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Project 1 is out

I Click on P1 on the schedule and enter the password

I Start early! We have not covered everything but:
I Make sure you can open and download everything
I Try loading, viewing, and labeling the data
I Work on the first 2 problems
I Practice your python skills
I Start your report

I TA sessions: Friday, 2:00 - 3:30 pm, Jacobs Hall 2315

I First TA session – python tutorial
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Events

I Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

I Sample space Ω: the set of possible outcomes of an experiment.
I Ω = {HH,HT ,TH,TT}
I Ω = { , , , , , }

I Event A: a subset of the possible outcomes Ω
I A = {HH}, B = {HT ,TH}

I Probability of an event: P(A) = NA
N = #possible occurances of A

#all possible outcomes
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Probability Axioms

I Probability Axioms:
I P(A) ≥ 0
I P(Ω) = 1
I If {Ai} are disjoint (Ai ∩ Aj = ∅), then P(

⋃
i Ai ) =

∑
i P(Ai )

I Corollary
I P(∅) = 0
I max{P(A),P(B)} ≤ P(A ∪B) = P(A) + P(B)− P(A∩B) ≤ P(A) + P(B)
I A ⊆ B ⇒ P(A) ≤ P(B)
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Set of Events

I Conditional Probability: P(A | B) = P(A∩B)
P(B) , P(B) 6= 0

I Total Probability Theorem: If {A1, . . . ,An} is a partition of Ω, i.e.,
Ω =

⋃
i Ai and Ai ∩ Aj = ∅, i 6= j , then:

P(B) =
n∑

i=1

P(B ∩ Ai )

I Bayes Theorem If {A1, . . . ,An} is a partition of Ω, then:

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

I Independent events: P(
⋂

i Ai ) =
∏

i P(Ai )
I observing one does not give any information about another
I in contrast, disjoint events never occur together: one occuring tells you

that others will not occur and hence, disjoint events are always dependent
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Measure Space

I σ-algebra: a collection of subsets of Ω closed under complementation
and countable unions.

I Measurable space: a tuple (Ω,F), where Ω is a sample space and F is
a σ-algebra.

I Measure: a function µ : F → R satisfying µ(A) ≥ µ(∅) = 0 for all
A ∈ F and countable additivity µ(∪iAi ) =

∑
i µ(Ai ) for disjoint Ai .

I A measure µ is σ-finite on (Ω,F), if Ω can be obtained as the
countable union ∪nAn of sets An ∈ F of finite measure, µ(An) <∞.
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Probability Space

I Probability measure: a measure that satisfies µ(Ω) = 1.

I Probability space: a triple (Ω,F ,P), where Ω is a sample space, F is a
σ-algebra, and P : F → [0, 1] is a probability measure.

I Borel σ-algebra B: the smallest σ-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).
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Random Variable

I Random variable X : an F-measurable function from (Ω,F) to (R,B),
i.e., a function X : Ω→ R s.t. the preimage of every set in B is in F .

I Distribution function F (x) of a random variable X : a function
F (x) := P(X ≤ x) that is non-decreasing, right-continuous, and
limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

I Density/mass function f (x) of a random variable X
Continuous RV
X : (Ω,F ,P)→ (R,B,P ◦ X−1):

I f (x) ≥ 0

I
∫
f (y)dy = 1

I F (x) =
∫ x

−∞ f (y)dy = P(X ≤ x)

Discrete RV
X : (Ω, 2Ω,P)→ (R,B,P ◦ X−1):

I f (x) = P(X = x) ≥ 0

I
∑

i f (i) = 1

I F (x)=
∑

i∈Z,i≤x f (i) = P(X ≤ x)

I P(X = x) = F (x)− F (x−) = limε→0

∫ x

x−ε f (y)dy = 0

I P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f (x)dx

8



Expectation
I Lebesgue Integration: The integral

∫
gdµ of a measurable function g

on measurable space (Ω,F) with a σ-finite measure µ can be defined.
In the case that µ has a pdf p, the Lebesgue integral is equivalent to a
Riemann integral:

∫
gdµ =

∫
g(x)p(x)dx .

I Expectation: Given a random variable X : (Ω,F ,P)→ (Rn,Bn,P◦X−1)
and a measurable function g : (Rn,Bn,P ◦ X−1)→ (Rm,Bm,L), the
expectation of g(X ) is defined as follows:

E[g(X )] =

∫
Ω
g(X (ω))dP(ω) =

∫
Rn

g(x)dP(X−1(x)) =

∫
Rm

ydL(y)

When X has a pdf p and g has a pdf l , the above simplifies to:

E[g(X )] =

∫
Rn

g(x)p(x)dx =

∫
Rm

yl(y)dy

I Expectation of an Indicator: E[1A] =
∫
1A(ω)dP(ω) = P(A)

I Variance of a random variable X :
Var [X ] := E

[
(X − E[X ])(X − E[X ])T

]
= E

[
XXT

]
− E[X ]E[X ]T
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Gaussian Distribution

I The Mahalaonobis distance for vector x ∈ Rn and symmetric
positive-definie matrix S ∈ Sn>0 is: ‖x‖2

S := xTS−1x

I Gaussian random variable X ∼ N (µ,Σ)
I paramteres: mean µ ∈ Rn, covariance Σ ∈ Sn�0

I pdf: φ(x ;µ,Σ) := 1√
(2π)n det(Σ)

exp
(
− 1

2 (x − µ)TΣ−1(x − µ)
)

I expectation: E[X ] =
∫
xφ(x ;µ,Σ)dx = µ

I variance: Var [X ] = Σ

I Gaussian mixture X ∼ NM({αk}, {µk}, {Σk})
I parameters: weights αk ≥ 0,

∑
k αk = 1,

means µk ∈ Rn, covariances Σk ∈ Sn�0
I pdf: p(x) :=

∑
k αkφ(x ;µk ,Σk)

I expectation: E[X ] =
∫
xp(x)dx =

∑
k αkµk =: µ̄

I variance: E
[
XXT

]
− E[X ]E[X ]T =

∑
k αk

(
Σk + µkµ

T
k

)
− µ̄µ̄T
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Mixture of two 2-D Gaussians
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Other Distributions

I Uniform continuous random variable X ∼ U(a, b)
I paramteres: −∞ < a < b <∞
I pdf: p(x) = 1

b−a for x ∈ [a, b]
I expectation: E[X ] = 1

2 (a + b)
I variance: Var [X ] = 1

12 (b − a)2

I Chi-Square random variable X ∼ χ2(k)
I paramteres: degrees of freedom k ∈ N
I pdf: p(x) = 1

2k/2Γ( k
2 )
x

k
2−1e−

x
2 for x ≥ 0

I expectation: E[X ] = k
I variance: Var [X ] = 2k
I if Y ∼ N (µ,Σ), then X := ‖Y − µ‖2

Σ ∼ χ2(n)

I The Gamma function Γ(α) :=
∫∞

0 yα−1e−ydy , α > 0, satisfies
Γ( 1

2 ) =
√
π, Γ(1) = 1, Γ(k + 1) = kΓ(k)
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Composition and Norm
I Change of Density: Let Y = f (X ). Then with dy = det

(
df
dx (x)

)
dx :

P(Y ∈ A) = P(X ∈ f −1(A)) =

∫
f −1(A)

px(x)dx

change of
=======

variables

∫
A

1

det
(
df
dx (f −1(y))

)px(f −1(y)) dy

I Lp-Space: Let (S ,Σ, µ) be a measure space and 1 ≤ p <∞. Then,
f ∈ Lp(µ) if f is measurable wrt S and

‖f ‖p :=

(∫
S
|f |pdµ

) 1
p

<∞

I Differential Entropy of a continuous random variable X with pdf p is:
h(p) := −

∫
p(x) log p(x)dx

I Kullback-Leibler (KL) divergence from pdf p to pdf q is:

dKL(p||q) :=
∫
p(x) log p(x)

q(x)dx
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Example: Change of Density
I Let V := (X ,Y ) be a random vector with pdf:

pV (x , y) :=

{
2y − x x < y < 2x and 1 < x < 2

0 else

I Let T := (M,N) = g(V ) :=
(

2X−Y
3 , X+Y

3

)
be a function of V

I Note that X = M + N and Y = 2N −M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

det

(
dg

dv

)
= det

[
2/3 − 1/3
1/3 1/3

]
=

1

3

I The pdf T is:

pT (m, n) =


1

det( dg
dv

(m+n,2n−m))
pV (m + n, 2n −m),

0 < m < n/2 and

1 < m + n < 2,

0, else.
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Inequalities

I Markov’s Inequality 0 ≤ X , f ⇒ P(X ∈ A) ≤ Ef (X )

infx∈A f (x)

. Examples: P(X ≥ a) ≤ EX
a

and P (|X − EX | ≥ a) ≤ Var(X )

a

I f : Rn → R is convex if one of the following holds:
I f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y), ∀x , y ∈ Rn, λ ∈ [0, 1]
I f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y ∈ Rn

I ∇2f (x) � 0, ∀x ∈ Rn

I Jensen’s Inequality Let X be random variable and ψ : R→ R be a

convex function. Then, Eψ(X ) ≥ ψ(E(X )) provided both exist.

I |E|Xt | − E|X || ≤ E||Xt | − |X || ≤ E|Xt − X |, thus convergence in L1

implies convergence in expectation but not the converse
I (E|X |)2 ≤ EX 2

I f
(∑

i ai zi∑
i ai

)
≤

∑
i ai f (zi )∑

i ai
for convex f , points {zi} in f ’s domain, and ai ≥ 0
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Inequalities

I Hölder’s Inequality (generalizes Cauchy-Schwarz) Let (S ,Σ, µ) be a

measure space and let p, q ∈ [1,∞] with 1/p + 1/q = 1 . Then, for

measurable f , g on S : ‖fg‖1 ≤ ‖f ‖p‖g‖q .

I If f , g ∈ L2(µ), then |〈f , g〉| ≤ ‖f ‖2‖g‖2

I E|XY | ≤ (E|X |p)
1
p (E|Y |q)

1
q

I E(|X |r ) ≤ (E(|X |s))
r
s

I

∞∑
k=1

|xkyk | ≤

( ∞∑
k=1

|xk |p
) 1

p
( ∞∑

k=1

|yk |q
) 1

q

I |aTb| ≤ ‖a‖2‖b‖2
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Set of Random Variables

I The joint distribution of random variables {Xi}ni=1 on (Ω,F ,P) defines
their simultaneous behavior and is associated with a cumulative
distribution function F (x1, . . . , xn) := P(X1 ≤ x1, . . . ,Xn ≤ xn). The
CDF Fi (xi ) of Xi defines its marginal distribution.

I Random variables {Xi}ni=1 on (Ω,F ,P) are jointly independent iff for
all {Ai}ni=1 ⊂ F , P(Xi ∈ Ai ,∀i) =

∏n
i=1 P(Xi ∈ Ai )

I Let X and Y be random variables and suppose EX , EY , and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X ,Y ) = 0.

I Independence implies uncorrelatedness

I Two random variables X and Y are orthogonal if E[XTY ] = 0
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Set of Random Variables

I Total Probability Theorem Given two random variables X1,X2 with a
joint pdf p, one can obtain the marginal pdf p1 of X1 as follows:
p1(x1) :=

∫
p(x1, x2)dx2.

I Conditional expectation Let X be an RV on (Ω,F0,P) with E|X | <∞
and let F ⊆ F0. Then, Y := E[X | F ] is an RV that satisfies:

I (Measurability Axiom) Y ∈ F ,
I (Integral Axiom)

∫
G
YdP =

∫
G
XdP for all G ∈ F .

Y exists and is unique up to values on a set of measure zero. The
following notation is common:

I E[X | Z ] := E[X | σ(Z )]
I P(A | B) := E[1A | σ(B)]
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Set of Random Variables

I Conditional distribution If (X ,Y ) has a pdf f on R2 and
E|g(X )| <∞, then E[g(X ) | σ(Y )] = h(Y ) for

h(y) :=
∫
g(x) f (x ,y)∫

f (x ,y)dx
dx . Note that this defines the pdf of X

conditioned on Y = y as p(x |y) :=
f (x , y)∫
f (x , y)dx

I Bayes Theorem The conditional, marginal, and joint pdfs of X and Y
are related:

p(x , y) = p(y |x)p(x) = p(x |y)p(y)

⇒ p(x |y) =
p(y |x)p(x)∫

p(y | x ′)p(x ′)dx ′
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Set of Random Variables

I Convolution Let X and Y be independent random variables with pdfs f
and g , respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g :

[f ∗ g ](z) :=

∫
f (z − y)g(y)dy

I Variance Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ) +
n∑

i=1

∑
j 6=i

Cov(Xi ,Xj)

Cov(Xi ,Xj) := E
(
(Xi − EXi )(Xj − EXj)

T
)

= E(XiX
T
j )− EXiEXT

j
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