ECE276A: Sensing & Estimation in Robotics Lecture 9: Motion and Observation Models

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal: a2pal@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Motion Models

- ► Goal: model the likelihood p_a(· | x, u) for given state x and control u
- Based on robot kinematics or dynamics:
 - Differential drive model
 - Ackermann drive (bicycle) model
 - Quadrotor model
 - Legged locomotion model
- Based on odometry:
 - sensor data (e.g., wheel encoders, IMU, camera, laser) used to estimate ego motion
 - Only available in retrospect: useful for filtering but not for motion planning

Motion Models

- **Differential drive motion model**: position $p \in \mathbb{R}^2$, orientation
 - $\begin{array}{ll} \theta \in (-\pi,\pi], \text{ linear velocity } v \in \mathbb{R}, \text{ rotational veclotiy } \omega \in \mathbb{R}: \\ \text{State:} & x = (p,\theta) \\ \text{Control:} & u = (v,\omega) \end{array}$

Motion Model:
$$\dot{x} = a(x, u) = \begin{cases} p = v \\ \dot{\theta} = \omega \end{cases}$$

▶ Quadrotor motion model: position $p \in \mathbb{R}^3$, velocity $\dot{p} \in \mathbb{R}^3$, orientation $R \in SO(3)$, rotational velocity $\omega_B \in \mathbb{R}^3$, thrust $f \in \mathbb{R}$, moment $M_B \in \mathbb{R}^3$, mass $m \in \mathbb{R}_{>0}$, gravitational acceleration g, moment of inertial $J \in \mathbb{R}^{3\times3}$, z-axis $e_3 \in \mathbb{R}^3$: State: $x = (p, \dot{p}, R, \omega_B)$ Control: $u = (f, M_B)$ Motion Model: $\dot{x} = a(x, u) = \begin{cases} m\ddot{p} = -mge_3 + fRe_3\\ \dot{R} = R\hat{\omega}_B\\ J\dot{\omega}_B = -\omega_B \times J\omega_B + M_B \end{cases}$

Differential Drive Motion Model

- Let $s_t := (x_t, y_t, \theta_t)^T \in SE(2)$ be the pose of a differential drive robot
- What is the state s_{t+τ} after τ seconds if we apply linear velocity v_t and angular velocity ω_t?

Discrete-time Differential Drive Model

To convert the continuous-time differential drive model to discrete time, we can solve the ordinary differential equations:

$$\begin{aligned} \theta(t) &= \theta(t_0) + \int_{t_0}^t \omega ds = \theta(t_0) + \omega(t - t_0) \\ &\qquad x(t) = x(t_0) + v \int_{t_0}^t \cos \theta(s) ds \\ &= x(t_0) + \frac{v}{\omega} (\sin (\omega(t - t_0) + \theta(t_0)) - \sin \theta(t_0)) \\ &\qquad y(t) = v \sin \theta(t) \Rightarrow \\ &= x(t_0) + v(t - t_0) \frac{\sin(\omega(t - t_0)/2)}{\omega(t - t_0)/2} \cos(\theta(t_0) + \omega(t - t_0)/2) \\ &\qquad \dot{\theta}(t) = \omega \end{aligned}$$

$$\begin{aligned} y(t) &= y(t_0) + v \int_{t_0}^t \sin \theta(s) ds \\ &= y(t_0) - \frac{v}{\omega} (\cos \theta(t_0) - \cos (\omega(t - t_0) + \theta(t_0))) \\ &= y(t_0) + v(t - t_0) \frac{\sin(\omega(t - t_0)/2)}{\omega(t - t_0)/2} \sin(\theta(t_0) + \omega(t - t_0)/2) \end{aligned}$$

• Let $\tau := t - t_0$ be the time discretization

Discrete-time Differential Drive Model

► The discrete-time differential drive motion model with state $s_t := (x_t, y_t, \theta_t)^T \in SE(2)$, time discretization τ , and control input $u_t := (v_t, \omega_t)^T$ is:

$$s_{t+1} = a(s_t, u_t) := s_t + \tau \begin{pmatrix} v_t \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \cos\left(\theta_t + \frac{\omega_t \tau}{2}\right) \\ v_t \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \sin\left(\theta_t + \frac{\omega_t \tau}{2}\right) \\ \omega_t \end{pmatrix}$$

EKF derivatives:

$$\frac{da}{ds}(s,u) = \begin{bmatrix} 1 & 0 & -v_t \tau \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \sin\left(\theta_t + \frac{\omega_t \tau}{2}\right) \\ 0 & 1 & v_t \tau \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \cos\left(\theta_t + \frac{\omega_t \tau}{2}\right) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{da}{du}(s,u) = \tau \begin{bmatrix} \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \cos\left(\theta_t + \frac{\omega_t \tau}{2}\right) & v_t g_1\left(\frac{\omega_t \tau}{2}\right) \\ \operatorname{sinc}\left(\frac{\omega_t \tau}{2}\right) \sin\left(\theta_t + \frac{\omega_t \tau}{2}\right) & v_t g_2\left(\frac{\omega_t \tau}{2}\right) \\ 0 & 1 \end{bmatrix}$$

where $g_1(z) := -\operatorname{sinc}(z) \sin(\theta_t + z) + \cos(\theta_t + z) \frac{z \cos(z) - \sin(z)}{z^2}$ and $g_2(z) := \operatorname{sinc}(z) \cos(\theta_t + z) + \sin(\theta_t + z) \frac{z \cos(z) - \sin(z)}{z^2}$

Odometry-based Motion Model

- A "drifting" estimate of the robot trajectory x^o_{0:t} ⊂ SE(3) is provided by the motion sensors
- How can the odometry estimate be used to design a motion model for a filtering prediction step?
- ► Idea: add only a local transformation provided by the odometry to the current robot pose x_t ∈ SE(3)
- ► Odometry-based motion model with input u_t := x^o_{t+1} ⊖ x^o_t ∈ SE(3) and noise w_t ∈ SE(3)

$$x_{t+1} = x_t \oplus w_t \oplus u_t$$

Smart Plus Derivative

- Parameterize the pose $x_t \in SE(3)$ via position s_t and rotation vector r_t
- ► Parameterize the noise $w_t \in SE(3)$ with position noise $\eta_t \sim \mathcal{N}(0, W_{3\times 3})$ and rotation vector noise $\xi_t \sim \mathcal{N}(0, R_{3\times 3})$
- ▶ Parameterize the odometry $u_t \in SE(3)$ via translation p_t and rotation R_t
- ▶ The derivative of the exponential map, for $a, b \in \mathbb{R}^3$, is:

$$rac{d}{da}\exp(\hat{a})b=\exp(\hat{a})rac{d}{da}\hat{a}b=\exp(\hat{a})rac{d}{da}\left(-\hat{b}a
ight)=-\exp(\hat{a})\hat{b}$$

The odometry motion model is:

$$\mathsf{a}(\mathsf{x}_t, \mathsf{u}_t, \mathsf{w}_t) := \begin{bmatrix} e^{\hat{r}_t} & s_t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{\hat{\xi}_t} & \eta_t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathsf{R}_t & \mathsf{p}_t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{\hat{r}_t} & s_t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathsf{D} & d \\ 0 & 1 \end{bmatrix}$$

The derivatives with respect to s_t and r_t are:

$$\begin{aligned} \frac{da}{ds_t} &:= \begin{bmatrix} \frac{d}{ds_t} e^{\hat{r}_t} D & \frac{d}{ds_t} \left(e^{\hat{r}_t} d + s_t \right) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{3 \times 9} & I_{3 \times 3} \end{bmatrix} \\ \frac{da}{dr_t} &:= -e^{\hat{r}_t} \begin{bmatrix} \hat{d}_1 & \hat{d}_2 & \hat{d}_3 & \hat{d} \end{bmatrix}_{3 \times 12}, \quad \text{where } D =: \begin{bmatrix} d_1 & d_2 & d_3 \end{bmatrix} \end{aligned}$$

Observation Models

- ► Goal: model the measurement likelihood p_h(z | x, m) for a given sensor pose x and environment representation m
- Position model: direct position measurements, e.g., GPS, RGBD camera, laser scanner
- Bearing model: angular measurements to points in 3-D, e.g., compass, RGB camera
- Range model: distance measurements to points in 3-D, e.g., radio received signal strength (RSS) or time-of-flight
- ► Inertial measurement unit: magnetometer, gyroscope, accelerometer

Cameras

Global shutter

3D DEPTH SENSORS

RGB CAMERA

Stereo (+ IMU)

Event-based

Single-beam Garmin Lidar

2-D Hokuyo Lidar

3-D Velodyne Lidar

Observation Models

▶ **Position sensor**: state $x = (p, \theta)$, position $p \in \mathbb{R}^2$, orientation $\theta \in (-\pi, \pi]$, observed point $y \in \mathbb{R}^2$, measurement $z \in \mathbb{R}^2$:

$$z = h(x, y) = R(\theta)^T (y - p)$$

► Range sensor: state x = p, position p ∈ ℝⁿ, observed point y ∈ ℝⁿ, distance z ∈ ℝ:

$$z=h(x,y)=\|p-y\|_2$$

• **Bearing sensor**: state $x = (p, \theta)$, position $p \in \mathbb{R}^2$, orientation $\theta \in (-\pi, \pi]$, observed point $y \in \mathbb{R}^2$, bearing $z \in (-\pi, \pi]$:

$$z = h(x, y) = \arctan\left(rac{y_2 - p_2}{y_1 - p_1}
ight) - heta$$

▶ **Camera sensor**: position $p \in \mathbb{R}^3$, orientation $R \in SO(3)$, intrinsic camera matrix $K \in \mathbb{R}^{2 \times 3}$, observed point $y \in \mathbb{R}^3$, pixel $z \in \mathbb{N}^2$: State: x = (p, R)Projection: $\pi(p) := \frac{1}{p_3}p$ Observation Model: $z = h(x, y) = K\pi(R^T(y - p))$

Observation Model Linearization

• Position sensor: $z = h(x, y) = R(\theta)^T (y - p)$ for $x = (p, \theta)$

$$R(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad \frac{dR}{d\theta}(\theta) = \begin{bmatrix} -\sin\theta & -\cos\theta \\ \cos\theta & -\sin\theta \end{bmatrix} = JR(\theta) \quad J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\frac{dh}{dx}(x,y) = \begin{bmatrix} -R^{T}(\theta) & R^{T}(\theta)J^{T}(y-p) \end{bmatrix} \qquad \frac{dh}{dy}(x,y) = R^{T}(\theta)$$

• Range sensor: $z = h(x, y) = ||p - y||_2$ for x = p

$$\frac{dh}{dx}(x,y) = -\frac{(y-x)^T}{\|y-x\|_2} \qquad \qquad \frac{dh}{dy}(x,y) = \frac{(y-x)^T}{\|y-x\|_2}$$

• Bearing sensor: $z = h(x, y) = \arctan\left(\frac{y_2 - p_2}{y_1 - p_1}\right) - \theta$ for $x = (p, \theta)$

$$\frac{dh}{dx}(x,y) = \begin{bmatrix} \frac{(y-p)^T J}{\|y-p\|_2} & -1 \end{bmatrix} \qquad \frac{dh}{dy}(x,y) = \frac{(y-p)^T J}{\|y-p\|_2} \quad J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Observation Model Linearization

• Camera sensor:
$$z = h(x, y) = K\pi(R^T(y - p))$$
 for $x = (p, R = e^{\hat{a}})$

$$\pi(x) = \frac{1}{x_3} x = \begin{pmatrix} x_1/x_3 \\ x_2/x_3 \\ 1 \end{pmatrix} \qquad \frac{d\pi}{dx}(x) = \frac{1}{x_3^2} \begin{bmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\frac{dh}{dp}(x, y) = -K \frac{d\pi}{dx} \left(R^T(y-p) \right) R^T$$
$$\frac{dh}{da}(x, y) = K \frac{d\pi}{dx} \left(R^T(y-p) \right) R^T(\widehat{y-p}) \qquad \text{for } R = e^{\hat{a}}$$
$$\frac{dh}{dy}(x, y) = K \frac{d\pi}{dx} \left(R^T(y-p) \right) R^T$$

Laser Scanner

- Lidar: Light Detection And Ranging
- illuminates a target with pulsed laser light and measures the reflected pulses (return times and wavelengths)
- Example: Hokuyo URG-04LX; detectable range: 0.02 to 4m; 240° field of view with 0.36° angular resolution (666 beams); 100 ms/scan

Laser Beam Model

- Let z_t^k be the k-th laser beam obtained from sensor pose x_t in map m
- Let z_t^{k*} be the expected range measurement from x_t in m and let z_{max} be the max laser range
- The laser sensor model assumes that the beams are independent:

$$p_h(z_t \mid x_t, m) = \prod_k p(z_t^k \mid x_t, m)$$

 $z_{\rm max}$

 z_{*}^{k*}

Four types of measurement noise:

- 1. Small measurement noise: phit, Gaussian
- 2. Unexpected object: p_{short}, Exponential
- 3. Unexplained noise: prand, Uniform
- 4. No objects hit: p_{max} , Uniform

(b) Exponential distribution p_{short}

Laser Beam Model

- Independent beam assumption: $p_h(z_t \mid x_t, m) = \prod_k p(z_t^k \mid x_t, m)$
- ► Four types of noise:

$$p(z_t^k \mid x_t, m) = \alpha_1 p_{hit}(z_t^k \mid x_t, m) + \alpha_2 p_{short}(z_t^k \mid x_t, m) + \alpha_3 p_{rand}(z_t^k \mid x_t, m) + \alpha_4 p_{max}(z_t^k \mid x_t, m)$$

$$p_{hit}(z_{t}^{k} \mid x, m) = \begin{cases} \frac{\phi(z_{t}^{k}; z_{t}^{k*}, \sigma^{2})}{\int_{0}^{2max} \phi(s; z_{t}^{k*}, \sigma^{2}) ds} & \text{if } 0 \le z_{t}^{k} \le z_{max} \\ 0 & \text{else} \end{cases}$$

$$p_{short}(z_{t}^{k} \mid x, m) = \begin{cases} \frac{\lambda_{s}e^{-\lambda_{s}z_{t}^{k*}}}{1-e^{-\lambda_{s}z_{t}^{k*}}} & \text{if } 0 \le z_{t}^{k} \le z_{t}^{k*} \\ 0 & \text{else} \end{cases}$$

$$p_{rand}(z_{t}^{k} \mid x, m) = \begin{cases} \frac{1}{z_{max}} & \text{if } 0 \le z_{t}^{k} < z_{max} \\ 0 & \text{else} \end{cases}$$

$$p_{max}(z_{t}^{k} \mid x, m) = \delta(z_{t}^{k}; z_{max}) := \begin{cases} 1 & \text{if } z_{t}^{k} = z_{max} \\ 0 & \text{else} \end{cases}$$