ECE276A: Sensing \& Estimation in Robotics Lecture 1: Color Vision

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu
UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Progress in robot control

Boston Dynamics
JPL-Caltech, DARPA Robotics Challenge, 2015

RE2 Robotics, Inc.

Progress in robot perception

Newcombe, Fox, Seitz, CVPR'15

Ren, He, Girshick, Sun, NIPS'15

Microsoft Ignite, 2015

Localization \& Mapping

Goal: determine the robot pose over time and build a map of the environment

Whelan, Leutenegger, Salas-Moreno, Glocker, Davison, RSS'15
[1] Forster, Carlone, Dellaert, Scaramuzza, RSS'15
[2] Kummerle, Grisetti, Strasdat, Konolige, Burgard, ICRA'11
[3] Kaess, Ranganathan, Dellaert, T-RO’08
[4] Mourikis, Roumeliotis, ICRA’07
[5] Google Project Tango

Robotics Overvinurnand

Robotics Overview

- Common Sensors:
- Images from cameras
- Sounds from microphones
- Distances from IR, sonar, laser range finders
- Tactile bump switches
- Magnetic sensors
- Acceleration and angular velocity from inertial measurement units
- Common Actuators:
- Joint angles for legged robots and articulated robot arms
- Pan-tilt heads
- Steering, throttle for wheeled robots
- Thrust for quadrotors

Robotics Overview

- The field of robotics is an amalgam of several research areas:
- Computer vision \& signal processing: algorithms to deal with real world signals in real time (e.g., filter sound signals, convolve images with edge detectors, recognize objects)
- Machine learning: algorithms to improve performance based on previous results and data (supervised, unsupervised, and reinforcement learning)
- Control theory: algorithms to estimate robot and world states and plan and execute robot actions
- Optimization: algorithms to choose the best robot behavior according to a suitable criterion from a set of available alternatives
- The key to robotics is the ability to deal with uncertainty (Probability theory is important too!)
- Sensor noise \& actuator slippage
- Environment changes (outdoor sun, moving to different rooms, people)
- Real-time operation

Main themes

- Noise: how to model uncertainty using probability distributions
- Perception: how to recognize objects and geometry in the environment
- Estimation: how to estimate robot and environment state variables given uncertain measurements
- Planning/Sequential decision making: how to choose the most appropriate action at each time
- Control/Dynamics: how to control forces that act on the robot and the resulting acceleration; how to take world changes in time into account
- Learning: how to incorporate prior experience to improve robot performance

A few robotic success stories...

and connections with material covered in this course

Mapping

[Haehnel and Burgard]

Driverless Cars

- Ernst Dickmanns / Mercedes Benz (1995):
- 1758 km: Paris highway and Munich \rightarrow Odense
- Longest autonomous stretch: 158 km
- Lane changes up to 140 km/h

Versuchsfahmeug fuir

und Piechnersehen
VaNolis

Driverless Cars

- Ernst Dickmanns / Mercedes Benz (1995):
- 1758 km: Paris highway and Munich \rightarrow Odense
- Longest autonomous stretch: 158 km
- Lane changes up to 140 km/h
- DARPA Grand Challenge: first long-distance driverless car competition
- 2004: CMU vehicle drove 7.36 out of 150 miles
- 2005: 5 teams finished, Stanford team won

Driverless Cars

Kalman filtering, LQR, mapping, terrain \& object recognition

Driverless Cars

- Ernst Dickmanns / Mercedes Benz (1995):
- 1758 km: Paris highway and Munich \rightarrow Odense
- Longest autonomous stretch: 158 km
- Lane changes up to 140 km/h
- DARPA Grand Challenge: first long-distance driverless car competition
- 2004: CMU vehicle drove 7.36 out of 150 miles
- 2005: 5 teams finished, Stanford team won nova-race
- DARPA Urban Challenge (2007)
- Urban environment: other vehicles present
- 6 teams finished (CMU won)

Driverless Cars

- Ernst Dickmanns / Mercedes Benz (1995):
- 1758 km: Paris highway and Munich \rightarrow Odense
- Longest autonomous stretch: 158 km
- Lane changes up to $140 \mathrm{~km} / \mathrm{h}$
- DARPA Grand Challenge: first long-distance driverless car competition
- 2004: CMU vehicle drove 7.36 out of 150 miles
- 2005: 5 teams finished, Stanford team won nova-race
- DARPA Urban Challenge (2007)
- Urban environment: other vehicles present
- 6 teams finished (CMU won)
- Google/Waymo Self-Driving Car
- 2010: Mountain View \rightarrow Santa Monica; >200,000 miles; Lombard, Golden Gate, Tahoe, Pacific Coast Highway
- by Oct 2016: 2M miles with only minor accidents

Driverless Cars

gBOGLE

Kalman filtering, LQR, mapping, terrain \& object recognition

Kalman filtering, model-predictive control, LQR, system ID, trajectory learning

Four-legged Locomotion

[Kolter, Abbeel \& Ng]

value iteration, receding horizon control, motion planning, inverse reinforcement learning

Learning Locomotion

[Schulman, Abbeel, et al.]

Iteration 320

policy gradients, value function approximation

localization, motion planning for navigation and grasping, grasp point selection, visual recognition

SLAM, localization, motion planning for navigation and grasping, grasp point selection, visual category recognition (speech recognition and synthesis)

ECE 276A: Sensing \& Estimation in Robotics

- The class will cover theoretical topics in:
- Sensing: rigid body motion, projective geometry, features, optical flow, object recognition
- Estimation: regression, maximum likelihood estimation, classification, probabilistic models, filtering, mapping, hidden Markov models
- References (not required!):
- An Invitation to 3-D Vision: Ma, Kosecka, Soatto \& Sastry
- Probabilistic Robotics: Thrun, Burgard \& Fox
- Bayesian Filtering and Smoothing: Sarkka
- Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber
- Course website: https://natanaso.github.io/ece276a
- Includes links to: (SIGN UP!)
- Discussion: Piazza
- Homework + Report Submission: GradeScope
- Project Submission: TritonEd
- Grades: GradeScope
- TA session: once per week on Thursday or Friday - TBD

ECE 276A: Sensing \& Estimation in Robotics

- Four assignments (roughly 25% each, detailed rubric online)
- Project 1: Color Segmentation
- Project 2: Orientation Tracking
- Project 3: SLAM
- Project 4: Gesture Recognition
- Each assignment includes:
- theoretical homework
- programming assignment in python
- project report
- Letter grades will be assigned based on the class performance, i.e., there will be a "curve".
- A test set will be released for each project a few days before the deadline. Your report should include results on both the test set and the training set.

Report Structure

1. Introduction

It is important to monitor the humidity of plants and choose optimal watering times. In this paper, we present an approach to select the best watering time in the week from given historical humidity data.
2. Problem Formulation

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the average historical weakly humidity.
Problem: Find a watering time $t^{*} \in \mathbb{R}$ such that $t^{*}=\operatorname{argmin} f(t)$
3. Technical Approach

The minimum of a function appears at one of its critical points $\left\{s \in \mathbb{R} \mid f^{\prime}(s)=0\right\}$. We find all the roots of f^{\prime} and select the smallest one as the optimal watering time.
4. Results and Discussion

The method performs well as shown in Fig. 1. The performance could be improved if real-time humidity measurements are used to update f.

Syllabus Snapshot

Date	Lecture	Materials	Assignment out/due
Oct 02	Introduction, Color Vision, Matrix Calculus	System-discretization, Matrix-functions	
Oct 04	Probability Theory		P1
Oct 09	Supervised Learning		
Oct 11	Expectation Maximization	RigidBodyMotion	
Oct 16	Rigid Body Motion		Kraft-UKF
Oct 18	Bayes Filter, Kalman Filter		P2
Oct 23	EKF, UKF		P1
Oct 25	Projective Geometry, Panorama		
Oct 30	Sensor Models I		
Nov 01	Sensor Models II	Phrun-SLAM	
Nov 06	Gaussian Mixture and Particle Filter, Monte Carlo Sampling		
Nov 08	Markov Localization		
Nov 13	Occupancy Grids, SLAM		
Nov 15	Kalman Smoother, Factor Graphs		
Nov 20	Robust Estimation: Hough, RANSAC, IRLS, Kabsch, ICP		P3, P4
Nov 22	Visual Features, Optical Flow		
Nov 27	TBD		Pabiner-HMM
Nov 29	Hidden Markov Models, Forward-Backward Procedure		
Dec 04	Viterbi Decoding, Baum-Welch Algorithm		
Dec 06	TBD		
Dec 13			

Color Segmentation

- train a Gaussian mixture color model to detect a red barrel in images

Orientation Tracking

- use a Kalman filter to track the 3-D orientation of a rotating body using IMU measurements and construct a panorama using RGB images

$$
\begin{array}{ll}
\text { grav }=[-0.00,-0.00,0.01] & \text { grav }=[-0.00,-0.01,1.01] \\
\text { yaw }=-0.24, \text { pitch }=-0.06, \text { roll }=0.31 & \text { yaw }=3.35, \text { pitch }=0.37, \text { roll }=0.39
\end{array}
$$

True Yaw (blue) vs Estimated Yaw (red) in degre⿶asie

True Roll (blue) vs Estimated Roll (red) in degrees

SLAM

- implement robot localization \& mapping using odometry, IMU, laser, RGBD measurements from a humanoid robot

Gesture Recognition

- implement a Hidden Markov Model to predict different hand gestures from raw IMU data

- The process of extracting information from an image
- Goal: identify objects and their relative locations

RGB color image at 30 fps from camera

Color segmentation

Each pixel is labelled by symbolic colors

Run length encoding

More efficient computational data structure
Union-find algorithm for merging of run-lengths

Connected components or superpixels/regions/blobs Use centroid, bounding box, major/minor axis, etc. to determine ball vs square etc.

Classify objects based upon shape statistics

Color Imaging

- Image sensor: converts the variable attenuation of light/electromagnetic radiation into small bursts of current
- Analog imaging technology uses chargecoupled devices (CCD) or complementary metal-oxide semiconductors (CMOS)
 \#photons/sampling time
- R,G,B filters are used to modify the absorption profiles of photons
- The R,G,B transistor values are combined using an A / D converter to get pixel values:

Why RGB, why 3?

- Retina: 2 types of photoreceptors: rod \& cone cells (S,M,L)
- Rod cells are relatively insensitive to wavelength but highly sensitive to intensity and thus are mostly saturated in their response during normal daylight conditions

- Given an arbitrary light spectral distribution $f(\lambda)$, the cone cells act as filters that provide a convolution-like signal to the brain:

- Color blind people are deficient in 1 or more of these cones
- Other animals (e.g., fish) have more than 3 cones

Luma-Chroma Color Space

- YUV (YCbCr): a linear transformation of RGB
- Luminance/Brightness $(Y) \sim(R+G+B) / 3$ \square ζ Gray-scale image
- Blueness (U/Cb) $\approx \mathrm{B}-\mathrm{G}$
- Redness (V/Cr) $\approx \mathrm{R}-\mathrm{G}$

Chrominance

- Used in analog TV for PAL/SECAM composite color video standards

Other Color Spaces

- HSV: cylindrical coordinates of RGB points
- Hue (H): angular dimension (red ~ 0 0, green $\sim 120 \circ$, blue ~ 240)
- Saturation (S): pure red has saturation 1 , while tints have saturation <1.

- Value/Brightness (V): achromatic/gray colors ranging from black ($\mathrm{V}=0$, bottom) to white ($\mathrm{V}=1$, top)
- LAB: nonlinear transformation of RGB; device independent
- Lightness (L): from black ($\mathrm{L}=0$) to white ($\mathrm{L}=100$)
- Position between green and red/magenta (A)
- Position between blue and yellow (B)

Image Formation

- Pixel values depend on:
- Scene geometry
- Scene photometry (illumination and reflective properties)
- Scene dynamics (moving objects)
- Using camera images to infer a representation of the world is challenging because the shape, material properties, and motion of the observed scene are in general unknown
- Color segmentation: aims to segment the color space into a set of discrete volumes
- Each pixel is a 3-D vector: $\quad x=(Y, C b, C r)$
- Discrete color labels: $w \in\{1, \ldots, N\}$

YCbCr Image Space

- Each pixel is a 3-D vector: $\quad x=(Y, C b, C r)$
- Discrete color labels:
$w \in\{1, \ldots, N\}$

Bayes decision theory

- Pixel values are noisy
- Learn a probabilistic model $\mathrm{p}(w \mid x)$ of the color classes w given color-space training data $\mathrm{D}=\left\{\left(x_{i}, w_{i}\right)\right\}$
- Define a color map that transforms a color-space input to a discrete color label:

$$
x \rightarrow \arg \max _{w} p(w \mid x)
$$

Vectors

- A vector $x \in \mathbb{R}^{d}$ with d dimensions is a collection of scalars $x_{i} \in$ \mathbb{R} for $i=1, \ldots, d$ organized in a column:

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right] \quad x^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{d}
\end{array}\right]
$$

- Linearly independent vectors: a set of vectors $\left\{x_{i} \in \mathbb{R}^{d}, i=1, \ldots, n\right\}$ such that no nontrivial linear combination of them gives the zero vector:

$$
\sum_{i=1}^{n} a_{i} x_{i}=0 \quad \Rightarrow \quad a_{i}=0, \forall i
$$

- A set of d linearly independent vectors $x_{i} \in \mathbb{R}^{d}$ forms a basis for the vector space of all $d \times 1$ vectors
- The set if all linear combinations of a specified set of vectors is a vector space called the span of the set of vectors.

Norm

- A norm on a vector space V over a subfield F is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $a \in F$ and all $x, y \in V$
- $\|a x\|=|a|\|x\|$
- $\|x+y\| \leq\|x\|+\|y\|$
- $\|x\| \geq 0$
- $\|x\|=0$ iff $x=0$
(absolute homogeneity)
(triangle inequality)
(non-negativity)
(definiteness)
- The Euclidean norm of a vector $x \in \mathbb{R}^{d}$ is $\|x\|_{2}:=\sqrt{x^{T} x}$ and satisfies:
- $\max _{1 \leq i \leq d}\left|x_{i}\right| \leq\|x\|_{2} \leq \sqrt{d} \max _{1 \leq i \leq d}\left|x_{i}\right|$
- $\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2} \quad$ (Cauchy-Schwarz Inequality)

Matrices

- A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of scalars $x_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$
- The entries of the transpose $A^{T} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are: $A_{i j}^{T}=A_{j i}$. The transpose satisfies: $(A B)^{T}=B^{T} A^{T}$
- The trace of square matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} A_{i i} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
$$

- The determinant of square matrix $A \in \mathbb{R}^{n \times n}$ is:

$$
\operatorname{det}(A):=\sum_{j=1}^{n} A_{i j} C_{i j} \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)
$$

where $C_{i j}$ is the cofactor of the entry $A_{i j}$ and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times(n-1)$ submatrix that results when the $i^{t h}$-row and $j^{t h}$-col of A are deleted. This recursive definition uses the fact that the determinant of a scalar is the scalar itself

Matrices

- The adjugate $\operatorname{adj}(A)$ is the transpose of the matrix of cofactors of A
- The inverse A^{-1} of A exists iff $\operatorname{det}(A) \neq 0$ and satisfies

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}
$$

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- If $A \in \mathbb{R}^{n \times n}$ and $p \in \mathbb{R}^{n}$ is a nonzero vector such that for $\lambda>0, A p=\lambda p$, then p is an eigenvector corresponding to the eigenvalue λ.
- A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs. The n eigenvalues of $A \in \mathbb{R}^{n \times n}$ are precisely the n roots of the characteristic polynomial of A, given by $p(s):=\operatorname{det}(s I-A)$.
- The roots of a polynomial are continuous functions of its coefficients and hence the eigenvalues of a matrix are continuous functions of its entries.

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \lambda_{i} \quad \operatorname{det}(A):=\prod_{i=1}^{n} \lambda_{i}
$$

Quadratic Forms

- The product $x^{T} Q x$ for $Q \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$ is called a quadratic form and without loss of generality Q can be assumed symmetric, $Q=Q^{T}$ because for all $x \in \mathbb{R}^{n}$:

$$
\frac{1}{2} x^{T}\left(Q+Q^{T}\right) x=x^{T} Q x
$$

- A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is positive semidefinite if $x^{T} Q x \geq 0$ for all $x \in \mathbb{R}^{n}$
- A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is positive definite if it is positive semidefinite and if $x^{T} Q x=0$ implies $x=0$
- All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of a positive semidefinite matrix are nonnegative and all eigenvalues of a positive definite matrix are positive.
- The Schur complement of block D of matrix $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is $S_{D}=A-B D^{-1} C$
- A symmetric matrix $M=\left[\begin{array}{cc}A & B \\ B^{T} & D\end{array}\right]$ is positive semi-definite if and only if both A and S_{A} are positive semi-definite (or both D and S_{D} are positive semi-definite).

Matrix Inversion Lemma

- The Woodbury matrix identity:

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}
$$

- Block Matrix inversion:

Schur complement

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]^{-1}\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right]\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
\end{aligned}
$$

- Square Completion:

$$
\frac{1}{2} x^{T} A x+b^{T} x+c=\frac{1}{2}\left(x+A^{-1} b\right)^{T} A\left(x+A^{-1} b\right)+c-\frac{1}{2} b^{T} A^{-1} b
$$

Matrix Exponential

- The matrix exponential of $A \in \mathbb{R}^{n \times n}$ is defined by the power series
- Properties:

$$
e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

- $e^{A} e^{-A}=I, \quad \operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$
- If $A B=B A$, then $e^{A} e^{B}=e^{B} e^{A}=e^{(A+B)}$
- If B^{-1} exists, then $e^{B A B^{-1}}=B e^{A} B^{-1}$
- $e^{A^{T}}=\left[e^{A}\right]^{T}$, which implies that:
- If A is symmetric, then e^{A} is symmetric
- If A is skew-symmetric, then e^{A} is orthogonal
- The matrix exponential appears in
- solutions of linear equations of ordinary differential equations
- the relationship between rotation matrices and skew-symmetric matrices

Linear ODE Solutions

- Continuous-time linear time-varying system:

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), x\left(t_{0}\right)=x_{0}, t \geq t_{0}
$$

- Solution: $\quad x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, s) B(s) u(s) d s$
- The transition matrix $\Phi\left(t, t_{0}\right)$ is given by the Peano-Baker series:

$$
\Phi(t, \tau)=I+\int_{\tau}^{t} A\left(s_{1}\right) d s_{1}+\int_{\tau}^{t} \int_{\tau}^{s_{1}} A\left(s_{1}\right) A\left(s_{2}\right) d s_{2} d s_{1}+\int_{\tau}^{t} \int_{\tau}^{s_{1}} \int_{\tau}^{s_{2}} A\left(s_{1}\right) A\left(s_{2}\right) A\left(s_{3}\right) d s_{3} d s_{2} d s_{1}+\ldots
$$

- If A is time-invariant, then $\Phi(t, \tau)=e^{A(t-\tau)}$
- Discrete-time: $\quad x_{t+1}=A_{t} x_{t}+B_{t} u_{t}, x_{t_{0}}=x_{0}, t \geq t_{0}$

$$
\begin{aligned}
& x_{t}=\Phi\left(t, t_{0}\right) x_{0}+\sum_{j=t_{0}}^{t-1} \Phi(t, j+1) B_{j} u_{j}, t \geq t_{0}+1 \\
& \Phi(t, j)=\left\{\begin{array}{cc}
A_{t-1} A_{t-2} \cdots A_{j}, & t \geq j+1 \\
I, & t=j
\end{array}\right.
\end{aligned}
$$

Derivatives (numerator layout)

$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{lll}\frac{\partial y}{\partial x_{1}} & \cdots & \frac{\partial y}{\partial x_{n}}\end{array}\right]=\left[\nabla_{\mathbf{x}} y\right]^{T}$
(gradient transpose)
$\frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{c}\frac{\partial y_{1}}{\partial x} \\ \vdots \\ \frac{\partial y_{m}}{\partial x}\end{array}\right]$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right]=D_{\mathbf{x}} \mathbf{y}$
(Jacobian)
$\frac{\partial Y}{\partial x}=\left[\begin{array}{ccc}\frac{\partial Y_{11}}{\partial x} & \cdots & \frac{\partial Y_{1 n}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial Y_{m 1}}{\partial x} & \cdots & \frac{\partial Y_{m n}}{\partial x}\end{array}\right] \quad \frac{\partial y}{\partial X}=\left[\begin{array}{ccc}\frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{p 1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1 q}} & \cdots & \frac{\partial y}{\partial x_{p q}}\end{array}\right]$

Matrix Calculus (numerator layout)

1. $\frac{d}{d X_{i j}} X=e_{i} e_{j}^{T}$
2. $\frac{d}{d x} A x=A$
3. $\frac{d}{d x} x^{T} A x=x^{T}\left(A+A^{T}\right)$
4. $\frac{d}{d x} M^{-1}(x)=-M^{-1}(x) \frac{d M(x)}{d x} M^{-1}(x)$
5. $\frac{d}{d X} \operatorname{tr}\left(A X^{-1} B\right)=-\left(X^{-1} B A X^{-1}\right)^{T}$
6. $\frac{d}{d X} \log \operatorname{det} X=X^{-T}$
