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Rigid Body Motion
I Consider a moving object in a fixed world

reference frame W .

I Rigid object: it is sufficient to specify the
motion of one point p(t) ∈ R3 and 3
coordinate axes attached to that point
(body reference frame B)

I A rigid body motion is a family of transformations gt : R3 → R3 that
describes how the coordinates of points on the object change in time

I Rigid body motion preserves both distances (vector norms) and
orientation (vector cross products)

I Euclidean Group E (3): a set of maps g : R3 → R3 that preserve the
norm of any two vectors

I Special Euclidean Group SE (3): a set of maps g : R3 → R3 that
preserve the norm and cross product of any two vectors
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Special Euclidean Group

I A group is a set G with an associated operator � (group law of G ) that
satisfies:

I Closure: a� b ∈ G , ∀a, b ∈ G
I Identity element: ∃!e ∈ G (unique) such that e � a = a� e = a
I Inverse element: for a ∈ G , ∃b ∈ G such that a� b = b � a = e
I Associativity: (a� b)� c = a� (b � c), ∀a, b, c ,∈ G

I SE (3) is a group of maps g : R3 → R3 that preserve:

1. Norm: ‖g(u)− g(v)‖ = ‖v − u‖,∀u, v ∈ R3

2. Cross product: g(u)× g(v) = g(u × v),∀u, v ∈ R3

I Corollary: SE (3) elements also preserve:

1. Angle: uT v = 1
4

(
‖u + v‖2 − ‖u − v‖2

)
⇒ uT v = g(u)Tg(v), ∀u, v ∈ R3

2. Volume: ∀u, v ,w ∈ R3, g(u)T (g(v)× g(w)) = uT (v × w)
(volume of parallelepiped spanned by u, v ,w)
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Special Euclidean Group

I The configuration gt of a moving rigid object at time t is determined by

1. The position p(t)∈R3 of the body frame B relative to the world frame W
2. The orientation R(t)∈SO(3) of B relative to W

I The set of rigid body motions forms a group because:
I We can combine several motions to generate a new one (closure)
I We can execute a motion that leaves the object at the same state

(identity element)
I We can move rigid objects from one place to another and then reverse the

action (inverse element)

I The space R3 of translations/positions is familiar

I How do we describe orientation?
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Cross product
I The cross product of two vectors ω, β ∈ R3 is also a vector in R3:

ω × β :=

ω2β3 − ω3β2

ω3β1 − ω1β3

ω1β2 − ω2β1


I For fixed ω, the cross product can be represented by a linear map
ω × β = ω̂β for ω̂ ∈ R3×3

I The hat map ·̂ : R3 → so(3) transforms an R3 vector to a
skew-symmetric matrix:

ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


I The vector space R3 and the space of skew-symmetric 3× 3 matrices

so(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.
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Hat Map Properties

I Lemma: A matrix M ∈ R3×3 is skew-symmetric iff M = ω̂ for some
ω ∈ R3.

I The inverse of the hat map is the vee operator, ∨ : so(3)→ R3, that
extracts the components of the vector ω = ω̂∨ from the matrix ω̂.

I For any x , y ∈ R3, A ∈ R3×3, the hat map satisfies:
I x̂y = x × y = −y × x = −ŷ x
I x̂2 = xxT − xT x I3×3

I x̂2k+1 = (−xT x)k x̂
I − 1

2 tr(x̂ ŷ) = xT y

I x̂A + AT x̂ = ((tr(A)I3×3 − A)x )̂
I tr(x̂A) = 1

2 tr(x̂(A− AT )) = −xT (A− AT )∨

I Âx = det(A)A−T x̂A−1
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3-D Orientation

I The orientation of a body frame B is determined by the coordinates of
the three orthogonal vectors r1 = g(e1), r2 = g(e2), r3 = g(e3) relative
to the world frame W , i.e., by the 3× 3 matrix:

R =
[
r1 r2 r3

]
∈ R3×3

I Since r1, r2, r3 form an orthonormal basis:
I rTi rj = δij
I R is an orthogonal matrix RTR = RRT = I
I R’s inverse is its transpose: R−1 = RT

I det(R) = rT1 (r2 × r3) = 1
I R belongs to the special orthogonal group:

SO(3) := {R ∈ R3×3 | RTR = I , det(R) = 1}
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Special Orthogonal Lie Group SO(n)

I SO(n) := {R ∈ Rn×n | RTR = I , det(R) = 1}

I Closed under multiplication: R1R2 ∈ SO(n)

I Identity: I ∈ SO(n)

I Inverse: R−1 = RT ∈ SO(n)

I Associative property: (R1R2)R3 = R1(R2R3)

I Manifold structure: n2 parameters with n(n + 1)/2 constraints (due to
RTR = I ) and hence n(n − 1)/2 degrees of freedom

I Distances are preserved:
‖x − y‖2

2 = ‖R(x − y)‖2
2 = (x − y)TRTR(x − y) ⇒ RTR = I

I No reflections allowed, i.e., a right-handed coordinate system is kept:
R(x × y) = (Rx)× (Ry) = R̂xRy = det(R)Rx̂RTRy ⇒ det(R) = 1
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2-D Rotation

I A 2-D rotation of point s ∈ R2

through an angle θ can be
described by a rotation matrix
R(θ) ∈ SO(2):

s ′ = R(θ)s :=

[
cos θ − sin θ
sin θ cos θ

]
s

I θ > 0: counterclockwise rotation

I There is a one-to-one correspondence between 2-D rotation matrices
and unit-norm complex numbers:

e iθ(sx + isy ) = (sx cos θ − sy sin θ) + i(sx sin θ + sy cos θ)
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3-D Rotation (Euler Angles)

I Euler Angles: parameterize a 3-D rotation via three
angles: roll (φ), pitch (θ), and yaw (ψ).

I The conventional XYZ extrinsic (fixed) angle representation, equivalent
to the ZYX intrinsic (rotating) angle representation, is:

R = Rz(ψ)Ry (θ)Rx(φ)

=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


I Angle parameterizations have singularities (not one-to-one), which can

result in gimbal lock, e.g., if θ = 90◦, the roll and yaw are degenerate.
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Quaternions
I Quaternions: H = C + Cj generalize complex numbers C = R + Ri

q = qs +q1i +q2j +q3k = [qs , qv ] ij = −ji = k , i2 = j2 = k2 = −1

I Just as in 2-D, a 3-D rotation matrix R can be mapped onto unit-norm
quaternions S3 := {q ∈ H | q2

s + qT
v qv = 1}.

I To represent rotations, S3 embeds a 3-D space into a 4-D space (no
singularities) and introduces a constraint.

I A rotation around a unit axis ξ := ω
‖ω‖ ∈ R3 by angle θ := ‖ω‖ can be

represented by a unit quaternion:

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
ξ

]
I A rotation around a unit axis ξ ∈ R3 by angle θ can be recovered from a

unit quaternion q ∈ S3:

θ = 2 arccos(qs) ξ =

{
1

sin(θ/2)qv , if θ 6= 0

0, if θ = 0
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Quaternions
I A rotation matrix R ∈ SO(3) can be obtained from a quaternion q ∈ S3:

R(q) = E (q)G (q)T E (q) = [−qv , qs I + q̂v ] G (q) = [−qv , qs I − q̂v ]

I S3 is a double covering of SO(3) because two unit quaternions
correspond to the same rotation matrix: R(q) = R(−q):
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Quaternion Properties
Addition q + p = [qs + ps , qv + pv ]

Multiplication q ◦ p =
[
qsps − qT

v pv , qspv + psqv + qv × pv

]
Conjugate q̄ = [qs , −qv ]

Norm |q| :=
√
q2
s + qT

v qv |q ◦ p| = |q||p|

Inverse q−1 = q̄
|q|2

Rotation [0, x′] = q ◦ [0, x] ◦ q−1 = [0, R(q)x]

Rot. Velocity q̇ = 1
2 [0, ω] ◦ q = 1

2E (q)Tω = 1
2q ◦ [0, ωB ] = 1

2G (q)TωB

Exp exp(q) := eqs
[
cos ‖qv‖, qv

‖qv‖ sin ‖qv‖
]

Log log(q) :=
[
log |q|, qv

‖qv‖ arccos qs
|q|

]
I Exp: constructs q ∈ S3 from rotation vector ω ∈ R3: q = exp

([
0, ω

2

])
I Log: recovers a rotation vector ω ∈ R3 from q ∈ S3: [0, ω] = 2 log(q)

13



Angle Averaging
I What is the average of {170◦,−101◦, 270◦}?

I The average β̃ satisfies: 1
3

∑3
j=1 r(β̃ − βj) = 0

I Restrict angle to [−π, π): r(θ) := −π + mod(θ + π, 2π)
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Quaternion Averaging

I Given a collection of quaternions {qi}ni=1 with associated weights
{αi}ni=1, we can obtain a weighted average quaternion q̃, which is not
unique and depends on the initialization point as follows.

Algorithm 1 Quaternion average
1: Input: {qi}ni=1, {αi}ni=1, initial guess q̃0

2: for t = 0, . . . ,T do
3: qe

i =
[
qe
s,i , qe

v,i

]
= q̃−1

t ◦ qi
4: [0, ev,i ] = 2 log(qe

i ) . Error rot. vector from quaternion
5: ev,i = (−π + mod(‖ev,i‖+ π, 2π))

ev,i
‖ev,i‖

. Restrict angles to [−π, π)
6: ev =

∑n
i=1 αiev,i

7: q̃t+1 = q̃t ◦ exp
([
0, ev

2

])
. Error rot. vector to quaternion

8: if ‖ev‖ < ε then return q̃t+1
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Rotation Dynamics

I The trajectory R(t) of a continuous rotation motion should satisfy:

R(t)RT (t) = I ⇒ Ṙ(t)RT (t) + R(t)ṘT (t) = 0.

I The matrix Ṙ(t)RT (t) is skew-symmetric and there must exist some
vector-valued function ω(t) ∈ R3 such that:

Ṙ(t)RT (t) = ω̂(t) ⇒ Ṙ(t) = ω̂(t)R(t)

I A skew-symmetric matrix gives a first order approximation to a rotation
matrix: R(t + dt) ≈ R(t) + ω̂(t)R(t)dt.

I Locally, elements of SO(3) depend only on three parameters ω ∈ R3

I The space of skew-symmetric matrices so(3) := {ω̂ ∈ R3×3 | ω ∈ R} is
the tangent space at the identity of the rotation group SO(3).
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Rotation Dynamics
I Rotation vector ω ∈ R3: every rotation is a

rotation about an axis ξ := ω
‖ω‖2

through an

angle θ := ‖ω‖2.

I Consider a point s rotating about an axis ξ
at constant unit velocity:
ṡ(t) = ξ × s(t) = ξ̂s(t), s(0) = s0

⇒ s(θ) = e ξ̂θs0 = Rξ,θs0

I Rotation matrix representation: if ω̂ is constant:

Ṙ(t) = ω̂R(t) ⇒ R(t) = exp(ω̂t)R(t0)

I If ‖ω‖ = 1 and R(t0) = I , then R(t) = exp(ω̂t) is simply a rotation
around the axis ω ∈ R3 by an angle of t radians.

I t can be absorbed into ω so that R = exp(ω̂) for ω with arbitrary norm.

I The matrix exponential defines a map from so(3) to SO(3).
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Special Orthogonal Lie Algebra so(3)

I Associated with every Lie group is its Lie algebra – a linear space of the
same dimension, closed under a bi-linear alternating product called the
Lie bracket: [ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1

I The Lie algebra of SO(3) is the space of skew-symmetric matrices
so(3) := {ω̂ ∈ R3×3 | ω ∈ R3}

I Generators of so(3): derivatives of rotations around each standard axis:

Gx =
d

dφ
Rx(φ)

∣∣∣∣
φ=0

=

0 0 0
0 0 −1
0 1 0

 Gy =

 0 0 1
0 0 0
−1 0 0

 Gz =

0 −1 0
1 0 0
0 0 0


I The elements ω̂ = α1Gx + α2Gy + α3Gz ∈ so(3) are linear combinations

of the generators and can be mapped to SO(3) via exponential map:

R = exp(ω̂) = I + ω̂ +
1

2!
ω̂2 +

1

3!
ω̂3 + . . .
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Infinitesimal Rotation
I Infinitesimal rotation δθ about the z-axis ξz :

s ′ = s + δs = s + δθξz × s = Rz(δθ)s = (I + δθGz)s

I Infinitesimal rotation δθ about an arbitrary axis ξ:

Rδθ = (I + δθξxGx + δθξyGy + δθξzGz)

I Rotation θ about an arbitrary axis ξ:

Rθ = lim
N→∞

(
I +

1

N
θξxGx +

1

N
θξyGy +

1

N
θξzGz

)N

=
∞∑
n=0

1

n!
(θξ̂)n = exp(θξ̂)

I Properties:
I All eigenvalues of a skew-symmetric matrix ω̂ ∈ so(3) are imaginary
I All eigenvalues of a rotation matrix R ∈ SO(3) fit on the unit sphere and

their product is 1 (det(R) = 1)
I The eigenvalues of ω̂ come in conjugate pairs – in odd dimensions, one

eigenvalue of ω̂ is 0 and hence of R is 1, i.e., there is an invariant
direction under the rotation.
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Rodrigues Formula
I Any rotation R ∈ SO(3) is equivalent to a rotation about a fixed axis

ω
‖ω‖2

through an angle θ := ‖ω‖2 and can be obtained via:

R = exp(ω̂) = I +
∞∑
n=1

1

n!
ω̂n = I +

∞∑
n=0

1

(2n + 1)!
ω̂2n+1 +

∞∑
n=0

1

(2n + 2)!
ω̂2n+2

= I +

( ∞∑
n=0

(−1)nθ2n

(2n + 1)!

)
ω̂ +

( ∞∑
n=0

(−1)nθ2n

(2n + 2)!

)
ω̂2

= I +

(
sin θ

θ

)
ω̂ +

(
1− cos θ

θ2

)
ω̂2

I The exponential map from so(3) to SO(3) is not one-to-one since any
vector of the form 2kπω with integer k will result in the same R.

I The exponential map is also not commutative:

eω̂1eω̂2 6= eω̂2eω̂1 6= eω̂1+ω̂2

unless ω̂1ω̂2 = ω̂2ω̂1, i.e., the Lie bracket on so(3), [ω̂1, ω̂2] = 0.
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Logarithm Map

I For any R ∈ SO(3), there exists a (not necessarily unique) ω ∈ R3 such
that R = exp(ω̂).

I The logarithm map log : SO(3)→ so(3) is the inverse of the
exponential map:

ω̂ = log(R) =
θ

2 sin θ
(R − RT )

θ = ‖ω‖ = arccos

(
tr(R)− 1

2

)

ξ =
ω

‖ω‖
=

1

2 sin(‖ω‖)

R32 − R23

R13 − R31

R21 − R12


I The log map has a singularity at θ = 0 because there is an infinite choice

of rotation axes or equivalently the exponential map is many-to-one.
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Rigid Body Motion

I Let B be a body frame whose position and orientation with respect to
the world frame W are p ∈ R3 and R ∈ SO(3), respectively.

I The coordinates of a point sB ∈ R3 in the body frame B can be
converted to the world frame by first rotating the point and then
translating it to the world frame: sW = RsB + p.

I Homogeneous coordinates: the rigid-body motion transformation is
not linear but affine. It can be converted to linear by appending 1 to
the coordinates of a point s:[

sW
1

]
=

[
R p
0 1

] [
sB
1

]
I Rigid body motion can be described by a matrix parameterization:

SE (3) :=

{
g :=

[
R p
0 1

] ∣∣∣∣ R ∈ SO(3), p ∈ R3

}
⊂ R4×4
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Special Euclidean Group SE (3)

I Using homogeneous coordinates, it can be verified that SE (3) satisfies
all requirements of a group:

I g1g2 =

[
R1 p1

0 1

] [
R2 p2

0 1

]
=

[
R1R2 R1p2 + p1

0 1

]
∈ SE (3)

I

[
I 0
0 1

]
∈ SE (3)

I

[
R p
0 1

]−1

=

[
RT −RTp
0 1

]
∈ SE (3)

I (g1g2)g3 = g1(g2g3) for all g1, g2, g3 ∈ SE (3)
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“Smart” Plus and Minus

I For x := (p, θ) ∈ SE (2) with position p ∈ R2, orientation θ ∈ [−π, π),
and inverse x−1 = (−R(θ)Tp,−θ), define:

xt ⊕ xt+1 =

[
pt + R(θt)pt+1

θt + θt+1

]
xt+1 	 xt = x−1

t ⊕ xt+1 =

[
R(θt)

T (pt+1 − pt)
θt+1 − θt

]
I For x := (p, q) ∈ SE (3) with position p ∈ R3, orientation q ∈ S3, and

inverse x−1 = (−R(q)Tp, q−1) define:

xt ⊕ xt+1 =

[
pt + R(qt)pt+1

qtqt+1

]
xt+1 	 xt = x−1

t ⊕ xt+1 =

[
R(qt)

T (pt+1 − pt)

q−1
t qt+1

]
I For x := (p,R) ∈ SE (3) with position p ∈ R3, orientation R ∈ SO(3),

and inverse x−1 = (−RTp,RT ) define:

xt ⊕ xt+1 =

[
pt + Rtpt+1

RtRt+1

]
xt+1 	 xt = x−1

t ⊕ xt+1 =

[
RT
t (pt+1 − pt)
RT
t Rt+1

]
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Special Euclidean Lie Algebra se(3)

I Angular velocity: R(t)RT (t) = I ⇒ Ṙ(t)RT (t) = ω̂(t) ∈ so(3)

I Twist: Similarly for g(t) ∈ SE (3) consider:

ġ(t)g−1(t) =

[
Ṙ(t)RT (t) ṗ(t)− Ṙ(t)RT (t)p(t)

0 0

]
=

[
ω̂(t) v(t)

0 0

]
∈ se(3)

where ω̂(t) := Ṙ(t)RT (t) and v(t) := ṗ(t)− ω̂(t)p(t) are the world

angular and linear velocities of the point in the body that corresponds
with the origin of the world frame.

I ω(t) is also equal to the angular velocity of the body frame
measured in the world frame

I The linear velocity of a fixed body point sB , measured in the world
frame is:

ṡW (t) = ω̂(t)R(t)sB + ṗ(t) = ω̂(t)sW (t) + v(t)
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Special Euclidean Lie Algebra se(3)

I The set of all twists is the Lie algebra (or tangent space) of the Lie
group SE (3):

se(3) :=

{[
ω̂(t) v(t)

0 0

] ∣∣∣∣ ω̂ ∈ so(3), v ∈ R3

}
I A tangent vector ζ̂ ∈ se(3) approximates g(t) ∈ SE (3) locally:

g(t + dt) ≈ (I + ζ̂(t)dt)g(t)
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Canonical Exponential Coordinates for SE (3)
I For a constant twist ζ̂ ∈ se(3) and g(t) ∈ SE (3):

ġ(t) = ζ̂g(t), g(0) = I ⇒ g(t) = exp(ζ̂t)

I Exponential map: exp : se(3)→ SE (3) with ζ := (v , ω) ∈ R6:

exp(ζ̂) =



[
eω̂ (I−eω̂)ω̂v+ωωT v

‖ω‖
0 1

]
if ω 6= 0[

I v

0 1

]
if ω = 0

I The exponential map from se(3) to SE (3) is not one-to-one

I Two rigid-body motions g1 = exp(ζ̂1) and g2 = exp(ζ̂2) commute,
g1g2 = g2g1, iff [ζ̂1, ζ̂2] = 0.

I The Lie bracket of se(3) is:

[ζ̂1, ζ̂2] = ζ̂1ζ̂2 − ζ̂2ζ̂1 =

[
ω̂1 × ω2 ω1 × v2 − ω2 × v1

0 0

]
∈ se(3)
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Logarithm Map

I Logarithm map log : SE (3)→ se(3): for any g := (p,R) ∈ SE (3),
there exists a (not necessarily unique) twist ζ := (v , ω) ∈ R6 such that
ζ̂ = log(g):

ζ =

{
ω = log(R)∨, v = ‖ω‖

(
(I − eω̂)ω̂ + ωωT

)−1
p, if R 6= I ,

ω = 0, v = p, if R = I .
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Velocity Transformations

I Consider a moving body frame B with pose g(t) ∈ SE (3). The velocity
of a point sB ∈ R3 in the body frame with respect to the world frame
W can be determined as follows:

sW (t) = g(t)sB

ṡW (t) = ġ(t)sB = ġ(t)g(t)−1sW (t) = ζ̂(t)sW (t) = ω̂(t)sW (t) + v(t)

I ζ̂(t) is the velocity of the body frame moving relative to the world
frame, as viewed in the world frame.

I The adjoint map adg : se(3)→ se(3) transforms velocities from one
frame to another via the transformation g and is defined as ζ̂ → g ζ̂g−1.
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Summary

Rotation SO(3) Rigid-body motion SE (3)

Matrix representations R :

{
RTR = I

det(R) = 1
g =

R p

0 1


Transformation sW = RsB sW = RsB + p

Inverse R−1 = RT g−1 =

RT −RTp

0 1


Exponential R = exp(ω̂) g = exp(ζ̂)

Velocity Ṙ = ω̂R = Rω̂B ġ = ζ̂g = g ζ̂B

Velocity ṡW = ω̂sW ṡW = ω̂sW + v

Adjoint map ω̂ → Rω̂RT ζ̂ → g ζ̂g−1
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