigma_{t \mid t}^{\prime}
\end{array}\right]\right)
$$

2-D Landmark-based SLAM Prediction

- Motion model: differential drive robot and static landmarks:

$$
\begin{aligned}
\binom{p_{t+1}}{\phi_{t+1}} & =a\left(\binom{p_{t}}{\phi_{t}},\binom{v_{t}}{\omega_{t}}+w_{t}\right), \quad w_{t} \sim \mathcal{N}(0, W) \\
I_{t+1, i} & =I_{t, i} \\
a\left(\binom{p_{t}}{\phi_{t}},\binom{v_{t}}{\omega_{t}}\right) & :=\binom{p_{t}}{\phi_{t}}+\tau\left(\begin{array}{c}
v_{t} \operatorname{sinc}\left(\frac{\omega_{t} \tau}{2}\right) \cos \left(\phi_{t}+\frac{\omega_{t} \tau}{2}\right) \\
v_{t} \operatorname{sinc}\left(\frac{\omega_{t} \tau}{2}\right) \sin \left(\phi_{t}+\frac{\omega_{t} \tau}{2}\right) \\
\omega_{t}
\end{array}\right)
\end{aligned}
$$

- Motion Model Jacobian (see Lecture 9): $A_{t}:=\frac{d a}{d x}\left(\mu_{t \mid t}^{x}, u_{t}\right) \in \mathbb{R}^{3 \times 3}$ and $Q_{t}:=\frac{d a}{d w}\left(\mu_{t \mid t}^{x}, u_{t}\right) \in \mathbb{R}^{3 \times 2}$
- Prediction

$$
\left[\begin{array}{cc}
\Sigma_{t+1 \mid t}^{\times} & \Sigma_{t+1 \mid t}^{\times 1} \\
\Sigma_{t+1 \mid t}^{x} & \Sigma_{t+1 \mid t}^{1}
\end{array}\right]=\left[\begin{array}{cc}
A_{t} & 0 \\
0 & I_{2 n \times 2 n}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{|t| t}^{\times} & \Sigma_{t \mid t}^{\times 1} \\
\Sigma_{t \mid t}^{\mid x} & \Sigma_{t \mid t}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
A_{t}^{T} & 0 \\
0 & I_{2 n \times 2 n}
\end{array}\right]+\left[\begin{array}{c}
Q_{t} \\
\mathbf{0}_{2 n \times 2}
\end{array}\right] W\left[\begin{array}{ll}
Q_{t}^{T} & \mathbf{0}_{2 \times 2 n}
\end{array}\right]
$$

2-D Landmark-based SLAM Prediction

- The upper left 3×3 element of the covariance is computed in the same way as if the robot were propagating its covariance without considering the presence of landmarks
- The correlation $\sum_{t \mid t}^{x \mid} \in \mathbb{R}^{3 \times 2 n}$ between the robot pose and the landmarks is multiplied by A_{t} and hence changes over time proportionally to the orientation uncertainty of the robot (see the differential-drive Jacobian)
- The landmark covariances $\Sigma_{t \mid t}^{\prime} \in \mathbb{R}^{2 n \times 2 n}$ do not change during propagation because of the static landmark assumption
- In practice there are many propagation steps in between update steps. The propagation can be simplified by only propagating the robot covariance $\Sigma_{t \mid t}^{x}$ and keeping track of $A_{t+k} \ldots A_{t+1} A_{t}$

2-D Landmark-based SLAM Update

- Observation model: relative position measurements:

$$
z_{t, i}=h\left(x_{t}, l_{t, i}\right)+v_{t, i}:=R^{T}\left(\phi_{t}\right)\left(l_{t, i}-p_{t}\right)+v_{t, i}, \quad v_{t, i} \sim \mathcal{N}\left(0, v_{i}\right)
$$

- Observation model Jacobian (see Lecture 9):

$$
\begin{aligned}
& \frac{d h}{d p}=-R^{T}(\phi) \quad \frac{d h}{d \phi}=R^{T}(\phi) J^{T}\left(l_{i}-p\right) \quad \frac{d h}{d l_{i}}=R^{T}(\phi) \\
& H_{t, i}:=\left[-R^{T}\left(\mu_{t \mid t}^{\phi}\right), R^{T}\left(\mu_{t \mid t}^{\phi}\right) J^{T}\left(\mu_{t \mid t}^{\prime i}-\mu_{t \mid t}^{p}\right), 0, \cdots, 0, R^{T}\left(\mu_{t \mid t}^{\phi}\right), 0, \cdots, 0\right] \in \mathbb{R}^{2 \times(3+2 n)} \\
& H_{t}:=\left[\begin{array}{c}
H_{t, 1} \\
\vdots \\
H_{t, n}
\end{array}\right] \in \mathbb{R}^{(2 n) \times(3+2 n)} \quad V:=\left[\begin{array}{lll}
V_{1} & & \\
& \ddots & \\
& & V_{n}
\end{array}\right]
\end{aligned}
$$

- Update: due to the independence assumptions there is a special structure but it is hard to see in the covariance update

$$
\begin{aligned}
{\left[\begin{array}{cc}
\Sigma_{t+1 \mid t+1}^{x} & \Sigma_{t+1 \mid t+1}^{x \mid} \\
\Sigma_{t+1 \mid t+1}^{I x} & \Sigma_{t+1 \mid t+1}^{\prime}
\end{array}\right] } & =\left(I-K_{t+1 \mid t} H_{t+1}\right)\left[\begin{array}{cc}
\Sigma_{t+1 \mid t}^{x} & \Sigma_{t+1 \mid t}^{x \mid} \\
\sum_{t+1 \mid t}^{x} & \Sigma_{t+1 \mid t}^{\prime}
\end{array}\right] \\
K_{t+1 \mid t} & =\Sigma_{t+1 \mid t} H_{t+1}^{T}\left(H_{t+1} \Sigma_{t+1 \mid t} H_{t+1}^{T}+V\right)^{-1}
\end{aligned}
$$

Information Filter

- Uses the natural Gaussian parameterization $x \sim \mathcal{G}(\nu, \Omega)$ where $\nu=\Sigma^{-1} \mu$ and $\Omega=\Sigma^{-1}$
- Uses the matrix inversion lemma to convert the Kalman filter covariance equations to their information matrix counterparts

Prior:

$$
x_{t} \mid z_{0: t}, u_{0: t-1} \sim \mathcal{G}\left(\nu_{t \mid t}, \Omega_{t \mid t}\right)
$$

Motion model:

$$
x_{t+1}=A x_{t}+B u_{t}+w_{t}, \quad w_{t} \sim \mathcal{G}\left(0, W^{-1}\right)
$$

Observation model: $\quad z_{t}=H x_{t}+v_{t}, \quad v_{t} \sim \mathcal{G}\left(0, V^{-1}\right)$

Prediction:

$$
\nu_{t+1 \mid t}=\left(I-C_{t \mid t}\right) A^{-T} \nu_{t \mid t}
$$

$$
\Omega_{t+1 \mid t}=\left(I-C_{t \mid t}\right) A^{-T} \Omega_{t \mid t} A^{-1}\left(I-C_{t \mid t}^{T}\right)+C_{t \mid t} W^{-1} C_{t \mid t}^{T}
$$

Information Gain:

$$
C_{t \mid t}=A^{-T} \Omega_{t \mid t} A^{-1}\left(A^{-T} \Omega_{t \mid t} A^{-1}+W^{-1}\right)^{-1}
$$

Update:

$$
\begin{aligned}
\nu_{t+1 \mid t+1} & =\nu_{t+1 \mid t}+H^{T} V^{-1} z_{t+1} \\
\Omega_{t+1 \mid t+1} & =\Omega_{t+1 \mid t}+H^{T} V^{-1} H
\end{aligned}
$$

2-D Landmark-based SLAM Update in Information Space

- Observation model: $z_{t, i}=R^{T}\left(\phi_{t}\right)\left(l_{t, i}-p_{t}\right)+v_{t, i}, v_{t, i} \sim \mathcal{N}\left(0, v_{i}\right)$
- Observation model Jacobian:
$H_{t, i}:=\left[-R^{T}\left(\mu_{t \mid t}^{\phi}\right), R^{T}\left(\mu_{t \mid t}^{\phi}\right) J^{T}\left(\mu_{t \mid t}^{l_{i}}-\mu_{t \mid t}^{p}\right), 0, \cdots, 0, R^{T}\left(\mu_{t \mid t}^{\phi}\right), 0, \cdots, 0\right] \in \mathbb{R}^{2 \times(3+2 n)}$

$$
H_{t}:=\left[\begin{array}{c}
H_{t, 1} \\
\vdots \\
H_{t, n}
\end{array}\right] \in \mathbb{R}^{(2 n) \times(3+2 n)} \quad V:=\left[\begin{array}{ccc}
V_{1} & & \\
& \ddots & \\
& & V_{n}
\end{array}\right]
$$

- Information space update: the information from individual measurements is added sequentially to the information matrix

$$
\begin{aligned}
& \nu_{t+1 \mid t+1}=\nu_{t+1 \mid t}+H_{t+1}^{T} V^{-1} z_{t+1}=\nu_{t+1 \mid t}+\sum_{i=1}^{n} H_{t+1, i} V_{i}^{-1} z_{t+1, i} \\
& \Omega_{t+1 \mid t+1}=\Omega_{t+1 \mid t}+H_{t+1}^{T} V^{-1} H_{t+1}=\Omega_{t+1 \mid t}+\sum_{i=1}^{n} H_{t+1, i} V_{i}^{-1} H_{t+1, i}^{T}
\end{aligned}
$$

- Since for each measurement $z_{t, i}$, only the corresponding block in the information matrix is updated, $\Omega_{t \mid t}$ remains sparse over time

Information Matrix Sparsity

- $\Omega_{i j}$ tells us the correlation strength among landmarks and the robot pose
- Most landmarks have only a small number of strong correlations
- The Info matrix can be interpreted as a graph of constraints (edges) between variables (nodes). Missing edges indicate conditional independence.
- Sparsification: remove weak correlations to improve efficiency\&memory

Pose-map distribution

Covariance matrix
Information matrix

EKF vs Sparse Extended Info Filter SLAM

- KF: efficient prediction, slow correction
- IF: slow prediction, efficient correction
- EKF SLAM Complexity:
- Time complexity: cubic in the measurement dimension but dominated by the number of landmarks: $O\left(n^{2}\right)$
- Memory complexity: $O\left(n^{2}\right)$
- EKF SLAM is computationally intractable for large maps
- SEIF SLAM Complexity:
- Neglects correlations via sparsification and only approximates the mean (since computing $\mu=\Omega^{-1} \nu$ is very costly)
- Time complexity: roughly constant
- Memory complexity: $O(n)$
- Inferior quality compared to EKF SLAM due to sparsification and approximate mean recovery
- Further reading:
- EKF SLAM: Thrun et al., "Probabilistic Robotics," Ch. 10
- SEIF SLAM: Thrun et al., "Probabilistic Robotics," Ch. 12

Factor Graph

- A graphical model capturing the first-order Markov assumptions

- Front-end: constructs the graph using dense scan-matching, feature matching or descriptor matching

1. Nodes: variables to be estimated (e.g., robot and landmark $S E(3)$ poses)
2. Edges (called factors): have associated measurement error functions and information matrices, defining a Mahalonobis norm on the error

- Odometry: $e_{i j}\left(x_{i}, x_{j}\right)=\left(x_{j} \ominus x_{i}\right) \ominus z_{i j}$ and $\Omega_{i j}=W^{-1}$
- Camera: $e_{i j}\left(x_{i}, x_{j}\right)=z_{i j}-h\left(x_{i}, x_{j}\right)$ and $\Omega_{i j}=V^{-1}$
- Back-end: performs inference over the graph

Inference over Factor Graphs

- Inference over the graph: a nonlinear least-squares problem:

$$
\underset{x}{\arg \max } \sum_{(i, j) \in E} \underbrace{e_{i j}(x)^{T} \Omega_{i j} e_{i j}(x)}_{F_{i j}(x)}
$$

- Linearization of the factors $F_{i j}(x)$ leads to a sparse linear system
- Assumptions:
- A "good" initial guess is available
- The error functions are smooth in the neighborhood of the minima
- Iterative linearization:

1. linearize the error functions $e_{i j}(x)$ around the current guess
2. compute the gradient of the quadratic objective $\sum_{(i, j) \in E} F_{i j}(x)$, set it equal to zero, and solve the resulting linear system
3. update the current guess and repeat

- The linearization points can be corrected iteratively via the Gauss-Newton or Levenberg-Marquardt algorithms

Bayes Filter

- Motion model:

$$
x_{t+1}=a\left(x_{t}, u_{t}, w_{t}\right) \sim p_{a}\left(\cdot \mid x_{t}, u_{t}\right)
$$

- Observation model:

$$
z_{t}=h\left(x_{t}, v_{t}\right) \sim p_{h}\left(\cdot \mid x_{t}\right)
$$

- Filtering: keeps track of

$$
\begin{aligned}
p_{t \mid t}\left(x_{t}\right) & :=p\left(x_{t} \mid z_{0: t}, u_{0: t-1}\right) \\
p_{t+1 \mid t}\left(x_{t+1}\right) & :=p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)
\end{aligned}
$$

- Bayes filter:

$$
p_{t+1 \mid t+1}\left(x_{t+1}\right)=\underbrace{\overbrace{\frac{1}{p\left(z_{t+1} \mid z_{0: t}, u_{0: t}\right)}}^{\frac{1}{\eta_{t+1}}} p_{h}\left(z_{t+1} \mid x_{t+1}\right) \overbrace{\int p_{a}\left(x_{t+1} \mid x_{t}, u_{t}\right) p_{t \mid t}\left(x_{t}\right) d x_{t}}^{\text {Predict: } p_{t+1 \mid t}\left(x_{t+1}\right)}}_{\text {Update }}
$$

- Joint distribution:

$$
p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(z_{t} \mid x_{t}\right)}_{\text {observation model }} \prod_{t=0}^{T} \underbrace{p_{a}\left(x_{t} \mid x_{t-1}, u_{t-1}\right)}_{\text {motion model }}
$$

Bayesian Smoothing

- Smoothing: keeps track of

$$
p_{t \mid t}\left(x_{0: t}\right):=p\left(x_{0: t} \mid z_{0: t}, u_{0: t-1}\right)
$$

$$
p_{t+1 \mid t}\left(x_{0: t+1}\right):=p\left(x_{0: t+1} \mid z_{0: t}, u_{0: t}\right)
$$

- Forward pass (Bayes filter): compute $p\left(x_{t+1} \mid z_{0: t+1}, u_{0: t}\right)$ and $p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)$ for $t=0, \ldots, T$
- Backward pass (Bayes smoother): for $t=T-1, \ldots, 0$ compute:

$$
\begin{aligned}
& p\left(x_{t} \mid z_{0: T}, u_{0: T-1}\right) \xlongequal[\text { Probability }]{\text { Total }} \int p\left(x_{t} \mid x_{t+1}, z_{0: T}, u_{0: T-1}\right) p\left(x_{t+1} \mid z_{0: T}, u_{0: T-1}\right) d x_{t+1} \\
& \xlongequal[\text { Assumption }]{\text { Markov }} \int p\left(x_{t} \mid x_{t+1}, z_{0: t}, u_{0: t}\right) p\left(x_{t+1} \mid z_{0: T}, u_{0: T-1}\right) d x_{t+1} \\
& \xlongequal[\text { Rule }]{\text { Bayes }} \underbrace{p\left(x_{t} \mid z_{0: t}, u_{0: t-1}\right)}_{\text {forward pass }} \int[\frac{\overbrace{p_{a}\left(x_{t+1} \mid x_{t}, u_{t}\right)}^{\text {motion model }} p\left(x_{t+1} \mid z_{0: T}, u_{0: T-1}\right)}{\underbrace{p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)}_{\text {forward pass }}}] d x_{t+1}
\end{aligned}
$$

Rauch-Tung-Striebel (Kalman) Smoothing

- Prior: $x_{0} \sim \mathcal{N}\left(\mu_{0 \mid 0}, \Sigma_{0 \mid 0}\right)$
- Motion model: $x_{t+1}=A x_{t}+B u_{t}+w_{t}$ with $w_{t} \sim \mathcal{N}(0, W)$
- Observation model: $z_{t}=H x_{t}+v_{t}$ with $v_{t} \sim \mathcal{N}(0, V)$
- Forward pass (Kalman filter): compute $\left\{\left(\mu_{t \mid t}, \Sigma_{t \mid t}\right)\right\}_{t=1}^{T}$ and $\left\{\left(\mu_{t+1 \mid t}, \Sigma_{t+1 \mid t}\right)\right\}_{t=0}^{T-1}$
- Backward pass (Kalman smoother): let $\left(\mu_{T \mid T}^{S}, \Sigma_{T \mid T}^{S}\right):=\left(\mu_{T \mid T}, \Sigma_{T \mid T}\right)$ and compute the smoothed estimates $\left\{\left(\mu_{t \mid t}^{S}, \Sigma_{t \mid t}^{S}\right)\right\}_{t=T-1}^{0}$ as follows:

$$
\begin{aligned}
& \text { for } t=T-1, \ldots, 0 \\
& G_{t}=\Sigma_{t \mid t} A^{T}\left(\Sigma_{t+1 \mid t}\right)^{-1} \\
& \mu_{t \mid t}^{S}=\mu_{t \mid t}+G_{t}\left(\mu_{t+1 \mid t+1}^{S}-\mu_{t+1 \mid t}\right) \\
& \Sigma_{t \mid t}^{S}=\Sigma_{t \mid t}+G_{t}\left(\Sigma_{t+1 \mid t+1}^{S}-\Sigma_{t+1 \mid t}\right) G_{t}^{T}
\end{aligned}
$$

Extended Kalman Smoothing via Least Squares

- Prior: $x_{0} \sim \mathcal{N}\left(\mu_{0}, \Sigma_{0 \mid 0}\right)$
- Noise: $w_{t} \sim \mathcal{N}(0, W)$ and $v_{t} \sim \mathcal{N}(0, V)$
- Linearization point: initial estimate $\mu_{0: T}$, e.g., from odometry
- Motion model linearization:
$x_{t+1}=a\left(x_{t}, u_{t}, w_{t}\right) \approx a\left(\mu_{t}, u_{t}, 0\right)+A_{t}\left(x_{t}-\mu_{t}\right)+Q_{t} w_{t}$
- Observation model linearization:
$z_{t}=h\left(x_{t}, v_{t}\right) \approx h\left(\mu_{t}, 0\right)+H_{t}\left(x_{t}-\mu_{t}\right)+R_{t} v_{t}$
- Jacobians: $A_{t}:=\frac{d a}{d x}\left(\mu_{t}, u_{t}, 0\right)$ and $Q_{t}:=\frac{d a}{d w}\left(\mu_{t}, u_{t}, 0\right)$ and $H_{t}:=\frac{d h}{d x}\left(\mu_{t}, 0\right)$ and $R_{t}:=\frac{d h}{d v}\left(\mu_{t}, 0\right)$
- Error model: $e_{t}:=x_{t}-\mu_{t}$ and $\eta_{t+1}:=\mu_{t+1}-a\left(\mu_{t}, u_{t}, 0\right)$ and $\zeta_{t}:=z_{t}-h\left(\mu_{t}, 0\right)$

$$
\begin{aligned}
e_{t+1}+\eta_{t+1} & =A_{t} e_{t}+w_{t}^{\prime}, \quad w_{t}^{\prime} \sim \mathcal{N}(0, \overbrace{Q_{t} W Q_{t}^{T}}^{W_{t}}) \\
\zeta_{t+1} & =H_{t+1} e_{t+1}+v_{t+1}^{\prime}, \quad v_{t+1}^{\prime} \sim \mathcal{N}(0, \underbrace{R_{t+1} V R_{t+1}^{T}}_{V_{t+1}})
\end{aligned}
$$

Extended Kalman Smoothing via Least Squares

- Joint distribution:

$$
p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(z_{t} \mid x_{t}\right)}_{\text {observation model }} \prod_{t=1}^{T} \underbrace{p_{a}\left(x_{t} \mid x_{t-1}, u_{t-1}\right)}_{\text {motion model }}
$$

- SLAM via MLE leads to nonlinear least squares:

$$
\underset{x_{0}: T}{\arg \max } \log p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right) \xlongequal[\text { initial guess } \mu_{0: T}]{\text { linearize around }}
$$

$$
\approx \mu_{0: T}+\underset{e_{0: T}}{\arg \min }\left\{\left\|e_{0}\right\|_{\Sigma_{0 \mid 0}}^{2}+\sum_{t=0}^{T}\left\|\zeta_{t}-H_{t} e_{t}\right\|_{V_{t}}^{2}+\sum_{t=1}^{T}\left\|\eta_{t}+e_{t}-A_{t} e_{t-1}\right\|_{W_{t}}^{2}\right\} \xlongequal[{\|x\|_{\Sigma:=\sqrt{x^{T} \Sigma^{-1} x}=\left\|\Sigma^{-1 / 2} \times\right\|_{2}}^{\text {Mahalonobis Distance }}}]{\substack{\text { Man }}}
$$

$$
=\mu_{0: T}+\underset{e_{0: T}}{\arg \min }\left\{\left\|\Sigma_{0 \mid 0}^{-1 / 2} e_{0}\right\|_{2}^{2}+\sum_{t=0}^{T}\left\|V_{t}^{-1 / 2}\left(\zeta_{t}-H_{t} e_{t}\right)\right\|_{2}^{2}+\sum_{t=1}^{T}\left\|W_{t-1}^{-1 / 2}\left(\eta_{t}+e_{t}-A_{t} e_{t-1}\right)\right\|_{2}^{2}\right\}
$$

- Solve the linear least squares problem to obtain $e_{0: T}$
- Update the linearization points: $\mu_{0: T}^{\prime}=\mu_{0: T}+e_{0: T}$
- Repeat by linearizing around $\mu_{0: T}^{\prime}$

Sparse Least Squares

$-\left\|\binom{x_{1}}{x_{2}}-\binom{y_{1}}{y_{2}}\right\|_{2}^{2}=\left\|x_{1}-y_{1}\right\|_{2}^{2}+\left\|x_{2}-y_{2}\right\|_{2}^{2}$ for $x_{1}, y_{1} \in \mathbb{R}^{d_{1}}, x_{2}, y_{2} \in \mathbb{R}^{d_{2}}$

- Using this we can write the least-squares problem in matrix notation:

$$
\begin{aligned}
& \left\|\Sigma_{0 \mid 0}^{-1 / 2} e_{0}\right\|^{2}+\sum_{t=0}^{T}\left\|V_{t}^{-1 / 2}\left(\zeta_{t}-H_{t} e_{t}\right)\right\|^{2}+\sum_{t=1}^{T}\left\|W_{t-1}^{-1 / 2}\left(\eta_{t}+e_{t}-A_{t-1} e_{t-1}\right)\right\|^{2} \\
& \quad=\left\|\Sigma_{0 \mid 0}^{-1 / 2} e_{0}\right\|^{2}+\left\|\left[\begin{array}{c}
V_{0}^{-1 / 2}\left(\zeta_{0}-H_{0} e_{0}\right) \\
\vdots \\
V_{T}^{-1 / 2}\left(\zeta_{T}-H_{T} e_{T}\right)
\end{array}\right]\right\|_{2}^{2}+\left\|\left[\begin{array}{c}
W_{0}^{-1 / 2}\left(\eta_{1}+e_{1}-A_{0} e_{0}\right) \\
\vdots \\
W_{T-1}^{-1 / 2}\left(\eta_{T}+e_{T}-A_{T-1} e_{T-1}\right)
\end{array}\right]\right\|_{2}^{2} \\
& \quad=\left\|\Sigma_{0 \mid 0}^{-1 / 2} e_{0}\right\|^{2}+\left\|\left[\begin{array}{ccc}
V_{0}^{-1 / 2} H_{0} & & \\
& \ddots & \\
& & V_{T}^{-1 / 2} H_{T}
\end{array}\right]\left(\begin{array}{c}
e_{0} \\
\vdots \\
e_{T}
\end{array}\right)-\left[\begin{array}{c}
V_{0}^{-1 / 2} \zeta_{0} \\
\vdots \\
V_{T}^{-1 / 2} \zeta_{T}
\end{array}\right]\right\|_{2}^{2} \\
& \quad+\left\|\left[\begin{array}{ccc}
W_{0}^{-1 / 2} A_{0} & -W_{0}^{-1 / 2} & \\
& W_{1}^{-1 / 2} A_{1} & \ddots \\
& \ddots & -W_{T-1}^{-1 / 2} \\
\vdots \\
e_{T}
\end{array}\right)-\left[\begin{array}{c}
W_{0}^{-1 / 2} \eta_{1} \\
\vdots \\
W_{T-1}^{-1 / 2} \eta_{T}
\end{array}\right]\right\|_{2}^{2}
\end{aligned}
$$

Sparse Least Squares

$$
\begin{aligned}
& =\left\|J e_{0: T}-b\right\|_{2}^{2}
\end{aligned}
$$

Sparse Least Squares

- Via linearization, we managed to reduce the SLAM problem to:
$\underset{x_{0: T}}{\arg \max } \log p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right) \xlongequal[\text { initial guess } \mu_{0: T}]{\text { linearize around }} \mu_{0: T}+\underset{e_{0: T}}{\arg \min }\left\|J e_{0: T}-b\right\|_{2}^{2}$
- The matrix of Jacobians J is sparse
- $J^{T} J$ is the information matrix of the joint Gaussian distribution of $x_{0: T} \mid z_{0: T}, u_{0: T-1}$
- Setting the gradient to zero leads to the Normal equations:

$$
J^{T} J e_{0: T}=J^{T} b
$$

- Can be solved via Cholesky decomposition of $J^{T} J$
- A more efficient and robust way, which avoids having to compute the information matrix $J^{T} J$ (which also squares the condition number), is QR factorization

Solution via QR Factorization

- QR factorization: $J=Q\left[\begin{array}{l}R \\ 0\end{array}\right] \in \mathbb{R}^{m \times n}$
- The number of variables (nodes) is n
- The number of constraints (factors) is m
- $R \in \mathbb{R}^{n \times n}$ is the upper triangular square root information matrix since $R^{T} R=J^{T} J$
- $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix
- Solution via QR factorization:

$$
\begin{aligned}
\left\|J e_{0: T}-b\right\|_{2}^{2} & =\left\|Q\left[\begin{array}{c}
R \\
0
\end{array}\right] e_{0: T}-b\right\|_{2}^{2}=\left\|Q^{T} Q\left[\begin{array}{c}
R \\
0
\end{array}\right] e_{0: T}-Q^{T} b\right\|_{2}^{2} \\
& =\left\|\left[\begin{array}{c}
R \\
0
\end{array}\right] e_{0: T}-\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime}
\end{array}\right]\right\|_{2}^{2}=\left\|R e_{0: T}-b_{1}^{\prime}\right\|_{2}^{2}+\underbrace{\left\|b_{2}^{\prime}\right\|_{2}^{2}}_{\text {residual }}
\end{aligned}
$$

- Since R is upper triangular, simple back-substitution can be used to compute $e_{0: T}^{*}$ - leading to a least squares estimate for the complete robot trajectory as well as all landmarks $x_{0: T}$ conditioned on all measurements $z_{0: T}, u_{0: T-1}$

Factor Graph SLAM Summary

- The factor graph view of SLAM leads to a nonlinear least squares problem
- Assuming an initial estimate of the robot trajectory and landmark poses is available (e.g., from odometry and triangulation of 2-D image features), we can use the Gauss-Newton algorithm to solve the nonlinear least squares problem
- Gauss-Newton iterates between linearizing the system and solving the resulting linear equation to update the pose-landmark estimates
- Assuming a Gaussian distribution for the constraints is not always the best choice in the presence of outliers. A heavy-tailed distribution can be used for outlier rejection as in Lecture 14.
- Loop closure: observing previously seen landmarks generates constraints between non-successive robot poses

