
ECE276A: Sensing & Estimation in Robotics
Lecture 4: Expectation Maximization

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:s9guo@eng.ucsd.edu
mailto:a2pal@eng.ucsd.edu

Gaussian Discriminant Analysis
I Generative model: h(x) := arg max

y
p(y , x)

I Maximum Likelihood Estimation (MLE): max
θ,ω

p(y,X | θ, ω)

I Gaussian (Mixture) Discriminant Analysis: uses a Gaussian Mixture
with J components to model p(xi | yi , ω):

p(y,X | ω, θ) = p(y | θ)p(X | y, ω) = p(y | θ)
n∏

i=1

p(xi | yi , ω)

p(y | θ) :=
n∏

i=1

K∏
k=1

θ
1{yi=k}
k p(xi | yi = k , ω) :=

J∑
j=1

αkjφ(xi ;µkj ,Σkj)

I The MLE of θ can be obtained via the softmax trick and differentiation

I Obtaining MLE estimates for ω := {αkj , µkj ,Σkj} is no longer straight

forward because log
∑J

j=1 αkjφ(xi ;µkj ,Σkj) is not convex/concave

I Also, need to ensure that
∑J

j=1 αkj = 1, ∀k .
2

Data Log Likelihood

I log p(y,X | ω, θ) =
n∑

i=1

K∑
k=1

1{yi = k} log θk

+
n∑

i=1

K∑
k=1

1{yi = k} log

 J∑
j=1

αkjφ(xi ;µkj ,Σkj)

I Focus on max wrt ω := {αkj , µkj ,Σkj}; the first term can be ignored

I To simplify notation, let Dk := {xi , yi | yi = k} ⊆ D and define:

λ(X , ω) :=
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

αkjφ(x;µkj ,Σkj)

3

Membership Probabilities
I Gaussian Mixtures are well suited for modeling clusters of points:

I each cluster is assigned a Gaussian
I the mean is somewhere in the middle of the cluster
I the covariance measures the cluster spread

I Sampling
I Draw an integer between 1 and J with probability αkj

I Draw a vector x from the j-th Gaussian pdf φ(x;µkj ,Σkj)

I It is useful to understand the meaning of qk(j , x) := αkjφ(x;µkj ,Σkj)

I Given class k , qk(j , x)dx is the joint probability of drawing component j
and data point x in a volume dx around it

I Membership probabilities the conditional probability of having
selected component j given data point x:

rk(j | x) :=
qk(j , x)∑J
l=1 qk(l , x)

J∑
j=1

rk(j | x) = 1

4

Local maxima of λ(X , ω)

I Maxima of
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

αkjφ(x;µkj ,Σkj)

 occur at critical points

I
d

dµlm
λ(X , ω) =

∑
x∈Dl

αlm∑J
j=1 αljφ(x;µlj ,Σlj)

d

dµlm
φ(x;µlm,Σlm)

=
∑
x∈Dl

rl(m | x)(µlm − x)TΣ−1lm

I
d

dΣlm
λ(X , ω) =

1

2

∑
x∈Dl

rl(m | x)
(

Σ−1lm (µlm − x)(µlm − x)TΣ−1lm − Σ−1lm

)
I Use softmax trick for αkj to handle simplex constraints

d

dγlm
λ(X , ω) =

∑
x∈Dl

1∑J
j=1 αljφ(x;µlj ,Σlj)

J∑
j=1

dαlj

dγlm
φ(x;µlj ,Σlj)

=
∑
x∈Dl

(rl(m | x)− αlm)

5

Local maxima of λ(X , ω)
I Setting the previous derivatives to zero, we obtain:

αkj =

∑n
i=1 1{yi = k}rk(j | xi)∑n

i=1 1{yi = k}
µkj =

∑n
i=1 1{yi = k}rk(j | xi)xi∑n
i=1 1{yi = k}rk(j | xi)

Σkj =

∑n
i=1 1{yi = k}rk(j | xi)(xi − µkj)(xi − µkj)T∑n

i=1 1{yi = k}rk(j | xi)

I The mixture weights are equal to the sample mean of the membership
probabilities rk(j | xi) assuming a uniform distribution over Dk

I The latter are the sample mean and covariance of the data, weighted by
the membership probabilities

I The three equations are coupled through rk(j | x) and hence are hard to
solve directly

I Idea: start with a guess ω(0) and iterate between updating rk(j | xi) and
updating ω(t)

6

Clustering

I How do we obtain an initial guess ω(0) :=
{
α
(0)
kj , µ

(0)
kj ,Σ

(0)
kj

}
?

I Clustering (or vector quantization) is the task of grouping objects in a
way that those in the same group (a cluster) are more similar (according
to a distance metric) to each other than to those in other groups.

I Unsupervised Learning: given an unlabeled dataset D = {xi}ni=1, the
goal is to partition it into J clusters

7

k-means Algorithm

I The k-means algorithm is an iterative clustering algorithm that uses
coordinate descent to solve the following optimization:

min
µ,r

C (µ, r) :=
n∑

i=1

J∑
j=1

rij‖µj − xi‖22

I µj are cluster centroids, rij := 1{xi is closest to µj} are cluster membership
indicators

I It is common to repeat the algorithm several times with different
initialization of µj

I Since k-means is optimizing ‖ · ‖2, it implicitly makes a spherical
assumption on the shape of the clusters.

8

k-means Algorithm

Algorithm 1 k-means clustering

1: Input: unlabeled dataset D = {xi}ni=1, number of clusters k
2: Output: cluster centroids µj , cluster assignments {rij}
3: Init: pick k cluster centroids µ1, . . . , µk
4: repeat
5: # Assign examples to the nearest centroid :
6: rij = 1, if j = arg min

l
‖µl − xi‖22, and rij = 0, otherwise.

7: # Set each centroid to the mean of the examples assigned to it:

8: µj = arg min
µ

C (µ, r) =
∑n

i=1 rijxi∑n
i=1 rij

9: until convergence

9

Expectation Maximization

I Iterative maximization technique based on auxiliary lower bounds
I Old idea (late 50’s) but formalized by Dempster, Laird and Rubin in 1977
I Subject of much investigation. See McLachlan & Krishnan book, 1997.
I Has two steps: Expectation (E) and Maximization (M)
I Generalizes k-means to soft cluster assignments

I Applicable to a wide range of problems:
I Fitting mixture models
I Probabilistic latent semantic analysis: produce concepts related to

documents and terms (NLP)
I Learning parts and structure models (vision)
I Segmentation of layers in video (vision)

10

Expectation Maximization

I Goal: maxω S(ω)

I S(ω) is not necessarily
concave

I Initialize ω(0) and iterate the following:
E. Construct an auxiliary lower-bound function T at ω(t) such that:

S(ω(t)) = T (ω(t), ω(t)) ≥ T (ω, ω(t))

M. Solve the easier auxiliary maximization to obtain the next point:

ω(t+1) = arg max
ω

T (ω, ω(t))

I The properties of T guarantee that each step gets closer to a local max:

S(ω(t)) = T (ω(t), ω(t)) ≤ max
ω
T (ω, ω(t)) ≤ S(ω(t+1))

11

Auxiliary Function

I EM is related to MLE since it can be used to solve a problem of the
form: maxω log p(D;ω), which might be too hard to solve by simply
setting the gradient to zero.

I In the context of MLE, EM uses latent/hidden variables to construct
an auxiliary lower-bound to the data log likelihood via:

I Jensen’s Inequality: f (E[Z]) ≤ E[f (Z)] for convex f

I e.g.: log
(∑

j zj
)

= log
(∑

j rj
zj
rj

)
≥
∑

j rj log
(

zj
rj

)
for
∑

j rj = 1 and rj ≥ 0

12

Auxiliary Function

I Introduce a latent random variable Z with pdf r(z | D):

log p(D;ω)
Total law

======
of prob.

log

∫
p(D, z ;ω)dz = log

∫
r(z |D)

p(D, z ;ω)

r(z |D)
dz

Jensen’s
≥

inequality

∫
r(z |D) log

p(D, z ;ω)

r(z |D)
dz

Auxiliary
======
function

T (ω, r)

I Assuming that log p(D, z ;ω) is concave in ω, the auxiliary function is
concave in ω for a fixed r and concave in r for a fixed ω (but not
jointly concave)

I The local maxima of T (ω, r) are local maxima of log p(D;ω)

(E step) r(· | D) = arg max
s(·|D)

T (ω, s)

(M step) ω′ = arg max
ω

T (ω, r)

13

E Step Details

I r(· | D)
why?

==== arg max
s(·|D)

T (ω, s)

I log p(D;ω) ≥ T (ω, s) =
∫
s(z |D) log r(z|D)p(D;ω)

s(z|D) dz

= log p(D;ω)− dKL(r(· | D)||s(· | D))

I When maximizing the lower bound T (ω, s) with respect to s, we are
maximizing the similarity between s(· | D) and the conditional pdf
r(· | D) of the latent variable Z

I Choosing the optimal s∗(· | D) ≡ r(· | D) makes the lower bound
T (ω, s∗) tight, i.e., it touches the log-likelihood function at ω:

T (ω, s∗) = T (ω, r) =

∫
r(z | D) log p(D;ω)dz = log p(D;ω)

14

M Step Details

I maxω T (ω, r) =
∫
r(z |D) log p(D,z;ω)

r(z|D) dz

= h(r(· | D))︸ ︷︷ ︸
Entropy of r ;

does not depend on ω

+

∫
r(z |D) log p(D, z ;ω)dz︸ ︷︷ ︸

Weighted MLE where labeled examples

{(xi , yi , zi)} are weighted by r(zi | D)

15

Auxiliary Function for GM Log Likelihood

I Latent variable: soft cluster assignment Z with pdf r
(t)
k (· | x)

I Lower-bound the Gaussian Mixture log likelihood via Jensen’s:

λ(X , ω) :=
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

qk(j , x)

≥

K∑
k=1

∑
x∈Dk

J∑
j=1

r
(t)
k (j | x) log

qk(j , x)

r
(t)
k (j | x)

=: T (ω, ω(t))

I A theoretical construction only since we already know that the

maximum of T (ω(t), s) occurs at r
(t)
1 (· | x), . . . , r

(t)
K (· | x)

16

Gaussian Mixture MLE via EM (summary)

I Start with initial guess ω(t) :=
{
α
(t)
kj , µ

(t)
kj ,Σ

(t)
kj

}
for t = 0,

k = 1, . . . ,K , j = 1, . . . , J and iterate:

(E step) r
(t)
k (j | xi) =

α
(t)
kj φ
(
xi ;µ

(t)
kj ,Σ

(t)
kj

)
∑J

l=1 α
(t)
kl φ
(
xi ;µ

(t)
kl ,Σ

(t)
kl

)
(M step) α

(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)∑n

i=1 1{yi = k}

µ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)xi∑n
i=1 1{yi = k}r (t)k (j | xi)

Σ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)

(
xi − µ

(t+1)
kj

)(
xi − µ

(t+1)
kj

)
T∑n

i=1 1{yi = k}r (t)k (j | xi)

17

Gaussian Mixture MLE via EM (comments)

I Sometimes the data is not enough to estimate all these parameters:
I Fix the weights αkj = 1

J

I Fix diagonal Σkj = diag
(

[σ2
kj1, . . . , σ

2
kjn]T

)
or spherical Σkj = σ2

kj In
I Estimate a diagonal covariance:

Σ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)diag

(
xi − µ(t+1)

kj

)
2∑n

i=1 1{yi = k}r (t)k (j | xi)

I Estimate a spherical covariance:

σ
2,(t+1)
kj =

1

d

∑n
i=1 1{yi = k}r (t)k (j | xi)

∥∥∥xi − µ(t+1)
kj

∥∥∥2∑n
i=1 1{yi = k}r (t)k (j | xi)

, xi ∈ Rd

I How should we initialize ω(0)? Use k-means++! If σkj → 0, the GM
component assignments of EM become hard and EM works like
k-means.

18

