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Image Formation
I Image formation model: must trade-off physical constraints and

mathematical simplicity

I The values of an image depend on the shape and reflectance of the
scene as well as the distribution of light

I Image intensity/brightness/irradiance I (u, v) describes the energy
falling onto a small patch of the imaging sensor (integrated both over
the shutter interval and over a region of space) and is measured in
power per unit area (W /m2)

I A camera uses a set of lenses to control the direction of light
propagation by means of diffraction, refraction, and reflection

I Thin lens model: a simple geometric model of image formation that
considers only refraction

I Pinhole model: a thin lens model in which the lens aperture is
decreased to zero and all rays are forced to go through the optical center
and remain undeflected (diffraction becomes dominant).
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Pinhole Camera Model

I Focal plane: perpendicular to
the optical axis with a circular
aperture at the optical center

I Image plane: parallel to the focal plane and a distance f (focal
length) in meters from the optical center

I The pinhole camera model is described in an optical frame centered at
the optical center with the optical axis as the z-axis:

I optical frame: x = right, y = down, z = forward
I world frame: x = forward, y = left, z = up

I Ideal perspective projection: relates the coordinates (X ,Y ,Z ) of
point A to its image coordinates (x , y) using similar triangles:

x = −f X
Z

y = −f Y
Z

x
y
1

 =
1

Z

−f 0 0 0
0 −f 0 0
0 0 1 0



X
Y
Z
1


3



Pinhole Camera Model
I Image flip: the object appears upside down on the image plane. To

eliminate this effect, we can simply flip the image (x , y)→ (−x ,−y),
which corresponds to placing the image plane {z = −f } in front of the
optical center instead of behind {z = f }.

I Field of view: the angle subtended by the spatial extend of the image
plane as seen from the optical center. If m is the side of the image plane

in meters, then the field of view is θ = 2 arctan
(m

2f

)
.

I For a flat image plane: θ < 180◦.
I For a spherical or ellipsoidal imaging surface, common in omnidirectional

cameras, θ can exceed 180◦.

I Ray tracing: under assumptions of the pinhole model and Lambertian
surfaces, image formation can be reduced to tracing rays from points on
objects to pixels. A mathematical model associating 3-D points in the
world frame to 2-D points in the image frame must account for:

1. Extrinsics: world-to-camera frame transformation
2. Projection: 3D-to-2D coordinate projection
3. Intrinsics: scaling and translation of the image coordinate frame

4



Extrinsics

I Let pwc ∈ R3 and Rwc ∈ SO(3) be the camera position and orientation
in the world frame

I Rotation from a regular to an optical frame: Roc :=

0 −1 0
0 0 −1
1 0 0


I Let (Xw ,Yw ,Zw ) be the coordinates of point A in the world frame. The

coordinates of A in the optical frame are then:
Xo

Yo

Zo

1

 =

[
Roc 0

0 1

] [
Rcw pcw

0 1

]
Xw

Yw

Zw

1

 =

[
RocR

T
wc −RocR

T
wcpwc

0 1

]
Xw

Yw

Zw

1


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Projection

I The 3D-to-2D projection in homogeneous coordinates from the optical
frame to the image frame for a frontal pinhole camera model is:

x
y
1

 =
1

Zo

f 0 0 0
0 f 0 0
0 0 1 0



Xo

Yo

Zo

1


I The above can be decomposed into:

x
y
1

 =

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Rf

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸

focal scaling: Kf

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: Π0


Xo

Yo

Zo

1


I The focal scaling Kf and image flip Rf are intrinsic parameters.
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Intrinsics
I In practice, images are obtained in terms of pixels (u, v) with the origin

of the pixel array typically in the upper-left corner of the image.

I The relationship between the image frame and the pixel array is
specified via the following parameters:

I (su, sv ) [pixels/meter]: define the scaling from meters to pixels and the
aspect ration σ = su/sv

I (cu, cv ) [pixels]: coordinates of the principal point used to translate the
image frame origin, e.g., (cu, cv ) = (320.5, 240.5) for a 640× 480 image

I sθ [pixels/meter]: skew factor that scales non-rectangular pixels and is
proportional to cot(α) where α is the angle between the coordinate axes
of the pixel array.

I Normalized coordinates in the image frame are converted to pixel
coordinates in the pixel array using the intrinsic parameter matrix:su sθ cu
0 sv cv
0 0 1


︸ ︷︷ ︸
pixel scaling: Ks

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Rf

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸

focal scaling: Kf

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸

calibration matrix: K

∈ R3×3
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Pinhole Camera Model

I Extrinsics:
Xo

Yo

Zo

1

=

[
RocR

T
wc −RocR

T
wcpwc

0 1

]
Xw

Yw

Zw

1



I Projection and Intrinsics:

u
v
1


︸ ︷︷ ︸
pixels

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸

calibration: K

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: Π0


Xo

Yo

Zo

1


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Projection Functions

I Canonical projection function: for a vector a ∈ R3, define
π(a) := 1

a3
a. Then, the pixel coordinates y ∈ R2 of a point x ∈ R3 in

the world frame observed by a camera at position p ∈ R3 and
orientation R ∈ SO(3) with intrinsic parameters K ∈ R3×3 are:

y = Kπ(RocR
T (x − p))

I Spherical perspective projection: if the imaging surface is a sphere
S2 := {x ∈ R3 | ‖x‖ = 1} (motivated by retina shapes in biological
systems), we can define a spherical projection πs(x) = x

‖x‖2
. Similar to

the planar perspective projection, the relationship between pixel
coordinates y of a point and their 3-D metric counterpart x is:

y = Kπs(RocR
T (x − p))

I Catadioptric model: uses an ellipsoidal imaging surface
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Radial distortion

I Wide field of view camera: in addition to linear distortions described
by the intrinsic parameters K , one can observe distortion along radial
directions.

I The simplest effective model for radial distortion:

x = xd(1 + a1r
2 + a2r

4)

y = yd(1 + a1r
2 + a2r

4)

where (xd , yd) are the coordinates of distorted points and r2 = x2
d + y2

d

and a1, a2 are additional parameters modeling the amount of distortion.
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Panorama

I Input: image I and camera-to-world orientation R

I Suppose the image lies on a sphere and get the world coordinates of
each pixel:

1. Find longitude (λ) and latitude (φ) of each pixel using the number of rows
and columns and the horizontal (60◦) and vertical (45◦) fields of view

2. Convert Spherical (λ, φ, 1) to Cartesian assuming depth 1
3. Rotate the Cartesian coordinates to the world frame using R

I Project world pixel coordinates to a cylinder and unwrap:

1. Convert Cartesian to Spherical
2. Inscribe the sphere in a cylinder so that a point (λ, φ, 1) on the sphere has

height φ on the cylinder and longitude λ along the cylinder circumference
3. Unwrap the cylinder surface to a rectangular image with width 2π radians

and height π radians
4. Different options for sphere to plane projection: equidistant, equal area,

Miller, etc.
(see https://en.wikipedia.org/wiki/List_of_map_projections)
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Panorama
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