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Project 1 is out

v

Click on P1 on the schedule and enter the password

v

Start early! We have not covered everything but:

» Make sure you can open and download everything
Try loading, viewing, and labeling the data

Work on the first 2 problems

Practice your python skills

Start your report

v vy VvYy

v

TA sessions: Friday, 2:00 - 3:30 pm, Jacobs Hall 2315

v

First TA session — python tutorial



Events

» Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

» Sample space 2: the set of possible outcomes of an experiment.
» Q={HH,HT,TH,TT}
» Q={(,0,,6,6 68}
» Event A: a subset of the possible outcomes
» A={HH}, B={HT, TH}
ops . _ Nj __ #possible occurances of A
> Probability of an event: P(A) = 3} = Z e



Probability Axioms

» Probability Axioms:
» P(A) >0
» P(Q) =1
> If {A;} are disjoint (A; N A; = ), then P({J; A;) = 32, P(A))

» Corollary
» P(0)=0
» max{P(A), B(B)} <
» ACB=P(A) <P

(AU B) = P(A) + P(B) — P(AN B) < P(A) + P(B)



Set of Events

> Conditional Probability: P(A | B) = “{5°), P(B) #0

v

Total Probability Theorem: If {A;,..., A} is a partition of Q, i.e.,
Q=J;Aiand AinA;j=0,i # j, then:

P(B) = ZH:P(B NnA)
i=1

» Bayes Theorem If {A1,..., A,} is a partition of €, then:
P(B | Ai)P(Ai)
IED(Al ‘ B) = n
2 =1 P(B | Aj)P(4))
» Independent events: P((); Aj) = [[; P(A))

» observing one does not give any information about another
> in contrast, disjoint events never occur together: one occuring tells you
that others will not occur and hence, disjoint events are always dependent
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Measure Space

v

o-algebra: a collection of subsets of € closed under complementation
and countable unions.

v

Measurable space: a tuple (2, F), where Q is a sample space and F is
a o-algebra.

» Measure: a function p : F — R satisfying 1(A)

> (@) = 0 for all
A € F and countable additivity p(U;A;) = >, u(A;) for

disjoint A;.

» A measure p is o-finite on (2, F), if Q can be obtained as the
countable union U,A, of sets A, € F of finite measure, u(A,) < oo.



Probability Space

» Probability measure: a measure that satisfies p(Q) = 1.

» Probability space: a triple (Q2, F,P), where Q is a sample space, F is a
o-algebra, and P: F — [0, 1] is a probability measure.

> Borel g-algebra 5: the smallest o-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).



Random Variable

» Random variable X: an F-measurable function from (Q, F) to (R, B),
i.e., a function X : Q — R s.t. the preimage of every set in B is in F.

» Distribution function F(x) of a random variable X: a function
F(x) :=P(X < x) that is non-decreasing, right-continuous, and
limy—o00 F(x) =1 and limy_,_o, F(x) = 0.

» Density/mass function f(x) of a random variable X

Continuous RV Discrete RV

X:(QF,P)—= (R,BPoX1): X:(Q,29P) = (R B,PoX1):
» f(x)>0 » f(x)=P(X=x)>0
> [f(y)dy =1 > () =1

v

F(x)= [Z f)dy =P(X <x)  » F(x)= ez, f(1) = P(X < x)
P(X =x) = F(x) = F(x7) =limeso [;__ f(y)dy =0
P(a < X < b) = F(b) — F(a) = [ f(x)dx

v

v



Expectation

» Lebesgue Integration: The integral [ gdyu of a measurable function g
on measurable space (€2, F) with a o-finite measure p can be defined.
In the case that u has a pdf p, the Lebesgue integral is equivalent to a

Riemann integral: [ gdu = [ g(x)p(x)dx.

» Expectation: Given a random variable X :(Q, F,P) — (R”,B",Po X 1)
and a measurable function g : (R", B",Po X~ 1) — (R™,B™, L), the
expectation of g(X) is defined as follows:

Ble(0] = | e(X@)dPE) = | g(dPX () = [ yd()
When X has a pdf p and g has a pdf /, the above simplifies to:

Ble(X)] = [ g(pbid = [ yity)dy

m

» Expectation of an Indicator: E[1,] = [14(w)dP(w) = P(A)

» Variance of a random variable X:
Var[X] .= E[(X — E[X])(X —E[X])"] = E[XXT] — E[X]E[X]"



Gaussian Distribution

» The Mahalaonobis distance for vector x € R” and symmetric
positive-definie matrix S € ST, is: [|x||3 := x"S7x

» Gaussian random variable X ~ N (u, X)
> paramteres: mean i € R", covariance ¥~ € ST

> pdf: ¢(x; pu, X) = m exp(—%(x — )T (x — u))

» expectation: E[X] = [ x¢(x; p, L)dx = p
> variance: Var[X] =X

» Gaussian mixture X ~ NM({ax}, {p}, {Zk})
» parameters: weights o, >0, Y, ax =1,
means y € R", covariances ¥, € S,
> pdf: p(x) := > 4 akd(x; pk, T)
» expectation: E[X] = [ xp(x)dx = 3", axpk =: [
» variance: E[XXT| —E[X]E[X]T = >, ax(Zk + ppe)) — 2"
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Mixture of two 2-D Gaussians
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Other Distributions

» Uniform continuous random variable X ~ U/(a, b)
> paramteres: —oo < a < b < 0o

» pdf: p(x) = iforxe[a b]

v

expectation: E[X] =

v

variance: Var[X] = —(b—a)z

» Chi-Square random variable X ~ x?(k)

» paramteres: degrees o:‘ freedom k € N
» pdf: p(x) = WXE*

> expectation: E[X] = k
variance: Var[X] = 2k

v

v

» The Gamma function I'(«

r(3)=vmr)=1 r(k + 1) = kr(k)

le=2 for x > 0

=Joy

if Y ~ N (1, ), then X := || Y — p]|2 ~ x2(n)

e_ydy, o > 0, satisfies
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Composition and Norm
» Change of Density: Let Y = f(X). Then with dy = det(9(x))dx:

P(Y € A) = B(X € f1(A)) = /f_l(A) p(x)dx
change of 1 B
variables /A det(%(f—l(y)))px(f (y)) fdy

» LP-Space: Let (S, X, ;) be a measure space and 1 < p < co. Then,
f € LP(u) if f is measurable wrt S and

1
P
1Fllp = ( / If”du) <o

> Differential Entropy of a continuous random variable X with pdf p is:
:= — [ p(x) log p(x)dx

» Kullback-Leibler (KL) divergence from pdf p to pdf q is:
dicc(pllg) == [ p(x)log & p(x) yax
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Example: Change of Density
» Let V :=(X,Y) be a random vector with pdf:

2y —x x<y<2xandl<x<?2

0 else

pV(va) = {

> Let T:=(M,N) =g(V):= (ZF¥L, 22 be a function of V

» Note that X = M+ N and Y = 2N — M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m+ n < 2. Also:

i) el il

> The pdf T is:
1 (m+n2 ) 0<m< n/2and
m+n,2n—m),
pr(m,n) = det(Z (m+n2n-m) PV l<m+n<2,
0, else.
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Inequalities

Ef(X
» Markov’s Inequality [0 < X, f| = |P(X € A)< infxef\fzx)
EX Var(X
Examples: | P(X > 2) < —~ | and | P(IX —EX| > a) < ar(X)

» f:R"” — R is convex if one of the following holds:

> F(Ax+ (1= A)y) < M(x) + (1= Nf(y),

> Fly) > F() + VA)T(y — %), Vxy € R

» V2f(x) =0, VxcR"

Vx,y € R", A € [0,1]

» Jensen’s Inequality Let X be random variable and ¢/ : R — R be a

convex function. Then, ‘]El/}(X) > Y(E(X)) ‘ provided both exist.

> [EIXe = EIX][ < E[[X:] — |X[| < E[X: —

> (E|X|)? < EX?

X|, thus convergence in L1
implies convergence in expectation but not the converse

> f( a;’) < 25 (@) for convex f, points {z;} in f's domain, and a; > 0
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Inequalities

» Holder’s Inequality (generalizes Cauchy-Schwarz) Let (S, %, 1) be a

measure space and let p, g € [1, oo] with

measurable f,g on S: | ||fg|l1 < ||fllpllgllq |

v

\4

v

v

v

1/p+1/q= 1‘. Then, for

I 7.8 € L2(u), then [(7.g)| < 7]l
E[XY] < (E[X[P)? (E[Y]7)

E(X]7) < (B(XPF)): )
[e'e] [e'e] r) o0 q
Z|Xk}/k| < (Z |Xk|p> <Z )’k|q>
k=1 k=1 k=1

|a"b| < la]l2]bll2
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Set of Random Variables

» The joint distribution of random variables {X;}7_; on (Q, F,IP) defines
their simultaneous behavior and is associated with a cumulative
distribution function F(xy,...,x,) :=P(X1 < x1,..., X, < xp). The
CDF Fj(x;) of X; defines its marginal distribution.

» Random variables {X;}7_; on (2, F,P) are jointly independent iff for
all {Ai}?:]_ C F, P(X; S A,',Vi) = le]:l P(X; € A,')

> Let X and Y be random variables and suppose EX, EY, and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X,Y)=0.

» Independence implies uncorrelatedness

» Two random variables X and Y are orthogonal if E[XT Y] =0
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Set of Random Variables

» Total Probability Theorem Given two random variables X7, X> with a
joint pdf p, one can obtain the marginal pdf p; of Xj as follows:

pi(x1) == [ p(x1, x2)dxs.

» Conditional expectation Let X be an RV on (Q, Fp, P) with E|X| < oo

and let 7 C Fy. Then, Y :=E[X | F] is an RV that satisfies:

» (Measurability Axiom) Y € F,

> (Integral Axiom) [, YdP = [ XdP for all G € F.
Y exists and is unique up to values on a set of measure zero. The
following notation is common:

> E[X [ 2] :=E[X | 0(2)]

> P(A| B):=E[la|o(B)]

18



Set of Random Variables

» Conditional distribution If (X, Y) has a pdf f on R? and
IElg( )| <00, then E[g(X) | o(Y)] = h(Y) for

= [ g(x) TH Xy))d dx. Note that this defines the pdf of X
f'
conditioned on Y =y as|p(x|y) := ff(::)}//)dx

» Bayes Theorem The conditional, marginal, and joint pdfs of X and Y
are related:

p(x,y) = p(y|x)p(x) = p(xly)p(y)

ol 1)p(x)
= PO = 7o T ()
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Set of Random Variables

> Convolution Let X and Y be independent random variables with pdfs f
and g, respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g:

[f * g](z /fz—

» Variance

Var (En: X,-) = Zn: Var(
i=1 i=1

X;) + Z > Cov(X;, X;)

i=1 j£i

Cov(Xi, X;) =

E ((Xi — EX)(X; —EX))T) = E(X;X]")

— EX,-EXJ-T
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