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Localization & Mapping

Goal: determine the robot 
pose over time and build a 
map of the environment
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Whelan, Leutenegger, Salas-Moreno, Glocker, Davison, RSS'15



External World

SENSE PLAN ACT

Interaction with the real world 
introduces uncertainty!

Robotics Overview

ESTIMATE



 Common Sensors:

 Images from cameras

 Sounds from microphones

 Distances from IR, sonar, laser range finders

 Tactile bump switches

 Magnetic sensors

 Acceleration and angular velocity from inertial measurement units

 Common Actuators:

 Joint angles for legged robots and articulated robot arms

 Pan-tilt heads

 Steering, throttle for wheeled robots

 Thrust for quadrotors

Robotics Overview



 The field of robotics is an amalgam of several research areas:
 Computer vision & signal processing: algorithms to deal with real 

world signals in real time (e.g., filter sound signals, convolve images 
with edge detectors, recognize objects)

 Machine learning: algorithms to improve performance based on 
previous results and data (supervised, unsupervised, and 
reinforcement learning)

 Control theory: algorithms to estimate robot and world states and 
plan and execute robot actions

 Optimization: algorithms to choose the best robot behavior according 
to a suitable criterion from a set of available alternatives

Robotics Overview

 The key to robotics is the ability to deal with uncertainty 
(Probability theory is important too!)

 Sensor noise & actuator slippage

 Environment changes (outdoor sun, moving to different rooms, people)

 Real-time operation



• Noise: how to model uncertainty using probability distributions

• Perception: how to recognize objects and geometry in the environment

• Estimation: how to estimate robot and environment state variables 
given uncertain measurements

• Planning/Sequential decision making: how to choose the most 
appropriate action at each time

• Control/Dynamics: how to control forces that act on the robot and the 
resulting acceleration; how to take world changes in time into account

• Learning: how to incorporate prior experience to improve robot 
performance 

Main themes



A few robotic success stories…
and connections with material covered in this course



FastSLAM: particle filter + occupancy grid mapping

[Haehnel and Burgard]Mapping
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[Abbeel, Coates & Ng]

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning

Autonomous Helicopter Flight



value iteration, receding horizon control, motion 
planning, inverse reinforcement learning

[Kolter, Abbeel & Ng]Four-legged Locomotion



policy gradients, value function approximation

[Schulman, Abbeel, et al.]Learning Locomotion



localization, motion planning for navigation and 
grasping, grasp point selection, visual recognition

[Maitin-Shepard et al., 2010]Manipulation



SLAM, localization, motion planning for navigation and grasping, grasp point 
selection, visual category recognition (speech recognition and synthesis)

[Quigley, Gould, Saxena, Ng, et al.]The household robot



ECE 276A: Sensing & Estimation in Robotics

• The class will cover theoretical topics in:
• Sensing: rigid body motion, projective geometry, features, optical flow, 

object recognition

• Estimation: regression, maximum likelihood estimation, classification, 
probabilistic models, filtering, mapping, hidden Markov models

• References (not required!):
• An Invitation to 3-D Vision: Ma, Kosecka, Soatto & Sastry
• Probabilistic Robotics: Thrun, Burgard & Fox
• Bayesian Filtering and Smoothing: Sarkka
• Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber

• Course website: https://natanaso.github.io/ece276a
• Includes links to:                 (SIGN UP!)

• Discussion: Piazza
• Homework + Report Submission: GradeScope
• Project Submission: TritonEd
• Grades: GradeScope
• TA session: once per week on Thursday or Friday - TBD

https://natanaso.github.io/ece276a


ECE 276A: Sensing & Estimation in Robotics

• Four assignments (roughly 25% each, detailed rubric online)
• Project 1: Color Segmentation
• Project 2: Orientation Tracking
• Project 3: SLAM
• Project 4: Gesture Recognition

• Each assignment includes:
• theoretical homework
• programming assignment in python
• project report

• Letter grades will be assigned based on the class performance, i.e., 
there will be a “curve”.

• A test set will be released for each project a few days before the 
deadline. Your report should include results on both the test set 
and the training set.



Report Structure

Actual Humidity
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1. Introduction
It is important to monitor the humidity of plants and choose optimal 
watering times. In this paper, we present an approach to select the best 
watering time in the week from given historical humidity data.

2. Problem Formulation
Let 𝑓:ℝ → ℝ be the average historical weakly humidity.
Problem: Find a watering time 𝑡∗ ∈ ℝ such that 𝑡∗ = argmin

𝑡
𝑓(𝑡)

3. Technical Approach
The minimum of a function appears at one of its critical points
𝑠 ∈ ℝ ∣ 𝑓′ 𝑠 = 0 . We find all the roots of 𝑓′ and select the smallest 

one as the optimal watering time.

4. Results and Discussion
The method performs well as shown in Fig. 
1. The performance could be improved if 
real-time humidity measurements are 
used to update 𝑓.



Syllabus Snapshot



Color Segmentation
• train a Gaussian mixture color model to detect a red barrel in images



Orientation Tracking

• use a Kalman filter to track the 3-D orientation of a rotating body using 
IMU measurements and construct a panorama using RGB images



SLAM

• implement robot localization & mapping using odometry, IMU, 
laser, RGBD measurements from a humanoid robot



Gesture Recognition

• implement a Hidden Markov Model to predict different 
hand gestures from raw IMU data



Vision • The process of extracting information from an image

• Goal: identify objects and their relative locations

Classify objects based upon shape statistics

RGB color image at 30 fps from camera

Color segmentation

Each pixel is labelled by symbolic colors

Run length encoding

More efficient computational data structure

Union-find algorithm for merging of run-lengths

Use centroid, bounding box, major/minor 
axis, etc. to determine ball vs square etc.

Connected components or superpixels/regions/blobs
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Color Imaging

• Image sensor: converts the variable 
attenuation of light/electromagnetic 
radiation into small bursts of current

• Analog imaging technology uses charge-
coupled devices (CCD) or complementary 
metal-oxide semiconductors (CMOS)

8 bits (0-255)

• CCD/CMOS photosensor array:
• A phototransistor converts light into current
• Each transistor charges a capacitor to measure:

#photons/sampling time
• R,G,B filters are used to modify the absorption profiles of photons

• The R,G,B transistor values are combined using an A/D converter to 
get pixel values:

R = 127,     G = 200,     B = 103   (24-bit color)



Why RGB, why 3?

• Retina: 2 types of photoreceptors: rod & cone cells (S,M,L)

• Rod cells are relatively insensitive to wavelength but highly sensitive 
to intensity and thus are mostly saturated in their response during 
normal daylight conditions

𝒃(𝝀) r(𝝀)

𝐠(𝝀)



• Given an arbitrary light spectral distribution 𝑓(𝜆), the cone cells act as 
filters that provide a convolution-like signal to the brain:

𝒇(𝝀)𝒃(𝝀) r(𝝀)𝐠(𝝀)

ത𝒓 = ∫ 𝒇 𝝀 𝒓 𝝀 𝒅𝝀

ഥ𝒈

ഥ𝒃

• Color blind people are deficient in 1 or more of these cones
• Other animals (e.g., fish) have more than 3 cones

wavelength

wavelength



Luma-Chroma Color Space

• YUV (YCbCr): a linear transformation of RGB
• Luminance/Brightness (Y) ~ (R+G+B)/3
• Blueness (U/Cb) ≈ B - G
• Redness (V/Cr) ≈ R – G
• Used in analog TV for PAL/SECAM composite color video standards

R G

B

Chrominance

Gray-scale image



Other Color Spaces

• HSV: cylindrical coordinates of RGB points
• Hue (H): angular dimension

(red ~ 0º, green ~ 120º, blue ~ 240º)

• Saturation (S): pure red has saturation 
1, while tints have saturation < 1.

• LAB: nonlinear transformation of RGB; device independent
• Lightness (L): from black (L=0) to white (L=100)
• Position between green and red/magenta (A)
• Position between blue and yellow (B)

• Value/Brightness (V): achromatic/gray colors ranging from 
black (V = 0, bottom) to white (V=1, top)



Image Formation

• Pixel values depend on:
• Scene geometry
• Scene photometry (illumination and reflective properties)
• Scene dynamics (moving objects)

• Using camera images to infer a representation of the world is 
challenging because the shape, material properties, and motion of the 
observed scene are in general unknown

• Color segmentation: aims to segment the color space into a set of discrete 
volumes

• Each pixel is a 3-D vector:

• Discrete color labels:  

 , ,x Y Cb Cr

{1, , }Nw 



• Each pixel is a 3-D vector:

• Discrete color labels:  
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{1, , }Nw 

YCbCr Image Space



Bayes decision theory

• Pixel values are noisy

• Learn a probabilistic model p 𝑤 𝑥) of the color classes 𝑤 given 
color-space training data D = 𝑥𝑖 , 𝑤𝑖

• Define a color map that transforms a color-space input to a discrete 

color label: arg max ( | )wx p w x

Cr Y

Cb
( | " ")p x blue

( | " ")p x orange



Vectors

• A vector 𝑥 ∈ ℝ𝑑 with 𝑑 dimensions is a collection of scalars 𝑥𝑖 ∈
ℝ for 𝑖 = 1,… , 𝑑 organized in a column:

𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑑

𝑥𝑇 = 𝑥1 𝑥2 ⋯ 𝑥𝑑

• Linearly independent vectors: a set of vectors 𝑥𝑖 ∈ ℝ𝑑 , 𝑖 = 1,… , 𝑛
such that no nontrivial linear combination of them gives the zero vector:



𝑖=1

𝑛

𝑎𝑖𝑥𝑖 = 0 ⟹ 𝑎𝑖 = 0, ∀𝑖

• A set of 𝑑 linearly independent vectors 𝑥𝑖 ∈ ℝ
𝑑 forms a basis for 

the vector space of all 𝑑 × 1 vectors

• The set if all linear combinations of a specified set of vectors is a 
vector space called the span of the set of vectors.



Norm

• A norm on a vector space 𝑉 over a subfield 𝐹 is a function ⋅ : 𝑉 → ℝ
such that for all 𝑎 ∈ 𝐹 and all 𝑥, 𝑦 ∈ 𝑉

• 𝑎𝑥 = 𝑎 𝑥 (absolute homogeneity)

• 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 (triangle inequality)

• 𝑥 ≥ 0 (non-negativity)

• 𝑥 = 0 iff 𝑥 = 0 (definiteness)

• The Euclidean norm of a vector 𝑥 ∈ ℝ𝑑 is 𝑥 2 ≔ 𝑥𝑇𝑥 and satisfies:

• max
1≤𝑖≤𝑑

𝑥𝑖 ≤ 𝑥 2 ≤ 𝑑 max
1≤𝑖≤𝑑

𝑥𝑖

• |𝑥𝑇𝑦| ≤ 𝑥 2 𝑦 2 (Cauchy-Schwarz Inequality)



Matrices

• A matrix 𝐴 ∈ ℝ𝑚×𝑛 is a rectangular array of scalars 𝑥𝑖𝑗 ∈ ℝ for 

𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛

• The entries of the transpose 𝐴𝑇 ∈ ℝ𝑛×𝑚 of a matrix 𝐴 ∈ ℝ𝑚×𝑛

are: 𝐴𝑖𝑗
𝑇 = 𝐴𝑗𝑖. The transpose satisfies: 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇

• The trace of square matrix 𝐴 ∈ ℝ𝑛×𝑛 is the sum of its diagonal entries:

𝑡𝑟 𝐴 :=

𝑖=1

𝑛

𝐴𝑖𝑖

• The determinant of square matrix 𝐴 ∈ ℝ𝑛×𝑛 is: 

where 𝐶𝑖𝑗 is the cofactor of the entry 𝐴𝑖𝑗 and is equal to −1 𝑖+𝑗 times 

the determinant of the 𝑛 − 1 × (𝑛 − 1) submatrix that results when 
the 𝑖𝑡ℎ-row and 𝑗𝑡ℎ-col of 𝐴 are deleted. This recursive definition uses 
the fact that the determinant of a scalar is the scalar itself

𝑡𝑟 𝐴𝐵𝐶 = 𝑡𝑟 𝐵𝐶𝐴 = 𝑡𝑟(𝐶𝐴𝐵)

𝑑𝑒𝑡 𝐴 :=

𝑗=1

𝑛

𝐴𝑖𝑗𝐶𝑖𝑗 𝑑𝑒𝑡 𝐴𝐵 = det 𝐴 det 𝐵 = det(𝐵𝐴)



Matrices

• The adjugate 𝑎𝑑𝑗(𝐴) is the transpose of the matrix of cofactors of 𝐴

• If 𝐴 ∈ ℝ𝑛×𝑛 and 𝑝 ∈ ℝ𝑛 is a nonzero vector such that for 𝜆 > 0, 𝐴𝑝 = 𝜆𝑝, 
then 𝑝 is an eigenvector corresponding to the eigenvalue 𝜆.

• A real matrix can have complex eigenvalues and eigenvectors, which 
appear in conjugate pairs. The 𝑛 eigenvalues of 𝐴 ∈ ℝ𝑛×𝑛 are 
precisely the 𝑛 roots of the characteristic polynomial of 𝐴, given by 
𝑝 𝑠 ≔ 𝑑𝑒𝑡(𝑠𝐼 − 𝐴). 

• The inverse 𝐴−1 of 𝐴 exists iff 𝑑𝑒𝑡 𝐴 ≠ 0 and satisfies

𝐴−1 =
𝑎𝑑𝑗(𝐴)

det( 𝐴)
𝐴𝐵 −1 = 𝐵−1𝐴−1

• The roots of a polynomial are continuous functions of its coefficients and 
hence the eigenvalues of a matrix are continuous functions of its entries.

𝑡𝑟 𝐴 :=

𝑖=1

𝑛

𝜆𝑖 𝑑𝑒𝑡 𝐴 :=ෑ

𝑖=1

𝑛

𝜆𝑖



Quadratic Forms 

• The product 𝑥𝑇𝑄𝑥 for 𝑄 ∈ ℝ𝑛×𝑛 and 𝑥 ∈ ℝ𝑛 is called a quadratic form and 
without loss of generality 𝑄 can be assumed symmetric, 𝑄 = 𝑄𝑇 because for 
all  𝑥 ∈ ℝ𝑛:

• The Schur complement of block 𝐷 of matrix 𝑀 =
𝐴 𝐵
𝐶 𝐷

is 𝑆𝐷 = 𝐴 − 𝐵𝐷−1𝐶

• A symmetric matrix 𝑀 =
𝐴 𝐵
𝐵𝑇 𝐷

is positive semi-definite if and only if both 

𝐴 and 𝑆𝐴 are positive semi-definite (or both 𝐷 and 𝑆𝐷 are positive semi-definite).

1

2
𝑥𝑇 𝑄 + 𝑄𝑇 𝑥 = 𝑥𝑇𝑄𝑥

• A symmetric matrix 𝑄 ∈ ℝ𝑛×𝑛 is positive semidefinite if 𝑥𝑇𝑄𝑥 ≥ 0 for all 𝑥 ∈ ℝ𝑛

• A symmetric matrix 𝑄 ∈ ℝ𝑛×𝑛 is positive definite if it is positive semidefinite 
and if 𝑥𝑇𝑄𝑥 = 0 implies 𝑥 = 0

• All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of a 
positive semidefinite matrix are nonnegative and all eigenvalues of a positive 
definite matrix are positive. 



Matrix Inversion Lemma
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• Square Completion:



Matrix Exponential

• The matrix exponential of 𝐴 ∈ ℝ𝑛×𝑛 is defined by the power series

• The matrix exponential appears in

• solutions of linear equations of ordinary differential equations

• the relationship between rotation matrices and skew-symmetric matrices

𝑒𝐴 = 

𝑘=0

∞
1

𝑘!
𝐴𝑘

• Properties:

• 𝑒𝐴𝑒−𝐴 = 𝐼,         𝑑𝑒𝑡 𝑒𝐴 = 𝑒𝑡𝑟(𝐴)

• If 𝐴𝐵 = 𝐵𝐴, then 𝑒𝐴𝑒𝐵 = 𝑒𝐵𝑒𝐴 = 𝑒(𝐴+𝐵)

• If 𝐵−1 exists, then 𝑒𝐵𝐴𝐵
−1
= 𝐵𝑒𝐴𝐵−1

• 𝑒𝐴
𝑇
= 𝑒𝐴 𝑇, which implies that:

• If 𝐴 is symmetric, then 𝑒𝐴 is symmetric

• If 𝐴 is skew-symmetric, then 𝑒𝐴 is orthogonal



Linear ODE Solutions

0

0 0( ) ( , ) ( , ( () ) )   
t

t

x t t t x t B s u ss ds Solution:

 The transition matrix Φ 𝑡, 𝑡0 is given by the Peano-Baker series:

1 1 2

1 1 1 2 2 1 1 2 3 3 2 1( , ) ( ) ( ) ( ) ( ) ( ) ( )
     

         
t t ts s s

ds dt I A s A s A s ds A s As ds s ds sA ds

 If 𝐴 is time-invariant, then Φ 𝑡, 𝜏 = 𝑒𝐴(𝑡−𝜏)

 Continuous-time linear time-varying system:

0 0 0( ) ( ) ( ) ( ) ( ), )( ,   xx t A t x t B t u t x t tt

 Discrete-time:
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Derivatives (numerator layout)
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Matrix Calculus (numerator layout)
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