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Rigid Body Motion

»

Consider a moving object in a fixed world 0O .
reference frame W.

Rigid object: it is sufficient to specify the N >
motion of one point p(t) € R3 and 3 g
coordinate axes attached to that point ' +

(body reference frame B)

A rigid body motion is a family of transformations g; : R3 — R3 that
describes how the coordinates of points on the object change in time

Rigid body motion preserves both distances (vector norms) and
orientation (vector cross products)

Euclidean Group E(3): a set of maps g : R3 — R3 that preserve the
norm of any two vectors

Special Euclidean Group SE(3): a set of maps g : R3 — R3 that
preserve the norm and cross product of any two vectors



Special Euclidean Group

» A group is a set G with an associated operator ® (group law of G) that
satisfies:
» Closure: a© be G,Va,be G
Identity element: Jle € G (unique) such thate®a=a0e=a
Inverse element: forac€ G, 3b€ G suchthata®O b=bGa=c¢e
Associativity: (a0 b)©c=a0(b®c), Va,b,c,e G

vVvYyy

» SE(3) is a group of maps g : R — R3 that preserve:
1. Norm: ||g(u) — g(v)|| = ||v — ul|,Vu,v € R3
2. Cross product: g(u) x g(v) = g(u x v),Vu,v € R3

» Corollary: SE(3) elements also preserve:
L Angle: uTv =12 (lu+v|?—|lu—v[?) = u"v=g(u)"g(v) Yu,v eR?
2. Volume: Vu,v,w € R3, g(u)T(g(v) x g(w)) = uT (v x w)
(volume of parallelepiped spanned by u, v, w)



Special Euclidean Group

The configuration g; of a moving rigid object at time t is determined by
1. The position p(t) €R3 of the body frame B relative to the world frame W
2. The orientation R(t) € SO(3) of B relative to W

v

» The set of rigid body motions forms a group because:

» We can combine several motions to generate a new one (closure)
» We can execute a motion that leaves the object at the same state
(identity element)

» We can move rigid objects from one place to another and then reverse the
action (inverse element)

» The space R? of translations/positions is familiar

How do we describe orientation?

v



Cross product

» The cross product of two vectors w, 3 € R3 is also a vector in R3:

w233 — w3f
wx = |wsfr — w13
w12 — w1

> For fixed w, the cross product can be represented by a linear map
wx =00 for & € R3*3

» The hat map *: R3 — s0(3) transforms an R3 vector to a
skew-symmetric matrix:

0 —W3 w2
W= w3 0 —-w
—wy w1 0

» The vector space R3 and the space of skew-symmetric 3 x 3 matrices
s0(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.



Hat Map Properties

» Lemma: A matrix M € R3*3 is skew-symmetric iff M = & for some
w e R3.

» The inverse of the hat map is the vee operator, V : 50(3) — R3, that
extracts the components of the vector w = &V from the matrix @.

» For any x,y € R3, A € R3¥3, the hat map satisfies:

>

>
>
>

v

v

Xy =XXy=—-yXxXx=-—yx
22 = xxT — xTx ky3

KL = (—x X)kA

~Lr(%9) = i
RA+ATR = ((t (A)I3X3—A)x)

(
tr(RA) = Ltr(R(A— AT)) = —xT(A— AT)V
Ax = det(A)A~TRA1



3-D Orientation

> The orientation of a body frame B is determined by the coordinates of
the three orthogonal vectors r; = g(e1), rn = g(e2), r3 = g(e3) relative
to the world frame W, i.e., by the 3 x 3 matrix:

R= [rl r r3] e R¥3

» Since ry, r2, r3 form an orthonormal basis:

rlr =0

R is an orthogonal matrix RTR = RRT = |
R's inverse is its transpose: R~ = R7
det(R)=r(nxn)=1

R belongs to the special orthogonal group:

vV vy vy VvYy

SO(3) == {RcR¥>3 | RTR = I,det(R) = 1}



Special Orthogonal Lie Group SO(n)

>

>

SO(n) :={ReR™" | RTR = I, det(R) = 1}
Closed under multiplication: R R, € SO(n)
Identity: | € SO(n)

Inverse: R~ = RT € SO(n)

Associative property: (R1R2)R3 = Ri(R2R3)

Manifold structure: n? parameters with n(n+ 1)/2 constraints (due to
RTR = 1) and hence n(n — 1)/2 degrees of freedom

Distances are preserved:
Ix =yl3 =lR(x=y)IE=(x~-y)"RTR(x —y) = RTR =1

No reflections allowed, i.e., a right-handed coordinate system is kept:
R(x x y) = (Rx) x (Ry) = RxRy = det(R)RXRT Ry = det(R) =1



2-D Rotation

» A 2-D rotation of point s € R?
through an angle 6 can be

described by a rotation matrix
R(6) € SO(2):

J = R(O)s = [cos@ —sin 9]

sinf cos@

» 0 > 0: counterclockwise rotation

» There is a one-to-one correspondence between 2-D rotation matrices
and unit-norm complex numbers:

(s, +is,) = (sxcos® — s, sin @) + i(scsin @ + s, cos 6)



3-D Rotation (Euler Angles) % vaw

> Euler Angles: parameterize a 3-D rotation via three Roll

angles: roll (¢), pitch (), and yaw (1)). v

| o X~ Ppitch

» The conventional XYZ extrinsic (fixed) angle representation, equivalent
to the ZYX intrinsic (rotating) angle representation, is:

R = Rz(4)Ry (0)Rx(9)

costyp —siny 0 cosf 0 sinf]| |1 O 0
= |sinyy cosv O 0 1 0 0 cos¢p —sing
0 0 1| [—sinf@ 0 cosf| |0 sing cos¢

» Angle parameterizations have singularities (not one-to-one), which can
result in gimbal lock, e.g., if 8 = 90° the roll and yaw are degenerate.
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Quaternions
» Quaternions: H = C + Cj generalize complex numbers C = R + R/
G=astqitq@itak=1[4, ] j=—ji=k P=72=kK=-1
» Just as in 2-D, a 3-D rotation matrix R can be mapped onto unit-norm
quaternions S3 := {g € H | ¢2 + qlq, = 1}.
» To represent rotations, S® embeds a 3-D space into a 4-D space (no

singularities) and introduces a constraint.

> A rotation around a unit axis § := 5 € R3 by angle  := ||w]|| can be
represented by a unit quaternion:

o~ [e()- (0

» A rotation around a unit axis £ € R3 by angle 6 can be recovered from a
unit quaternion g € S3:
1 .

qu, if 6 7é 0

6 = 2 arccos =
() ¢ {o, if 0 =0
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Quaternions

» A rotation matrix R € SO(3) can be obtained from a quaternion g € S3:
R(q)=E(q)G(a)" E(q)=[-av, g/ +a] G(q)=I[-av, g/ — @]

» S3 is a double covering of SO(3) because two unit quaternions
correspond to the same rotation matrix: R(q) = R(—q):

R4

12



Quaternion Properties

Addition
Multiplication
Conjugate
Norm

Inverse
Rotation

Rot. Velocity
Exp

Log

» Exp: constructs g € S from rotation vector w € R3: q = exp ([O, f])

q+p:[q5+p57 qv+pv]
qop= [qus - CIVTPV, qspv + psqQy + gy X pv]

g =[gs, —a.]

lql ==V +ala, |qop|=]q|lp|
-1_ g

9 =1

[0, xX]=go[0, x]o g™ = [0, R(q)x]

g =3[0, wlog=3E(q)"w=73q0[0, wg] = 3G6(q)w
exp(q) = e [cos|la |, 12 sin la ]

log(q) := [Iog lal, o Tq.T 2rccos |q‘]

» Log: recovers a rotation vector w € R3 from g € S3: [0, w] = 2log(q)
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Angle Averaging
» What is the average of {170°,—101°,270°}7

> The average [ satisfies: %Zj-’:l r(f—6;)=0
» Restrict angle to [—7,7): r(0) := —7 + mod(f + 7, 27)

170°

+63°

233°

-26° -101° 270°

-37°



Quaternion Averaging

» Given a collection of quaternions {g;}7_; with associated weights

{a;}"_;, we can obtain a weighted average quaternion §, which is not

unique and depends on the initialization point as follows.

Algorithm 1 Quaternion average

1: Input: {qgi}_;, {ai};, initial guess go
2: fort=0,..., T do
3 qi = [qg,h qi,,-] =G loaq

4: [0, e..i] = 2log(qr) > Error rot. vector from quaternion
5: e, = (-7 + mod(||e, || + ,27)) ﬁ > Restrict angles to [—, )
6: e, =Y aiey,

7 Gi+1 = Gr 0 exp ([0, %VD > Error rot. vector to quaternion
8: if |le.|| < € then return §:




Rotation Dynamics
» The trajectory R(t) of a continuous rotation motion should satisfy:
R(RT(t)=1 = R(t)RT(t)+ R(t)RT(t)=0.

» The matrix R(t)R7 (t) is skew-symmetric and there must exist some
vector-valued function w(t) € R3 such that:

R(ORT(t)=a(t) = |R(t) = &()R(1)

> A skew-symmetric matrix gives a first order approximation to a rotation
matrix: R(t+ dt) =~ R(t) + &(t)R(t)dt.

» Locally, elements of SO(3) depend only on three parameters w € R3

> The space of skew-symmetric matrices s0(3) := {& € R®*3 | w € R} is
the tangent space at the identity of the rotation group SO(3).
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Rotation Dynamics

>

Rotation vector w € R3: every rotation is a

rotation about an axis £ := m through an 1
angle 6 := ||w||2. F/ |
Consider a point s rotating about an axis & N

at constant unit velocity:
5(6) = € x s(t) = és(t),  5(0) = 5o

= 5(0) = 65950 = R&@SO N

Rotation matrix representation: if & is constant:
R(t) =&R(t) = R(t) = exp(&t)R(to)

If |w]| =1 and R(ty) =/, then R(t) = exp(&t) is simply a rotation
around the axis w € R3 by an angle of t radians.

t can be absorbed into w so that R = exp(®) for w with arbitrary norm.

The matrix exponential defines a map from s0(3) to SO(3).
17



Special Orthogonal Lie Algebra so(3)

>

Associated with every Lie group is its Lie algebra — a linear space of the
same dimension, closed under a bi-linear alternating product called the
Lie bracket: [@1, @2] = 1wy — Wl

The Lie algebra of SO(3) is the space of skew-symmetric matrices
50(3) ;= {® € R¥3 |w € R3}

Generators of s50(3): derivatives of rotations around each standard axis:

J 00 0 0 01 0 -1 0
GX:RX((;S)‘ =00 -1 G=|0 0 G,=|1 0 0
=0 [0 1 0 10 0 0 0

o o

The elements & = a1 Gx + a2 G, + a3 G, € s0(3) are linear combinations
of the generators and can be mapped to SO(3) via exponential map:

1
Rzexp(@):/+o§+§&2+ P

3!
18



Infinitesimal Rotation

» Infinitesimal rotation §6 about the z-axis &,:
s =s5+65=s5+60, x s = R,(60)s = (I + 50G,)s
> Infinitesimal rotation 46 about an arbitrary axis &:
Rso = (I 4+ 00&, Gy + 066, Gy, + 00€,G,)

» Rotation # about an arbitrary axis &:

_ 1 1 1 N1, s

» Properties:
> All eigenvalues of a skew-symmetric matrix & € so(3) are imaginary
> All eigenvalues of a rotation matrix R € SO(3) fit on the unit sphere and
their product is 1 (det(R) = 1)
» The eigenvalues of & come in conjugate pairs — in odd dimensions, one
eigenvalue of & is 0 and hence of R is 1, i.e., there is an invariant
direction under the rotation.
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Rodrigues Formula

» Any rotation R € SO(3) is equivalent to a rotation about a fixed axis

m through an angle 6 := ||w||2> and can be obtained via:
(o] %) 1
= —w' = A2"+1 T n2nt2
> '792” 0 (_1)n92n o
(ZO 20+ 1) )“ (Z%(Hz)l &

. ﬂ - 1—cosf\ .,
= 7 @ — w

» The exponential map from s0(3) to SO(3) is not one-to-one since any
vector of the form 2kmw with integer k will result in the same R.

> The exponential map is also not commutative:

oW1 g2 ?é W2 g1 7& eW1+w2

unless 01y = @o®1, i.e., the Lie bracket on s0(3), [01, 2] = 0.
20



Logarithm Map

» For any R € SO(3), there exists a (not necessarily unique) w € R3 such
that R = exp(®).

» The logarithm map log : SO(3) — s0(3) is the inverse of the
exponential map:

9
5 = log(R) = R—RT
© =log(R) = 5 5( )
R)—1
0 = ||lw|| = arccos (tr())
2
w 1 R32 — Ra3
$= el = 2sin(e B2 R
Ro1 — Rio

» The log map has a singularity at # = 0 because there is an infinite choice
of rotation axes or equivalently the exponential map is many-to-one.
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Rigid Body Motion

>

Let B be a body frame whose position and orientation with respect to
the world frame W are p € R3 and R € SO(3), respectively.

The coordinates of a point sg € R3 in the body frame B can be
converted to the world frame by first rotating the point and then
translating it to the world frame: sy = Rsg + p.

Homogeneous coordinates: the rigid-body motion transformation is
not linear but affine. It can be converted to linear by appending 1 to
the coordinates of a point s:

7=l AL

Rigid body motion can be described by a matrix parameterization:

SE(3) := {g = {’g ’1”] ' R e SO(3),p e R3} C R4*4

22



Special Euclidean Group SE(3)

» Using homogeneous coordinates, it can be verified that SE(3) satisfies
all requirements of a group:

R p| |R2 p2| _ |[RiRe Ripo+p1
’g1g2|:0 1][0 11=1 o 1 € SE(3)

. {’ 0} € SE(3)

0 1
-1
R p _[RT —RTp
> {0 1] _[0 1| €SE@B)

> (g182)83 = g1(g283) for all g1, 82,83 € SE(3)
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“Smart” Plus and Minus

» For x := (p,f) € SE(2) with position p € R?, orientation 6 € [—7,7),
and inverse x~ 1 = (—=R(0)T p, —0), define:

pt + R(0:)pe+1

R(et)T(PtH - Pt)}
]

Xe® Xt = { } Xer1 O Xe = Xt_l Dxe1 = [ Orr1 — 0;
» For x :=(p,q) € SE(3 ) with position p € R3, orientation g € S3, and
inverse x 1 = (—R(q)"p, g 1) define:

pt + R(qt)pe+1

R(Qt)T(PtJrl - Pt)}
qtqt+1

-1
] Xe+1 O Xt = Xp ~ D Xpp1 = [ -1
d: qi+1

Xt D Xe+1 = {

» For x := (p, R) € SE(3) with position p € R3, orientation R € SO(3),
and inverse x ! = (=R Tp, RT) define:

pr + Repria | _ RtT(pt+1 - Pt)
Xt S¥ Xt4+1 = |: Rth+1 :| Xt+1 © Xt = X & Xt+1 = |: RtTRt-‘rl
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Special Euclidean Lie Algebra se(3)
» Angular velocity: R(t)RT(t)=1 = R(t)RT(t) = &(t) € s0(3)
» Twist: Similarly for g(t) € SE(3) consider:

£(0)g () = R(t)RT(t) b(f)—R(t)RT(t)p(t)} _ [@(t) (f)]

0 0 0 € se(3)

where [&(t) := R(t)RT(t) | and v(t) := p(t) — &(t)p(t) are the world
angular and linear velocities of the point in the body that corresponds
with the origin of the world frame.

» w(t) is also equal to the angular velocity of the body frame
measured in the world frame

» The linear velocity of a fixed body point sg, measured in the world
frame is:

sw(t) = D(t)R(t)ss + p(t) = &(t)sw(t) + v(1)|

25



Special Euclidean Lie Algebra se(3)

» The set of all twists is the Lie algebra (or tangent space) of the Lie
group SE(3):

se(3) = { [‘?’gt) Vgt)] ‘ &€ s0(3),v e R3}

> A tangent vector { € s¢(3) approximates g(t) € SE(3) locally:

g(t+dt) = (I + {(t)dt)g(t)
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Canonical Exponential Coordinates for SE(3)
> For a constant twist ¢ € se(3) and g(t) € SE(3):
§(t) =Cg(t), g(0)=1 = g(t)=exp(Ct)
Exponential map: exp : 5¢(3) — SE(3) with ¢ := (v,w) € R:
[ o (I—e?)dvtwwTv

e
el if w0
;T

[
Y ifw=0

The exponential map from se(3) to SE(3) is not one-to-one

v

exp(C)

v

v

Two rigid-body motigns g1 = exp(fl) and g» = exp(fz) commute,
g1 = &g, iff [(1,¢2] = 0.

» The Lie bracket of se(3) is:
O - AV
[C1: C2] = GG — Q21 = {wl 0 w2 owLew 0 W2V e ge(3)
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Logarithm Map

» Logarithm map log : SE(3) — s¢(3): for any g := (p, R) € SE(3),
there exists a (not necessarily unique) twist ¢ := (v,w) € R® such that

~

¢ = log(g):

¢ = w = log(R)",v = |lw|| (I — e*)& —i—wa)*l p, if R#I,
“w=0.v=p if R=1.
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Velocity Transformations

» Consider a moving body frame B with pose g(t) € SE(3). The velocity
of a point sg € R3 in the body frame with respect to the world frame
W can be determined as follows:

sw(t) = g(t)se = &(t)g(t) sw(t) = C()sw(t) = &(t)sw(t) + v(t)

> CA(t) is the velocity of the body frame moving relative to the world
frame, as viewed in the world frame.

» The adjoint map ad, : se(3) — se(3) transforms velocities from one
frame to another via the transformation g and is defined as { — g(g~!.
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Summary

Rotation SO(3) Rigid-body motion SE(3)
. ] RTR=1 R p
Matrix representations | R : g=
det(R) =1 0 1
Transformation sw = Rsg sw=Rsg+p
_RT s .
Inverse R1=RT g = P
0 1
Exponential R = exp(®) g = exp({)
Velocity R = &R = Rig g=Cg=gls
Velocity Sw = Qsw Sw =0sw +v
Adjoint map & — RORT f—> gfg_1
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