ECE276A: Sensing \& Estimation in Robotics Lecture 5: Rigid Body Motion

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Rigid Body Motion

- Consider a moving object in a fixed world reference frame W.
- Rigid object: it is sufficient to specify the motion of one point $p(t) \in \mathbb{R}^{3}$ and 3 coordinate axes attached to that point (body reference frame B)

- A rigid body motion is a family of transformations $g_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that describes how the coordinates of points on the object change in time
- Rigid body motion preserves both distances (vector norms) and orientation (vector cross products)
- Euclidean Group $E(3):$ a set of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm of any two vectors
- Special Euclidean Group $S E(3)$: a set of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm and cross product of any two vectors

Special Euclidean Group

- A group is a set G with an associated operator $\odot($ group law of $G)$ that satisfies:
- Closure: $a \odot b \in G, \forall a, b \in G$
- Identity element: $\exists!e \in G$ (unique) such that $e \odot a=a \odot e=a$
- Inverse element: for $a \in G, \exists b \in G$ such that $a \odot b=b \odot a=e$
- Associativity: $(a \odot b) \odot c=a \odot(b \odot c), \forall a, b, c, \in G$
- $S E(3)$ is a group of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve:

1. Norm: $\|g(u)-g(v)\|=\|v-u\|, \forall u, v \in \mathbb{R}^{3}$
2. Cross product: $g(u) \times g(v)=g(u \times v), \forall u, v \in \mathbb{R}^{3}$

- Corollary: $S E(3)$ elements also preserve:

1. Angle: $u^{T} v=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right) \Rightarrow u^{T} v=g(u)^{T} g(v), \forall u, v \in \mathbb{R}^{3}$
2. Volume: $\forall u, v, w \in \mathbb{R}^{3}, g(u)^{T}(g(v) \times g(w))=u^{T}(v \times w)$
(volume of parallelepiped spanned by u, v, w)

Special Euclidean Group

- The configuration g_{t} of a moving rigid object at time t is determined by 1. The position $p(t) \in \mathbb{R}^{3}$ of the body frame B relative to the world frame W

2. The orientation $R(t) \in S O(3)$ of B relative to W

- The set of rigid body motions forms a group because:
- We can combine several motions to generate a new one (closure)
- We can execute a motion that leaves the object at the same state (identity element)
- We can move rigid objects from one place to another and then reverse the action (inverse element)
- The space \mathbb{R}^{3} of translations/positions is familiar
- How do we describe orientation?

Cross product

- The cross product of two vectors $\omega, \beta \in \mathbb{R}^{3}$ is also a vector in \mathbb{R}^{3} :

$$
\omega \times \beta:=\left[\begin{array}{l}
\omega_{2} \beta_{3}-\omega_{3} \beta_{2} \\
\omega_{3} \beta_{1}-\omega_{1} \beta_{3} \\
\omega_{1} \beta_{2}-\omega_{2} \beta_{1}
\end{array}\right]
$$

- For fixed ω, the cross product can be represented by a linear map $\omega \times \beta=\hat{\omega} \beta$ for $\hat{\omega} \in \mathbb{R}^{3 \times 3}$
- The hat map $\hat{~}: \mathbb{R}^{3} \rightarrow \mathfrak{s o}(3)$ transforms an \mathbb{R}^{3} vector to a skew-symmetric matrix:

$$
\hat{\omega}:=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

- The vector space \mathbb{R}^{3} and the space of skew-symmetric 3×3 matrices $\mathfrak{s o}(3)$ are isomorphic, ie., there exists a one-to-one map (the hat map) that preserves their structure.

Hat Map Properties

- Lemma: A matrix $M \in \mathbb{R}^{3 \times 3}$ is skew-symmetric ff $M=\hat{\omega}$ for some $\omega \in \mathbb{R}^{3}$.
- The inverse of the hat map is the vee operator, $V: \mathfrak{s o}(3) \rightarrow \mathbb{R}^{3}$, that extracts the components of the vector $\omega=\hat{\omega}^{\vee}$ from the matrix $\hat{\omega}$.
- For any $x, y \in \mathbb{R}^{3}, A \in \mathbb{R}^{3 \times 3}$, the hat map satisfies:
- $\hat{x} y=x \times y=-y \times x=-\hat{y} x$
- $\hat{x}^{2}=x x^{T}-x^{\top} x l_{3 \times 3}$
- $\hat{x}^{2 k+1}=\left(-x^{\top} x\right)^{k} \hat{x}$
- $-\frac{1}{2} \operatorname{tr}(\hat{x} \hat{y})=x^{\top} y$
- $\hat{x} A+A^{T} \hat{x}=\left(\left(\operatorname{tr}(A) I_{3 \times 3}-A\right) x\right)^{\hat{1}}$
- $\operatorname{tr}(\hat{x} A)=\frac{1}{2} \operatorname{tr}\left(\hat{x}\left(A-A^{T}\right)\right)=-x^{T}\left(A-A^{T}\right)^{\vee}$
- $\widehat{A x}=\operatorname{det}(A) A^{-T} \hat{x} A^{-1}$

3-D Orientation

- The orientation of a body frame B is determined by the coordinates of the three orthogonal vectors $r_{1}=g\left(e_{1}\right), r_{2}=g\left(e_{2}\right), r_{3}=g\left(e_{3}\right)$ relative to the world frame W, ie., by the 3×3 matrix:

$$
R=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

- Since r_{1}, r_{2}, r_{3} form an orthonormal basis:
- $r_{i}^{\top} r_{j}=\delta_{i j}$
- R is an orthogonal matrix $R^{T} R=R R^{T}=I$
- R^{\prime} 's inverse is its transpose: $R^{-1}=R^{T}$
- $\operatorname{det}(R)=r_{1}^{T}\left(r_{2} \times r_{3}\right)=1$
- R belongs to the special orthogonal group:

$$
S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=I, \operatorname{det}(R)=1\right\}
$$

Special Orthogonal Lie Group $S O(n)$

- $S O(n):=\left\{R \in \mathbb{R}^{n \times n} \mid R^{T} R=I, \operatorname{det}(R)=1\right\}$
- Closed under multiplication: $R_{1} R_{2} \in S O(n)$
- Identity: $I \in S O(n)$
- Inverse: $R^{-1}=R^{T} \in S O(n)$
- Associative property: $\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$
- Manifold structure: n^{2} parameters with $n(n+1) / 2$ constraints (due to $R^{T} R=I$) and hence $n(n-1) / 2$ degrees of freedom
- Distances are preserved:

$$
\|x-y\|_{2}^{2}=\|R(x-y)\|_{2}^{2}=(x-y)^{T} R^{T} R(x-y) \Rightarrow R^{T} R=I
$$

- No reflections allowed, ie., a right-handed coordinate system is kept: $R(x \times y)=(R x) \times(R y)=\widehat{R x} R y=\operatorname{det}(R) R \hat{x} R^{T} R y \Rightarrow \operatorname{det}(R)=1$

2-D Rotation

- A 2-D rotation of point $s \in \mathbb{R}^{2}$ through an angle θ can be described by a rotation matrix $R(\theta) \in S O(2):$

$$
s^{\prime}=R(\theta) s:=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] s
$$

- $\theta>0$: counterclockwise rotation

- There is a one-to-one correspondence between 2-D rotation matrices and unit-norm complex numbers:

$$
e^{i \theta}\left(s_{x}+i s_{y}\right)=\left(s_{x} \cos \theta-s_{y} \sin \theta\right)+i\left(s_{x} \sin \theta+s_{y} \cos \theta\right)
$$

3-D Rotation (Euler Angles)

- Euler Angles: parameterize a 3-D rotation via three angles: roll (ϕ), pitch (θ), and yaw (ψ).

- The conventional XYZ extrinsic (fixed) angle representation, equivalent to the ZYX intrinsic (rotating) angle representation, is:

$$
\begin{aligned}
R & =R_{z}(\psi) R_{y}(\theta) R_{x}(\phi) \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
\end{aligned}
$$

- Angle parameterizations have singularities (not one-to-one), which can result in gimbal lock, e.g., if $\theta=90^{\circ}$, the roll and yaw are degenerate.

Quaternions

- Quaternions: $\mathbb{H}=\mathbb{C}+\mathbb{C} j$ generalize complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i$

$$
q=q_{s}+q_{1} i+q_{2} j+q_{3} k=\left[q_{s}, \mathbf{q}_{v}\right] \quad i j=-j i=k, i^{2}=j^{2}=k^{2}=-1
$$

- Just as in 2-D, a 3-D rotation matrix R can be mapped onto unit-norm quaternions $\mathbb{S}^{3}:=\left\{q \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}=1\right\}$.
- To represent rotations, \mathbb{S}^{3} embeds a 3-D space into a 4-D space (no singularities) and introduces a constraint.
- A rotation around a unit axis $\xi:=\frac{\omega}{\|\omega\|} \in \mathbb{R}^{3}$ by angle $\theta:=\|\omega\|$ can be represented by a unit quaternion:

$$
q=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \xi\right]
$$

- A rotation around a unit axis $\xi \in \mathbb{R}^{3}$ by angle θ can be recovered from a unit quaternion $q \in \mathbb{S}^{3}$:

$$
\theta=2 \arccos \left(q_{s}\right) \quad \xi= \begin{cases}\frac{1}{\sin (\theta / 2)} \mathbf{q}_{v}, & \text { if } \theta \neq 0 \\ 0, & \text { if } \theta=0\end{cases}
$$

Quaternions

- A rotation matrix $R \in S O(3)$ can be obtained from a quaternion $q \in \mathbb{S}^{3}$:

$$
R(q)=E(q) G(q)^{T} \quad E(q)=\left[-\mathbf{q}_{v}, q_{s} I+\hat{\mathbf{q}}_{v}\right] \quad G(q)=\left[-\mathbf{q}_{v}, q_{s} I-\hat{\mathbf{q}}_{v}\right]
$$

- \mathbb{S}^{3} is a double covering of $S O(3)$ because two unit quaternions correspond to the same rotation matrix: $R(q)=R(-q)$:

Quaternion Properties

Addition $\quad q+p=\left[q_{s}+p_{s}, \mathbf{q}_{v}+\mathbf{p}_{v}\right]$
Multiplication $\quad q \circ p=\left[q_{s} p_{s}-\mathbf{q}_{v}^{T} \mathbf{p}_{v}, q_{s} \mathbf{p}_{v}+p_{s} \mathbf{q}_{v}+\mathbf{q}_{v} \times \mathbf{p}_{v}\right]$
Conjugate

$$
\bar{q}=\left[q_{s},-\mathbf{q}_{v}\right]
$$

Norm

$$
|q|:=\sqrt{q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}} \quad|q \circ p|=|q||p|
$$

Inverse

$$
q^{-1}=\frac{\bar{q}}{|q|^{2}}
$$

Rotation

$$
\left[0, \mathbf{x}^{\prime}\right]=q \circ[0, \mathbf{x}] \circ q^{-1}=[0, R(q) \mathbf{x}]
$$

Rot. Velocity $\quad \dot{q}=\frac{1}{2}[0, \omega] \circ q=\frac{1}{2} E(q)^{T} \omega=\frac{1}{2} q \circ\left[0, \omega_{B}\right]=\frac{1}{2} G(q)^{T} \omega_{B}$
Exp
Log $\exp (q):=e^{q_{s}}\left[\cos \left\|\mathbf{q}_{v}\right\|, \frac{\mathbf{q}_{v}}{\left\|\mathbf{q}_{v}\right\|} \sin \left\|\mathbf{q}_{v}\right\|\right]$ $\log (q):=\left[\log |q|, \frac{\mathbf{q}_{v}}{\left\|\mathbf{q}_{v}\right\|} \arccos \frac{q_{s}}{|q|}\right]$

- Exp: constructs $q \in \mathbb{S}^{3}$ from rotation vector $\omega \in \mathbb{R}^{3}: q=\exp \left(\left[0, \frac{\omega}{2}\right]\right)$
- Log: recovers a rotation vector $\omega \in \mathbb{R}^{3}$ from $q \in \mathbb{S}^{3}:[0, \omega]=2 \log (q)$

Angle Averaging

-What is the average of $\left\{170^{\circ},-101^{\circ}, 270^{\circ}\right\}$?

- The average $\tilde{\beta}$ satisfies: $\frac{1}{3} \sum_{j=1}^{3} r\left(\tilde{\beta}-\beta_{j}\right)=0$
- Restrict angle to $[-\pi, \pi): r(\theta):=-\pi+\boldsymbol{\operatorname { m o d }}(\theta+\pi, 2 \pi)$

Quaternion Averaging

- Given a collection of quaternions $\left\{q_{i}\right\}_{i=1}^{n}$ with associated weights $\left\{\alpha_{i}\right\}_{i=1}^{n}$, we can obtain a weighted average quaternion \tilde{q}, which is not unique and depends on the initialization point as follows.

Algorithm 1 Quaternion average

\triangleright Error rot. vector from quaternion \triangleright Restrict angles to $[-\pi, \pi)$

$$
\text { 7: } \quad \tilde{q}_{t+1}=\tilde{q}_{t} \circ \exp \left(\left[0, \frac{e_{v}}{2}\right]\right) \quad \triangleright \text { Error rot. vector to quaternion }
$$

$$
\begin{aligned}
& \text { 1: Input: }\left\{q_{i}\right\}_{i=1}^{n},\left\{\alpha_{i}\right\}_{i=1}^{n} \text {, initial guess } \tilde{q}_{0} \\
& \text { 2: for } t=0, \ldots, T \text { do } \\
& \text { 3: } \quad q_{i}^{e}=\left[q_{s, i}^{e}, \mathbf{q}_{v, i}^{e}\right]=\tilde{q}_{t}^{-1} \circ q_{i} \\
& \text { 4: } \quad\left[0, \mathbf{e}_{V, i}\right]=2 \log \left(q_{i}^{e}\right) \\
& \text { 5: } \quad \mathbf{e}_{v, i}=\left(-\pi+\boldsymbol{\operatorname { m o d }}\left(\left\|\mathbf{e}_{v, i}\right\|+\pi, 2 \pi\right)\right) \frac{\mathbf{e}_{\vee, i}}{\left\|\mathbf{e}_{v}, i\right\|} \\
& \text { 6: } \quad \mathbf{e}_{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{v, i} \\
& \text { 8: } \quad \text { if }\left\|\mathbf{e}_{v}\right\|<\epsilon \text { then return } \tilde{q}_{t+1}
\end{aligned}
$$

Rotation Dynamics

- The trajectory $R(t)$ of a continuous rotation motion should satisfy:

$$
R(t) R^{T}(t)=1 \quad \Rightarrow \quad \dot{R}(t) R^{T}(t)+R(t) \dot{R}^{T}(t)=0
$$

- The matrix $\dot{R}(t) R^{T}(t)$ is skew-symmetric and there must exist some vector-valued function $\omega(t) \in \mathbb{R}^{3}$ such that:

$$
\dot{R}(t) R^{T}(t)=\hat{\omega}(t) \Rightarrow \dot{R}(t)=\hat{\omega}(t) R(t)
$$

- A skew-symmetric matrix gives a first order approximation to a rotation matrix: $R(t+d t) \approx R(t)+\hat{\omega}(t) R(t) d t$.
- Locally, elements of $S O(3)$ depend only on three parameters $\omega \in \mathbb{R}^{3}$
- The space of skew-symmetric matrices $\mathfrak{s o}(3):=\left\{\hat{\omega} \in \mathbb{R}^{3 \times 3} \mid \omega \in \mathbb{R}\right\}$ is the tangent space at the identity of the rotation group $S O(3)$.

Rotation Dynamics

- Rotation vector $\omega \in \mathbb{R}^{3}$: every rotation is a rotation about an axis $\xi:=\frac{\omega}{\|\omega\|_{2}}$ through an angle $\theta:=\|\omega\|_{2}$.
- Consider a point s rotating about an axis ξ at constant unit velocity:

$$
\begin{aligned}
\dot{s}(t) & =\xi \times s(t)=\hat{\xi} s(t), \quad s(0)=s_{0} \\
& \Rightarrow s(\theta)=e^{\hat{\xi} \theta} s_{0}=R_{\xi, \theta} s_{0}
\end{aligned}
$$

- Rotation matrix representation: if $\hat{\omega}$ is constant:

$$
\dot{R}(t)=\hat{\omega} R(t) \quad \Rightarrow \quad R(t)=\exp (\hat{\omega} t) R\left(t_{0}\right)
$$

- If $\|\omega\|=1$ and $R\left(t_{0}\right)=I$, then $R(t)=\exp (\hat{\omega} t)$ is simply a rotation around the axis $\omega \in \mathbb{R}^{3}$ by an angle of t radians.
- t can be absorbed into ω so that $R=\exp (\hat{\omega})$ for ω with arbitrary norm.
- The matrix exponential defines a map from $\mathfrak{s o}(3)$ to $S O(3)$.

Special Orthogonal Lie Algebra so(3)

- Associated with every Lie group is its Lie algebra - a linear space of the same dimension, closed under a bi-linear alternating product called the Lie bracket: $\left[\hat{\omega}_{1}, \hat{\omega}_{2}\right]=\hat{\omega}_{1} \hat{\omega}_{2}-\hat{\omega}_{2} \hat{\omega}_{1}$
- The Lie algebra of $S O(3)$ is the space of skew-symmetric matrices $\mathfrak{s o (3)}:=\left\{\hat{\omega} \in \mathbb{R}^{3 \times 3} \mid \omega \in \mathbb{R}^{3}\right\}$
- Generators of $\mathfrak{s o}(3)$: derivatives of rotations around each standard axis:

$$
G_{x}=\left.\frac{d}{d \phi} R_{x}(\phi)\right|_{\phi=0}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad G_{y}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad G_{z}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- The elements $\hat{\omega}=\alpha_{1} G_{x}+\alpha_{2} G_{y}+\alpha_{3} G_{z} \in \mathfrak{s o}(3)$ are linear combinations of the generators and can be mapped to $S O(3)$ via exponential map:

$$
R=\exp (\hat{\omega})=I+\hat{\omega}+\frac{1}{2!} \hat{\omega}^{2}+\frac{1}{3!} \hat{\omega}^{3}+\ldots
$$

Infinitesimal Rotation

- Infinitesimal rotation $\delta \theta$ about the z-axis ξ_{z} :

$$
s^{\prime}=s+\delta s=s+\delta \theta \xi_{z} \times s=R_{z}(\delta \theta) s=\left(I+\delta \theta G_{z}\right) s
$$

- Infinitesimal rotation $\delta \theta$ about an arbitrary axis ξ :

$$
R_{\delta \theta}=\left(I+\delta \theta \xi_{x} G_{x}+\delta \theta \xi_{y} G_{y}+\delta \theta \xi_{z} G_{z}\right)
$$

- Rotation θ about an arbitrary axis ξ :

$$
R_{\theta}=\lim _{N \rightarrow \infty}\left(I+\frac{1}{N} \theta \xi_{x} G_{x}+\frac{1}{N} \theta \xi_{y} G_{y}+\frac{1}{N} \theta \xi_{z} G_{z}\right)^{N}=\sum_{n=0}^{\infty} \frac{1}{n!}(\theta \hat{\xi})^{n}=\exp (\theta \hat{\xi})
$$

- Properties:
- All eigenvalues of a skew-symmetric matrix $\hat{\omega} \in \mathfrak{s o}$ (3) are imaginary
- All eigenvalues of a rotation matrix $R \in S O(3)$ fit on the unit sphere and their product is $1(\operatorname{det}(R)=1)$
- The eigenvalues of $\hat{\omega}$ come in conjugate pairs - in odd dimensions, one eigenvalue of $\hat{\omega}$ is 0 and hence of R is 1 , i.e., there is an invariant direction under the rotation.

Rodrigues Formula

- Any rotation $R \in S O(3)$ is equivalent to a rotation about a fixed axis $\frac{\omega}{\|\omega\|_{2}}$ through an angle $\theta:=\|\omega\|_{2}$ and can be obtained via:

$$
\begin{aligned}
R & =\exp (\hat{\omega})=I+\sum_{n=1}^{\infty} \frac{1}{n!} \hat{\omega}^{n}=I+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} \hat{\omega}^{2 n+1}+\sum_{n=0}^{\infty} \frac{1}{(2 n+2)!} \hat{\omega}^{2 n+2} \\
& =I+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n}}{(2 n+1)!}\right) \hat{\omega}+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} \theta^{2 n}}{(2 n+2)!}\right) \hat{\omega}^{2} \\
& =I+\left(\frac{\sin \theta}{\theta}\right) \hat{\omega}+\left(\frac{1-\cos \theta}{\theta^{2}}\right) \hat{\omega}^{2}
\end{aligned}
$$

- The exponential map from $\mathfrak{s o}(3)$ to $S O(3)$ is not one-to-one since any vector of the form $2 k \pi \omega$ with integer k will result in the same R.
- The exponential map is also not commutative:

$$
e^{\hat{\omega}_{1}} e^{\hat{\omega}_{2}} \neq e^{\hat{\omega}_{2}} e^{\hat{\omega}_{1}} \neq e^{\hat{\omega}_{1}+\hat{\omega}_{2}}
$$

unless $\hat{\omega}_{1} \hat{\omega}_{2}=\hat{\omega}_{2} \hat{\omega}_{1}$, i.e., the Lie bracket on $\mathfrak{s o}(3),\left[\hat{\omega}_{1}, \hat{\omega}_{2}\right]=0$.

Logarithm Map

- For any $R \in S O(3)$, there exists a (not necessarily unique) $\omega \in \mathbb{R}^{3}$ such that $R=\exp (\hat{\omega})$.
- The logarithm map $\log : S O(3) \rightarrow \mathfrak{s o}(3)$ is the inverse of the exponential map:

$$
\begin{aligned}
& \hat{\omega}=\log (R)=\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right) \\
& \theta=\|\omega\|=\arccos \left(\frac{\operatorname{tr}(R)-1}{2}\right) \\
& \xi=\frac{\omega}{\|\omega\|}=\frac{1}{2 \sin (\|\omega\|)}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right]
\end{aligned}
$$

- The log map has a singularity at $\theta=0$ because there is an infinite choice of rotation axes or equivalently the exponential map is many-to-one.

Rigid Body Motion

- Let B be a body frame whose position and orientation with respect to the world frame W are $p \in \mathbb{R}^{3}$ and $R \in S O$ (3), respectively.
- The coordinates of a point $s_{B} \in \mathbb{R}^{3}$ in the body frame B can be converted to the world frame by first rotating the point and then translating it to the world frame: $s_{W}=R s_{B}+p$.
- Homogeneous coordinates: the rigid-body motion transformation is not linear but affine. It can be converted to linear by appending 1 to the coordinates of a point s :

$$
\left[\begin{array}{c}
s_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
s_{B} \\
1
\end{array}\right]
$$

- Rigid body motion can be described by a matrix parameterization:

$$
S E(3):=\left\{g: \left.=\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right] \right\rvert\, R \in S O(3), p \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{4 \times 4}
$$

Special Euclidean Group $\operatorname{SE}(3)$

- Using homogeneous coordinates, it can be verified that $S E(3)$ satisfies all requirements of a group:
- $g_{1} g_{2}=\left[\begin{array}{cc}R_{1} & p_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}R_{2} & p_{2} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}R_{1} R_{2} & R_{1} p_{2}+p_{1} \\ 0 & 1\end{array}\right] \in \operatorname{SE}(3)$
- $\left[\begin{array}{ll}l & 0 \\ 0 & 1\end{array}\right] \in S E(3)$
- $\left[\begin{array}{ll}R & p \\ 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} p \\ 0 & 1\end{array}\right] \in \operatorname{SE}(3)$
- $\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$ for all $g_{1}, g_{2}, g_{3} \in \operatorname{SE}(3)$

"Smart" Plus and Minus

- For $x:=(p, \theta) \in S E(2)$ with position $p \in \mathbb{R}^{2}$, orientation $\theta \in[-\pi, \pi)$, and inverse $x^{-1}=\left(-R(\theta)^{T} p,-\theta\right)$, define:

$$
x_{t} \oplus x_{t+1}=\left[\begin{array}{c}
p_{t}+R\left(\theta_{t}\right) p_{t+1} \\
\theta_{t}+\theta_{t+1}
\end{array}\right] \quad x_{t+1} \ominus x_{t}=x_{t}^{-1} \oplus x_{t+1}=\left[\begin{array}{c}
R\left(\theta_{t}\right)^{T}\left(p_{t+1}-p_{t}\right) \\
\theta_{t+1}-\theta_{t}
\end{array}\right]
$$

- For $x:=(p, q) \in S E(3)$ with position $p \in \mathbb{R}^{3}$, orientation $q \in \mathbb{S}^{3}$, and inverse $x^{-1}=\left(-R(q)^{T} p, q^{-1}\right)$ define:

$$
x_{t} \oplus x_{t+1}=\left[\begin{array}{c}
p_{t}+R\left(q_{t}\right) p_{t+1} \\
q_{t} q_{t+1}
\end{array}\right] \quad x_{t+1} \ominus x_{t}=x_{t}^{-1} \oplus x_{t+1}=\left[\begin{array}{c}
R\left(q_{t}\right)^{T}\left(p_{t+1}-p_{t}\right) \\
q_{t}^{-1} q_{t+1}
\end{array}\right]
$$

- For $x:=(p, R) \in S E(3)$ with position $p \in \mathbb{R}^{3}$, orientation $R \in S O$ (3), and inverse $x^{-1}=\left(-R^{T} p, R^{T}\right)$ define:

$$
x_{t} \oplus x_{t+1}=\left[\begin{array}{c}
p_{t}+R_{t} p_{t+1} \\
R_{t} R_{t+1}
\end{array}\right] \quad x_{t+1} \ominus x_{t}=x_{t}^{-1} \oplus x_{t+1}=\left[\begin{array}{c}
R_{t}^{T}\left(p_{t+1}-p_{t}\right) \\
R_{t}^{T} R_{t+1}
\end{array}\right]
$$

Special Euclidean Lie Algebra $\mathfrak{s e}(3)$

- Angular velocity: $R(t) R^{T}(t)=1 \quad \Rightarrow \quad \dot{R}(t) R^{T}(t)=\hat{\omega}(t) \in \mathfrak{s o}(3)$
- Twist: Similarly for $g(t) \in S E(3)$ consider:

$$
\dot{g}(t) g^{-1}(t)=\left[\begin{array}{cc}
\dot{R}(t) R^{T}(t) & \dot{p}(t)-\dot{R}(t) R^{T}(t) p(t) \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\omega}(t) & v(t) \\
0 & 0
\end{array}\right] \in \mathfrak{s e}(3)
$$

where $\hat{\omega}(t):=\dot{R}(t) R^{T}(t)$ and $v(t):=\dot{p}(t)-\hat{\omega}(t) p(t)$ are the world angular and linear velocities of the point in the body that corresponds with the origin of the world frame.

- $\omega(t)$ is also equal to the angular velocity of the body frame measured in the world frame
- The linear velocity of a fixed body point s_{B}, measured in the world frame is:

$$
\dot{s}_{W}(t)=\hat{\omega}(t) R(t) s_{B}+\dot{p}(t)=\hat{\omega}(t) s_{W}(t)+v(t)
$$

Special Euclidean Lie Algebra $\mathfrak{s e}(3)$

- The set of all twists is the Lie algebra (or tangent space) of the Lie group $S E(3)$:

$$
\mathfrak{s e}(3):=\left\{\left.\left[\begin{array}{cc}
\hat{\omega}(t) & v(t) \\
0 & 0
\end{array}\right] \right\rvert\, \hat{\omega} \in \mathfrak{s o}(3), v \in \mathbb{R}^{3}\right\}
$$

- A tangent vector $\hat{\zeta} \in \mathfrak{s e}(3)$ approximates $g(t) \in S E(3)$ locally:

$$
g(t+d t) \approx(I+\hat{\zeta}(t) d t) g(t)
$$

Canonical Exponential Coordinates for $S E(3)$

- For a constant twist $\hat{\zeta} \in \mathfrak{s e}(3)$ and $g(t) \in S E(3)$:

$$
\dot{g}(t)=\hat{\zeta} g(t), \quad g(0)=I \quad \Rightarrow \quad g(t)=\exp (\hat{\zeta} t)
$$

- Exponential map: exp : $\mathfrak{s e}(3) \rightarrow S E(3)$ with $\zeta:=(v, \omega) \in \mathbb{R}^{6}$:

$$
\exp (\hat{\zeta})= \begin{cases}{\left[\begin{array}{cc}
e^{\hat{\omega}} & \frac{\left(I-e^{\hat{\omega}}\right) \hat{\omega} v+\omega \omega^{\top} v}{\|\omega\|} \\
0 & 1
\end{array}\right]} & \text { if } \omega \neq 0 \\
{\left[\begin{array}{ll}
I & v \\
0 & 1
\end{array}\right]} & \text { if } \omega=0\end{cases}
$$

- The exponential map from $\mathfrak{s e}(3)$ to $S E(3)$ is not one-to-one
- Two rigid-body motions $g_{1}=\exp \left(\hat{\zeta}_{1}\right)$ and $g_{2}=\exp \left(\hat{\zeta}_{2}\right)$ commute, $g_{1} g_{2}=g_{2} g_{1}$, iff $\left[\hat{\zeta}_{1}, \hat{\zeta}_{2}\right]=0$.
- The Lie bracket of $\mathfrak{s e}(3)$ is:

$$
\left[\hat{\zeta}_{1}, \hat{\zeta}_{2}\right]=\hat{\zeta}_{1} \hat{\zeta}_{2}-\hat{\zeta}_{2} \hat{\zeta}_{1}=\left[\begin{array}{cc}
\widehat{\omega_{1} \times \omega_{2}} & \omega_{1} \times v_{2}-\omega_{2} \times v_{1} \\
0 & 0
\end{array}\right] \in \mathfrak{s e}(3)
$$

Logarithm Map

- Logarithm map log : $S E(3) \rightarrow \mathfrak{s e}(3)$: for any $g:=(p, R) \in S E(3)$, there exists a (not necessarily unique) twist $\zeta:=(v, \omega) \in \mathbb{R}^{6}$ such that $\hat{\zeta}=\log (g)$:

$$
\zeta= \begin{cases}\omega=\log (R)^{\vee}, v=\|\omega\|\left(\left(I-e^{\hat{\omega}}\right) \hat{\omega}+\omega \omega^{T}\right)^{-1} p, & \text { if } R \neq I \\ \omega=0, v=p, & \text { if } R=I\end{cases}
$$

Velocity Transformations

- Consider a moving body frame B with pose $g(t) \in S E(3)$. The velocity of a point $s_{B} \in \mathbb{R}^{3}$ in the body frame with respect to the world frame W can be determined as follows:

$$
\begin{aligned}
& s_{W}(t)=g(t) s_{B} \\
& \dot{s}_{W}(t)=\dot{g}(t) s_{B}=\dot{g}(t) g(t)^{-1} s_{W}(t)=\hat{\zeta}(t) s_{W}(t)=\hat{\omega}(t) s_{W}(t)+v(t)
\end{aligned}
$$

- $\hat{\zeta}(t)$ is the velocity of the body frame moving relative to the world frame, as viewed in the world frame.
- The adjoint map $a d_{g}: \mathfrak{s e}(3) \rightarrow \mathfrak{s e}(3)$ transforms velocities from one frame to another via the transformation g and is defined as $\hat{\zeta} \rightarrow g \hat{\zeta} g^{-1}$.

Summary

	Rotation $S O(3)$	Rigid-body motion $S E(3)$
Matrix representations	$R:\left\{\begin{array}{l}R^{T} R=I \\ \operatorname{det}(R)=1\end{array}\right.$	$g=\left[\begin{array}{ll}R & p \\ 0 & 1\end{array}\right]$
Transformation	$s_{W}=R s_{B}$	$s_{W}=R s_{B}+p$
Inverse	$R^{-1}=R^{T}$	$g^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} p \\ 0 & 1\end{array}\right]$
Exponential	$R=\exp (\hat{\omega})$	$g=\exp (\hat{\zeta})$
Velocity	$\dot{R}=\hat{\omega} R=R \hat{\omega}_{B}$	$\dot{g}=\hat{\zeta} g=g \hat{\zeta}_{B}$
Velocity	$\dot{s}{ }_{W}=\hat{\omega} S_{W}$	$\dot{s} \dot{S}_{W}=\hat{\omega} s_{W}+v$
Adjoint map	$\hat{\omega} \rightarrow R \hat{\omega} R^{T}$	$\hat{\zeta} \rightarrow g \hat{\zeta} g^{-1}$

