ECE276A: Sensing \& Estimation in Robotics Lecture 2: Probability Theory

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Project 1 is out

- Click on P1 on the schedule and enter the password
- Start early! We have not covered everything but:
- Make sure you can open and download everything
- Try loading, viewing, and labeling the data
- Work on the first 2 problems
- Practice your python skills
- Start your report
- TA sessions: Friday, 2:00-3:30 pm, Jacobs Hall 2315
- First TA session - python tutorial

Events

- Experiment: any procedure that can be repeated infinitely and has a well-defined set of possible outcomes.
- Sample space Ω : the set of possible outcomes of an experiment.
- $\Omega=\{H H, H T, T H, T T\}$

- Event A : a subset of the possible outcomes Ω
- $A=\{H H\}, B=\{H T, T H\}$
- Probability of an event: $\mathbb{P}(A)=\frac{N_{A}}{N}=\frac{\text { \#possible occurances of } A}{\# \text { all possible outcomes }}$

Probability Axioms

- Probability Axioms:
- $\mathbb{P}(A) \geq 0$
- $\mathbb{P}(\Omega)=1$
- If $\left\{A_{i}\right\}$ are disjoint $\left(A_{i} \cap A_{j}=\emptyset\right)$, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$
- Corollary
- $\mathbb{P}(\emptyset)=0$
- $\max \{\mathbb{P}(A), \mathbb{P}(B)\} \leq \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \leq \mathbb{P}(A)+\mathbb{P}(B)$
- $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$

Set of Events

- Conditional Probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \mathbb{P}(B) \neq 0$
- Total Probability Theorem: If $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, i.e., $\Omega=\bigcup_{i} A_{i}$ and $A_{i} \cap A_{j}=\emptyset, i \neq j$, then:

$$
\mathbb{P}(B)=\sum_{i=1}^{n} \mathbb{P}\left(B \cap A_{i}\right)
$$

- Bayes Theorem If $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, then:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

- Independent events: $\mathbb{P}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \mathbb{P}\left(A_{i}\right)$
- observing one does not give any information about another
- in contrast, disjoint events never occur together: one occuring tells you that others will not occur and hence, disjoint events are always dependent

Measure Space

- σ-algebra: a collection of subsets of Ω closed under complementation and countable unions.
- Measurable space: a tuple (Ω, \mathcal{F}), where Ω is a sample space and \mathcal{F} is a σ-algebra.
- Measure: a function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- A measure μ is σ-finite on (Ω, \mathcal{F}), if Ω can be obtained as the countable union $\cup_{n} A_{n}$ of sets $A_{n} \in \mathcal{F}$ of finite measure, $\mu\left(A_{n}\right)<\infty$.

Probability Space

- Probability measure: a measure that satisfies $\mu(\Omega)=1$.
- Probability space: a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is a sample space, \mathcal{F} is a σ-algebra, and $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure.
- Bored σ-algebra \mathcal{B} : the smallest σ-algebra containing all open sets from a topological space. Necessary because there is no valid translation invariant way to assign a finite measure to all subsets of $[0,1)$.

Random Variable

- Random variable X : an \mathcal{F}-measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$, ie., a function $X: \Omega \rightarrow \mathbb{R}$ s.t. the preimage of every set in \mathcal{B} is in \mathcal{F}.
- Distribution function $F(x)$ of a random variable X : a function $F(x):=\mathbb{P}(X \leq x)$ that is non-decreasing, right-continuous, and $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.
- Density/mass function $f(x)$ of a random variable X

Continuous RV

 $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{R}, \mathcal{B}, \mathbb{P} \circ X^{-1}\right):$Discrete RV

- $f(x) \geq 0$
$X:\left(\Omega, 2^{\Omega}, \mathbb{P}\right) \rightarrow\left(\mathbb{R}, \mathcal{B}, \mathbb{P} \circ X^{-1}\right):$
- $f(x)=\mathbb{P}(X=x) \geq 0$
- $\int f(y) d y=1$
- $\sum_{i} f(i)=1$
- $F(x)=\int_{-\infty}^{x} f(y) d y=\mathbb{P}(X \leq x) \quad$ - $F(x)=\sum_{i \in \mathbb{Z}, i \leq x} f(i)=\mathbb{P}(X \leq x)$
- $\mathbb{P}(X=x)=F(x)-F\left(x^{-}\right)=\lim _{\epsilon \rightarrow 0} \int_{x-\epsilon}^{x} f(y) d y=0$
- $\mathbb{P}(a<X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x$

Expectation

- Lebesgue Integration: The integral $\int g d \mu$ of a measurable function g on measurable space (Ω, \mathcal{F}) with a σ-finite measure μ can be defined. In the case that μ has a pdf p, the Lebesgue integral is equivalent to a Riemann integral: $\int g d \mu=\int g(x) p(x) d x$.
- Expectation: Given a random variable $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}^{n}, \mathbb{P} \circ X^{-1}\right)$ and a measurable function $g:\left(\mathbb{R}^{n}, \mathcal{B}^{n}, \mathbb{P} \circ X^{-1}\right) \rightarrow\left(\mathbb{R}^{m}, \mathcal{B}^{m}, \mathcal{L}\right)$, the expectation of $g(X)$ is defined as follows:

$$
\mathbb{E}[g(X)]=\int_{\Omega} g(X(\omega)) d \mathbb{P}(\omega)=\int_{\mathbb{R}^{n}} g(x) d \mathbb{P}\left(X^{-1}(x)\right)=\int_{\mathbb{R}^{m}} y d \mathcal{L}(y)
$$

When X has a pdf p and g has a pdf I, the above simplifies to:

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}^{n}} g(x) p(x) d x=\int_{\mathbb{R}^{m}} y /(y) d y
$$

- Expectation of an Indicator: $\mathbb{E}\left[\mathbb{1}_{A}\right]=\int \mathbb{1}_{A}(\omega) d \mathbb{P}(\omega)=\mathbb{P}(A)$
- Variance of a random variable X :
$\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{T}\right]=\mathbb{E}\left[X X^{T}\right]-\mathbb{E}[X] \mathbb{E}[X]^{T}$

Gaussian Distribution

- The Mahalaonobis distance for vector $x \in \mathbb{R}^{n}$ and symmetric positive-definie matrix $S \in \mathbb{S}_{>0}^{n}$ is: $\|x\|_{S}^{2}:=x^{T} S^{-1} x$
- Gaussian random variable $X \sim \mathcal{N}(\mu, \Sigma)$
- paramteres: mean $\mu \in \mathbb{R}^{n}$, covariance $\Sigma \in \mathbb{S}_{\succ 0}^{n}$
- pdf: $\phi(x ; \mu, \Sigma):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$
- expectation: $\mathbb{E}[X]=\int x \phi(x ; \mu, \Sigma) d x=\mu$
- variance: $\operatorname{Var}[X]=\Sigma$
- Gaussian mixture $X \sim \mathcal{N} \mathcal{M}\left(\left\{\alpha_{k}\right\},\left\{\mu_{k}\right\},\left\{\Sigma_{k}\right\}\right)$
- parameters: weights $\alpha_{k} \geq 0, \sum_{k} \alpha_{k}=1$, means $\mu_{k} \in \mathbb{R}^{n}$, covariances $\Sigma_{k} \in \mathbb{S}_{\succeq 0}^{n}$
- pdf: $p(x):=\sum_{k} \alpha_{k} \phi\left(x ; \mu_{k}, \Sigma_{k}\right)$
- expectation: $\mathbb{E}[X]=\int x p(x) d x=\sum_{k} \alpha_{k} \mu_{k}=: \bar{\mu}$
- variance: $\mathbb{E}\left[X X^{T}\right]-\mathbb{E}[X] \mathbb{E}[X]^{T}=\sum_{k} \alpha_{k}\left(\Sigma_{k}+\mu_{k} \mu_{k}^{T}\right)-\bar{\mu} \bar{\mu}^{T}$

Mixture of two 2-D Gaussians

Other Distributions

- Uniform continuous random variable $X \sim \mathcal{U}(a, b)$
- paramteres: $-\infty<a<b<\infty$
- pdf: $p(x)=\frac{1}{b-a}$ for $x \in[a, b]$
- expectation: $\mathbb{E}[X]=\frac{1}{2}(a+b)$
- variance: $\operatorname{Var}[X]=\frac{1}{12}(b-a)^{2}$
- Chi-Square random variable $X \sim \chi^{2}(k)$
- paramteres: degrees of freedom $k \in \mathbb{N}$
- pdf: $p(x)=\frac{1}{2^{k / 2} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$ for $x \geq 0$
- expectation: $\mathbb{E}[X]=k$
- variance: $\operatorname{Var}[X]=2 k$
- if $Y \sim \mathcal{N}(\mu, \Sigma)$, then $X:=\|Y-\mu\|_{\Sigma}^{2} \sim \chi^{2}(n)$
- The Gamma function $\Gamma(\alpha):=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y, \alpha>0$, satisfies $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \Gamma(1)=1, \Gamma(k+1)=k \Gamma(k)$

Composition and Norm

- Change of Density: Let $Y=f(X)$. Then with $d y=\operatorname{det}\left(\frac{d f}{d x}(x)\right) d x$:

$$
\begin{aligned}
& \mathbb{P}(Y \in A)=\mathbb{P}\left(X \in f^{-1}(A)\right)=\int_{f^{-1}(A)} p_{x}(x) d x \\
& \xlongequal[\text { variables }]{\text { change of }} \int_{A} \frac{1}{\operatorname{det}\left(\frac{d f}{d x}\left(f^{-1}(y)\right)\right)} p_{x}\left(f^{-1}(y)\right) d y
\end{aligned}
$$

- L^{p}-Space: Let (S, Σ, μ) be a measure space and $1 \leq p<\infty$. Then, $f \in L^{p}(\mu)$ if f is measurable wrt S and

$$
\|f\|_{p}:=\left(\int_{S}|f|^{p} d \mu\right)^{\frac{1}{p}}<\infty
$$

- Differential Entropy of a continuous random variable X with pdf p is: $h(p):=-\int p(x) \log p(x) d x$
- Kullback-Leibler (KL) divergence from pdf p to $\mathrm{pdf} q$ is: $d_{\mathcal{K} \mathcal{L}}(p \| q):=\int p(x) \log \frac{p(x)}{q(x)} d x$

Example: Change of Density

- Let $V:=(X, Y)$ be a random vector with pdf:

$$
p_{V}(x, y):= \begin{cases}2 y-x & x<y<2 x \text { and } 1<x<2 \\ 0 & \text { else }\end{cases}
$$

- Let $T:=(M, N)=g(V):=\left(\frac{2 X-Y}{3}, \frac{X+Y}{3}\right)$ be a function of V
- Note that $X=M+N$ and $Y=2 N-M$ and hence the pdf of V is non-zero for $0<m<n / 2$ and $1<m+n<2$. Also:

$$
\operatorname{det}\left(\frac{d g}{d v}\right)=\operatorname{det}\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]=\frac{1}{3}
$$

- The pdf T is:

$$
p_{T}(m, n)= \begin{cases}\frac{1}{\operatorname{det}\left(\frac{d g}{d v}(m+n, 2 n-m)\right)} p_{V}(m+n, 2 n-m), & 0<m<n / 2 \text { and } \\ 0, & 1<m+n<2\end{cases}
$$

Inequalities

- Markov's Inequality $0 \leq X, f \Rightarrow \mathbb{P}(X \in A) \leq \frac{\mathbb{E} f(X)}{\inf _{x \in A} f(x)}$

$$
\text { Examples: } \mathbb{P}(X \geq a) \leq \frac{\mathbb{E} X}{a} \text { and } \mathbb{P}(|X-\mathbb{E} X| \geq a) \leq \frac{\operatorname{Var}(X)}{a}
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if one of the following holds:
- $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y), \quad \forall x, y \in \mathbb{R}^{n}, \lambda \in[0,1]$
- $f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y \in \mathbb{R}^{n}$
- $\nabla^{2} f(x) \succeq 0, \quad \forall x \in \mathbb{R}^{n}$
- Jensen's Inequality Let X be random variable and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then, $\mathbb{E} \psi(X) \geq \psi(\mathbb{E}(X))$ provided both exist.
- $|\mathbb{E}| X_{t}|-\mathbb{E}| X| | \leq \mathbb{E}| | X_{t}|-|X|| \leq \mathbb{E}\left|X_{t}-X\right|$, thus convergence in L^{1} implies convergence in expectation but not the converse
- $(\mathbb{E}|X|)^{2} \leq \mathbb{E} X^{2}$
- $f\left(\frac{\sum_{i} a_{i} z_{i}}{\sum_{i} a_{i}}\right) \leq \frac{\sum_{i} a_{i} f\left(z_{i}\right)}{\sum_{i} a_{i}}$ for convex f, points $\left\{z_{i}\right\}$ in f 's domain, and $a_{i} \geq 0$

Inequalities

- Hölder's Inequality (generalizes Cauchy-Schwarz) Let (S, Σ, μ) be a measure space and let $p, q \in[1, \infty]$ with $1 / p+1 / q=1$. Then, for measurable f, g on $S:\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$
- If $f, g \in L^{2}(\mu)$, then $|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2}$
- $\mathbb{E}|X Y| \leq\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}\left(\mathbb{E}|Y|^{q}\right)^{\frac{1}{q}}$
- $\mathbb{E}\left(|X|^{r}\right) \leq\left(\mathbb{E}\left(|X|^{s}\right)\right)^{\frac{r}{s}}$
- $\sum_{k=1}^{\infty}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}}$
- $\left|a^{T} b\right| \leq\|a\|_{2}\|b\|_{2}$

Set of Random Variables

- The joint distribution of random variables $\left\{X_{i}\right\}_{i=1}^{n}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ defines their simultaneous behavior and is associated with a cumulative distribution function $F\left(x_{1}, \ldots, x_{n}\right):=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)$. The CDF $F_{i}\left(x_{i}\right)$ of X_{i} defines its marginal distribution.
- Random variables $\left\{X_{i}\right\}_{i=1}^{n}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ are jointly independent iff for all $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{F}, \mathbb{P}\left(X_{i} \in A_{i}, \forall i\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \in A_{i}\right)$
- Let X and Y be random variables and suppose $\mathbb{E} X, \mathbb{E} Y$, and $\mathbb{E} X Y$ exist. Then, X and Y are uncorrelated iff $\mathbb{E} X Y=\mathbb{E} X \mathbb{E} Y$ or equivalently $\operatorname{Cov}(X, Y)=0$.
- Independence implies uncorrelatedness
- Two random variables X and Y are orthogonal if $\mathbb{E}\left[X^{T} Y\right]=0$

Set of Random Variables

- Total Probability Theorem Given two random variables X_{1}, X_{2} with a joint pdf p, one can obtain the marginal pdf p_{1} of X_{1} as follows: $p_{1}\left(x_{1}\right):=\int p\left(x_{1}, x_{2}\right) d x_{2}$.
- Conditional expectation Let X be an RV on $\left(\Omega, \mathcal{F}_{0}, \mathbb{P}\right)$ with $\mathbb{E}|X|<\infty$ and let $\mathcal{F} \subseteq \mathcal{F}_{0}$. Then, $Y:=\mathbb{E}[X \mid \mathcal{F}]$ is an RV that satisfies:
- (Measurability Axiom) $Y \in \mathcal{F}$,
- (Integral Axiom) $\int_{G} Y d \mathbb{P}=\int_{G} X d \mathbb{P}$ for all $G \in \mathcal{F}$.
Y exists and is unique up to values on a set of measure zero. The following notation is common:
- $\mathbb{E}[X \mid Z]:=\mathbb{E}[X \mid \sigma(Z)]$
- $\mathbb{P}(A \mid B):=\mathbb{E}\left[\mathbb{1}_{A} \mid \sigma(B)\right]$

Set of Random Variables

- Conditional distribution If (X, Y) has a pdf f on \mathbb{R}^{2} and $\mathbb{E}|g(X)|<\infty$, then $\mathbb{E}[g(X) \mid \sigma(Y)]=h(Y)$ for $h(y):=\int g(x) \frac{f(x, y)}{\int f(x, y) d x} d x$. Note that this defines the pdf of X conditioned on $Y=y$ as $p(x \mid y):=\frac{f(x, y)}{\int f(x, y) d x}$
- Bayes Theorem The conditional, marginal, and joint pdfs of X and Y are related:

$$
\begin{aligned}
p(x, y) & =p(y \mid x) p(x)=p(x \mid y) p(y) \\
& \Rightarrow p(x \mid y)=\frac{p(y \mid x) p(x)}{\int p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime}}
\end{aligned}
$$

Set of Random Variables

- Convolution Let X and Y be independent random variables with pdfs f and g, respectively. Then, the pdf of $Z=X+Y$ is given by the convolution of f and g :

$$
[f * g](z):=\int f(z-y) g(y) d y
$$

- Variance $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
$\operatorname{Cov}\left(X_{i}, X_{j}\right):=\mathbb{E}\left(\left(X_{i}-\mathbb{E} X_{i}\right)\left(X_{j}-\mathbb{E} X_{j}\right)^{T}\right)=\mathbb{E}\left(X_{i} X_{j}^{\top}\right)-\mathbb{E} X_{i} \mathbb{E} X_{j}^{\top}$

