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Gaussian Discriminant Analysis

» Generative model: h(x) := arg max p(y, x)
y

» Maximum Likelihood Estimation (MLE): max p(y, X | 6,w)
w

» Gaussian (Mixture) Discriminant Analysis: uses a Gaussian Mixture
with J components to model p(x; | yi,w):

p(y, X | w,0) = p(y | )p(X | y,w) = p(y | 0) [] p(xi | yi,w)
i=1

J
p(y | 6): HHGW’ Dpxi |y = kow) = awg(xii g, L)

i=1 k=1 j=1
» The MLE of 6 can be obtained via the softmax trick and differentiation

» Obtaining MLE estimates for w := {ouj, ikj, Lj} is no longer straight
forward because log Zle Qi d(Xj; fikj, Lj) is not convex/concave

» Also, need to ensure that Z Lo =1, Vk.



Data Log Likelihood

> log p(y, X | w,0) Zzll{y, = k} log 0

llkl

+Zzﬂ{y,—k}log Z% o(xii b, 1)

i=1 k=1
» Focus on max wrt w 1= {ay;, jkj, Xk }; the first term can be ignored
» To simplify notation, let Dy := {x;,y; | yi = k} C D and define:

K J
AX,w) = log| D awid(x; g, i)

k=1xeD, Jj=1



Membership Probabilities

> Gaussian Mixtures are well suited for modeling clusters of points:
» each cluster is assigned a Gaussian
> the mean is somewhere in the middle of the cluster
» the covariance measures the cluster spread

» Sampling

» Draw an integer between 1 and J with probability ay;
» Draw a vector x from the j-th Gaussian pdf ¢(x; puj, L)

» It is useful to understand the meaning of qi(j,X) := aujP(X; k), L))

» Given class k, gx(j,x)dx is the joint probability of drawing component j
and data point x in a volume dx around it

» Membership probabilities the conditional probability of having
selected component j given data point x:

J

r(j | x :M r(/ | x) =
AUARSE ST (1) jz_;k(J’ )=1



Local maxima of A\(X,w)

K J
» Maxima of Z Z log Zakj¢(x; Ikj, k) | occur at critical points

k=1 xeDy Jj=1
d Aim d

» — A\ X,w) = B(X; tims Lim)

d,U/m )gD:I Zj‘j:l a,jgb(x; i, Z/J) dﬂ/m

= > nlm | x)(um —x) "5,
xeD,

s LA = 3 3 am ) (S Gt — ) — )T - T3

dzlm ) 2 = Im Im Im

» Use softmax trick for ay; to handle simplex constraints
J
d 1 daoy;
—AX,w) = Lo(x; iy, Xif)
d7/m )g;l Zszl OA/J'¢(X; Hijs Z/J) Jz_; d’YIm
=Y (n(m|x) = am)

xeD;




Local maxima of A\(X,w)

» Setting the previous derivatives to zero, we obtain:

o — i My = k}ne( | ;) = Yo Hyi = kine( | xi)x;
’ Yo My =k} T Y Wy = kknd( | xi)
5, - S Wy = knc( | xi)(xi — puig) (xi — i) ™
’ o Wy = k(G | xi)

» The mixture weights are equal to the sample mean of the membership
probabilities rc(j | x;) assuming a uniform distribution over Dy

» The latter are the sample mean and covariance of the data, weighted by
the membership probabilities

» The three equations are coupled through ri(j | x) and hence are hard to
solve directly

> Idea: start with a guess w(®) and iterate between updating ri(j | x;) and
updating w(®)




Clustering

» How do we obtain an initial guess w(® := {afg),,ug), ZS{?)}?

» Clustering (or vector quantization) is the task of grouping objects in a
way that those in the same group (a cluster) are more similar (according
to a distance metric) to each other than to those in other groups.

» Unsupervised Learning: given an unlabeled dataset D = {x;}"_,, the
goal is to partition it into J clusters



k-means Algorithm

v

The k-means algorithm is an iterative clustering algorithm that uses
coordinate descent to solve the following optimization:

m'nc My ZZWJ”M xi|[3

i=1 j=1

p; are cluster centroids, rjj := 1y, is closest to u} are cluster membership
indicators

It is common to repeat the algorithm several times with different
initialization of ;

Since k-means is optimizing || - ||2, it implicitly makes a spherical
assumption on the shape of the clusters.



k-means Algorithm

Algorithm 1 k-means clustering

1:

o

S

Input: unlabeled dataset D = {x;}"_;, number of clusters k
Output: cluster centroids j;, cluster assignments {r;;}
Init: pick k cluster centroids p1, ..., tk
repeat
# Assign examples to the nearest centroid:
ri =1, if j = argmin ||, — x;||3, and r; = 0, otherwise.
/

# Set each centroid to the mean of the examples assigned to it:
i i

Wi = arg#mln C(:u7 r) - m

until convergence




Expectation Maximization

> lterative maximization technique based on auxiliary lower bounds

> Old idea (late 50's) but formalized by Dempster, Laird and Rubin in 1977
» Subject of much investigation. See McLachlan & Krishnan book, 1997.

» Has two steps: Expectation (E) and Maximization (M)

» Generalizes k-means to soft cluster assignments

» Applicable to a wide range of problems:
» Fitting mixture models
» Probabilistic latent semantic analysis: produce concepts related to
documents and terms (NLP)
> Learning parts and structure models (vision)
> Segmentation of layers in video (vision)

10



Expectation Maximization

T(e.21) T(@,0)  S()
» Goal: max, S(w)
» S(w) is not necessarily
concave S(xo) :T(;m,rog
1)
) x
’ T .LZ T o
> Initialize w(® and iterate the following:
E. Construct an auxiliary lower-bound function 7 at w(®) such that:
S(t?) = T(®,wl9) > T(w,u9)
M. Solve the easier auxiliary maximization to obtain the next point:
W) = arg max T (w, w®)
w
» The properties of 7 guarantee that each step gets closer to a local max:

S(w) = T(w®, w®) < max T (w, w®) < §(wtD)
11



Auxiliary Function

» EM is related to MLE since it can be used to solve a problem of the
form: max,, log p(D; w), which might be too hard to solve by simply
setting the gradient to zero.

» In the context of MLE, EM uses latent/hidden variables to construct
an auxiliary lower-bound to the data log likelihood via:

> Jensen’s Inequality: f(E[Z]) < E[f(Z)] for convex f
> eg. Iog(zjzj) = Iog(Zj rj%) > erjlog(%) for >>;r;=1and r; >0
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Auxiliary Function

» Introduce a latent random variable Z with pdf r(z | D):

otal law D,z
log p(D; w) Jotal law, Iog/p(D,z;w)dz = Iog/r(z|D)p(2w)dz

of prob. r(z]D)
Jensen’s P(D, Z, W) Auxiliary
> r(z|D)log — "2 dz —= T (w, r
inequality / ( | ) g r(Z|D) function ( )

» Assuming that log p(D, z; w) is concave in w, the auxiliary function is
concave in w for a fixed r and concave in r for a fixed w (but not
jointly concave)

» The local maxima of 7 (w, r) are local maxima of log p(D;w)

(E step) r(- | D) = argmax T (w, s)
s(:|D)
(M step) W' = argmax T (w, r)
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E Step Details

why?

» r(-| D) arg max T (w, s)

s(|1D)

> log (D) > T(w.s) = [ s(z| D) log "D g

= log p(D;w) — dicc(r(- | D)|[s(- | D))

» When maximizing the lower bound 7 (w, s) with respect to s, we are
maximizing the similarity between s(- | D) and the conditional pdf
r(- | D) of the latent variable Z

» Choosing the optimal s*(- | D) = r(- | D) makes the lower bound
T (w,s*) tight, i.e., it touches the log-likelihood function at w:

T(w,s")=T(w,r)= /r(z | D) log p(D;w)dz = log p(D; w)
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M Step Details

> max, T (w,r) = [ r(z|D)log pE(D;\ZD;u))) dz

= h(r(- | D)) +/r(z|D) log p(D, z; w)dz
—_——

Entropy of r;

does not depend on w Weighted MLE where labeled examples

{(x;,yi,z)} are weighted by r(z; | D)
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Auxiliary Function for GM Log Likelihood

» Latent variable: soft cluster assignment Z with pdf rk ( | x)

> Lower-bound the Gaussian Mixture log likelihood via Jensen's:

K J
w) ::Z Z log qu(j,x)

k=1 xeDy j=1
qk(U, x
SHMWLIPT = T
k=1xeDy j=1 U1x)

> A theoretical construction only since we already know that the
maximum of T (w(?), s) occurs at rl(t)(- | x), ..., r,(<t)(- | x)

16



Gaussian Mixture MLE via EM (summary)

» Start with initial guess w(®) = {a%),u%), ZS)} fort =0,
k=1,....K,j=1,...,J and iterate:

al?
. J
(Estep) |ri7(i %)

o (i nf). T)

i O‘E)QZ’(X/; e z(k?)

= k3G | %)

1{y; = k}

i 1y
M step) |alttH = i1 L
( ) kj Zi:]_
(41 2 My
K =

= k3G | xi)xi

S0y = kG %)

27:1 IL{Y:‘ =

kb0 1 x0) (xi = ™) (%0 = g™

)T

t+1
T =

Sy = kO | xi)
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Gaussian Mixture MLE via EM (comments)

» Sometimes the data is not enough to estimate all these parameters:

> Fix the weights ay; = %

» Fix diagonal X;; = diag([ofjl, . 70£j,,]T) or spherical > ;; = a'ijln

» Estimate a diagonal covariance:

i Hyi= k}r,Et)(j | x;)diag (x,- - MS;H))Q
27:1 I{y; = k}fét)(j | xi)

» Estimate a spherical covariance:

t+1
T =

2
n . 1
ey 1S 10 = K ) [ — )
o = —

kj n .
' d S My = k3G | %)
» How should we initialize w(®)? Use k-means++! If o4; — 0, the GM

component assignments of EM become hard and EM works like
k-means.

R X,'ERCI
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