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Image Formation

» Image formation model: must trade-off physical constraints and
mathematical simplicity

» The values of an image depend on the shape and reflectance of the
scene as well as the distribution of light

> Image intensity/brightness/irradiance /(u, v) describes the energy
falling onto a small patch of the imaging sensor (integrated both over
the shutter interval and over a region of space) and is measured in
power per unit area (W /m?)

» A camera uses a set of lenses to control the direction of light
propagation by means of diffraction, refraction, and reflection

» Thin lens model: a simple geometric model of image formation that
considers only refraction

» Pinhole model: a thin lens model in which the lens aperture is
decreased to zero and all rays are forced to go through the optical center

and remain undeflected (diffraction becomes dominant). 5



Pinhole Camera Model

» Focal plane: perpendicular to
the optical axis with a circular
aperture at the optical center
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» Image plane: parallel to the focal plane and a distance f (focal
length) in meters from the optical center

» The pinhole camera model is described in an optical frame centered at
the optical center with the optical axis as the z-axis:
» optical frame: x = right, y = down, z = forward
» world frame: x = forward, y = left, z = up

> Ideal perspective projection: relates the coordinates (X, Y, Z) of
point A to its image coordinates (x, y) using similar triangles:
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Pinhole Camera Model

» Image flip: the object appears upside down on the image plane. To
eliminate this effect, we can simply flip the image (x,y) — (—x, —y),
which corresponds to placing the image plane {z = —f} in front of the
optical center instead of behind {z = f}.

» Field of view: the angle subtended by the spatial extend of the image
plane as seen from the optical center. If m is the side of the image plane

in meters, then the field of view is | @ = 2 arctan <2—n;) .

» For a flat image plane: 6 < 180°.
» For a spherical or ellipsoidal imaging surface, common in omnidirectional
cameras, 6 can exceed 180°.

» Ray tracing: under assumptions of the pinhole model and Lambertian
surfaces, image formation can be reduced to tracing rays from points on
objects to pixels. A mathematical model associating 3-D points in the
world frame to 2-D points in the image frame must account for:

1. Extrinsics: world-to-camera frame transformation
2. Projection: 3D-to-2D coordinate projection
3. Intrinsics: scaling and translation of the image coordinate frame 4



Extrinsics

» Let puc € R® and R, € SO(3) be the camera position and orientation
in the world frame

0 -1 0
» Rotation from a regular to an optical frame: Roc := [0 0 -1
1 0 O

» Let (Xw, Yw, Zw) be the coordinates of point A in the world frame. The
coordinates of A in the optical frame are then:

Xo Xw Xw
Yo - Roc 0] |Rew Pecw Yw . ROCRV\-,/—C 7R0CRV-|,/_chC Yw
Z, | |: 0 1:| |: 0 1 :| Zu | |: 0 1 Zw
1 1 1



Projection

» The 3D-to-2D projection in homogeneous coordinates from the optical
frame to the image frame for a frontal pinhole camera model is:
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» The above can be decomposed into:

X -1 0 0| ([—-f O O 1 1000 );O
yl=10 =10 0 —-f 0 A 0100 Z°
1 0 0 1 0 0 1 °/0 010 1°

image flip: Ry focal scaling: Kf canonical projection: Mg

» The focal scaling Kr and image flip R are intrinsic parameters.



Intrinsics

» In practice, images are obtained in terms of pixels (u, v) with the origin
of the pixel array typically in the upper-left corner of the image.

» The relationship between the image frame and the pixel array is
specified via the following parameters:

> (s,,s,) [pixels/meter|: define the scaling from meters to pixels and the
aspect ration 0 = s,/s,

> (cy,c,) [pixels]: coordinates of the principal point used to translate the
image frame origin, e.g., (cu, ¢,) = (320.5,240.5) for a 640 x 480 image

> sy [pixels/meter]: skew factor that scales non-rectangular pixels and is
proportional to cot(a) where « is the angle between the coordinate axes
of the pixel array.

» Normalized coordinates in the image frame are converted to pixel
coordinates in the pixel array using the intrinsic parameter matrix:

Sy S ¢ [-1 0O O] ({—Ff O O fs, fsp cy
0 s, oo/ |0 -1 0/|0 —f ol=1|0 £, c| €¢RrR¥>3
0 0 1 0 0 1|0 o0 1 0 0 1

pixel scaling: Ks image flip: Ry focal scaling: Kr calibration matrix: K
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Pinhole Camera Model

» Extrinsics: /
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» Projection and Intrinsics:

u fs, fsg cy 1 1000 );o

vi=10 f, ¢ = 0100 Zo

1 0 0 1 10 0 1 0 10
pixels calibration: K canonical projection: Mg



Projection Functions

» Canonical projection function: for a vector x € R3, define
m(x) = 713"- The pixel coordinates z € R? of a point m € R3 in the
world frame observed by a camera at position p € R3 and orientation

R € SO(3) with intrinsic parameters K € R3*3 are:
z = K1(RoeRT (m — p))

» Spherical perspective projection: if the imaging surface is a sphere
S?:= {x € R®| ||x|| = 1} (motivated by retina shapes in biological
systems), we can define a spherical projection 7s(x) = m Similar to

the planar perspective projection, the relationship between pixel

coordinates z of a point and their 3-D metric counterpart m is:
z = Ks(RocRT(m — p))

» Catadioptric model: uses an ellipsoidal imaging surface



Radial distortion

» Wide field of view camera: in addition to linear distortions described
by the intrinsic parameters K, one can observe distortion along radial
directions.

» The simplest effective model for radial distortion:
X = Xd(]. + 31r2 + 32r4)
y =yq(l+ ar’+ apr*)

where (x4, y4) are the pixel coordinates of distorted points and
r’ = Xf, + yg and ajp, ap are additional parameters modeling the amount

of distortion.
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Epipolar Geometry
» Let m € R3 (world frame) be observed by two calibrated cameras
» Without loss of generality assume that the first camera frame coincides
with the world frame. Let the position and orientation of the second
camera be p € R3 and R € SO(3)
» The images of m in normalized image coordinates are:
A1yr = m, A1 = unknown scale
Aoyr = RT(m - p), Ao = unknown scale
» We obtain the following relationship between the image points:
Ay1 = Ry, +p

» To eliminate the unknown depths \;:
» pre-multiply by p
» note that py; is perpendicular to y;
T A T A T A
A1yr Pyr = Aayy PRy2 +y1 bp
—— N~
0 0
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Essential Matrix
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Thus, )\zleﬁRyz = 0 and since Ay > 0, we arrive at the following result

Epipolar constraint: Consider observations y; = Kl_lzl, Yo = K2_122 in
normalized image coordinates of the same point m from two calibrated
cameras with relative pose (R, p) of camera 2 in the frame of camera 1.
Then:

0=y PRy> =y Ey>
where E := pR € R3*3 is the essential matrix.

Essential matrix characterization: a non-zero E € R3*3 is an
essential matrix iff its singular value decomposition is
E = Udiag(o,0,0)VT for some o >0 and U, V € SO(3)

Pose recovery from the Essential matrix: There are exactly two
relative poses corresponding to a non-zero essential matrix E:

(B, R) = (URZ (g) diag(c,0,0)UT, URT (g) vT)
(B, R) = (URZ (—g) diag(o,0,0)UT, URT (—g) VT) .



Fundamental Matrix
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The epipolar constraint holds even for two uncalibrated cameras

Consider images z; = K1y; and zo = Kay» of the same point m € R3
from two uncalibrated cameras with intrinsic parameter matrices K1 and
K> and relative pose (R, p) of camera 2 in the frame of camera 1:

0=y BRy2 = yi Eya =2/ K{ TEK; ‘22 = 2] Fz
The matrix F := K; " pRK, ! is called the fundamental matrix

If a point m is observed in one camera z;, and the fundamental matrix
F between the two camera frames is known, the epipolar constraint
desribes an epipolar line, along which the observation z, of m must lie

The epipolar line is used to limit the search for matching points

This is possible because the camera model is an affine transformation,
i.e., a straight line in Euclidean space, projects to a straight line in
image space

13



Epipolar Line

» If a point m € R3 is observed as z; in one image and the fundamental
matrix F is know, this can be used to define a line in the second image
along which the observation z; must lie

epipolar line

(Z1TF)ZZ =0

{1}
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Stereo Camera Model
» Stereo Camera: two perspective cameras rigidly connected to one
another with a known transformation

» Unlike a single camera, a stereo camera can determine the depth of a
point from a single stereo observation

» Stereo Baseline: the transformation between the two stereo cameras is
only a displacement along the x-axis (optical frame) of size b

» The pixel coordinates z;, zr € R? of a point m € R3 in the world frame
observed by a stereo camera at position p € R3 and orientation
R € SO(3) with intrinsic parameters K € R3*3 are:

2= Kr (ROCRT(m - p)) 2R = K (ROCRT(m —p)— be1>

15



Stereo Camera Model

stereo baseline

16



Stereo Camera Model

» Stacking the two observations together gives the stereo camera model:

up fs, 0 ¢, 0 X N
vi| |0 fs, ¢ 0 E y _ T
ur| |fsu 0 ¢y —fsub| z |z )z/ = RocR™(m = p)
VR 0 fs, ¢ 0 1

M

» Because of the stereo steup, the last two rows of M are identical. The
vertical coordinates of the two pixel observations are always the same
because the epipolar lines in the stereo configuation are horizontal.

» The vg equation is dropped, while the ug equation is replaced with a

1
disparity measurement |d = u; — ug = —fs, b| leading to:
z
uy fs, 0 ¢, O 1 x [x
vi|l=10 f, ¢ O 7)2/ y :ROCRT(m—p)
d 0 0 0 fs,b|? z
1 - 17



