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Representation of Orientation

» Rotation Matrix: an element of the Special Orthogonal Group:

ReSOB3):=<{ReR¥>3| RTR=1I ,det(R)=1

distances preserved 1, reflection

» Unit Quaternion: ¢ = [gs, q,] € {q cH|q?+qlq, = 1}:
R = E(q)G(q)T E(q) = [_qva qs! +6|v] G(q) = [_qva gsl — av]
» Euler Angles: roll ¢, pitch 6, roll 1 specifying a rzyx rotation:

R = R:(4)Ry(0)Rx(9)

» Rotation Vector: 8 ¢ R3 specifying a rotation about an axis
through an angle ||0]:

S

R =-exp(8)=1+6+



Representation of Pose
» The pose of a rigid body is described by the Special Euclidean Group:

SE(3) := {T - [g’ ‘1’] ‘ R e SO(3),p e Rs} ——

» The pose T of a rigid body in the world frame specifies a transformation
from the body frame to the world frame

» A point with body frame coordinates sg, has world frame coordiantes:

_SW o R Pl [SB

1] [0 1]]|1

» A point with world frame coordinates sy, has body frame coordiantes:

SB_ o RT —RTp Sw

1] [0 1 1

» The relative transformation from inertial frame {2} with world-frame

pose T, to an inertial frame {1} with world-frame pose Tj is:

1HL=T'T




Rotation Kinematics
» Suppose that a point sp is rotated about an
axis 1) := g4y through an angle 0 := l|lw]

» The rotation can be achieved by imagining
that s(t) rotates at a constant rate of 1
rad/s from time t =0 to t = 6:

s(t) =n x s(t) =10s(t), s(0)=so
= s(0) = sy = Ry.650

» If |w|| =1 and R(to) =/, then R(t) = exp(&t) is simply a rotation
around the axis w € R3 by an angle of t radians.

A

» t can be absorbed into w so that R = exp(@) for @ with arbitrary norm.

» The matrix exponential defines a map from the space s0(3) of
skew symmetric matrices to the space SO(3) of rotation matrices.
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Rotation Kinematics
» The trajectory R(t) of a continuous rotation motion should satisfy:
R()RT(t)=1 = R(t)RT(t)+ R(t)RT(t)=0.

» The matrix R(t)R7 (t) is skew-symmetric and there must exist some
vector-valued function w(t) € R3 such that:

R(ORT(t)=a&(t) = |R(t) = &()R(1)

» A skew-symmetric matrix gives a first order approximation to a rotation
matrix: R(t+ dt) =~ R(t) + &(t)R(t)dt.

» Locally, elements of SO(3) depend only on three parameters € R3

> The space of skew-symmetric matrices s0(3) 1= {8 € R3*3 | @ € R3} is
the tangent space at the identity of the rotation group SO(3).



Special Orthogonal and Euclidean Groups

>

>

SO(3) and SE(3) are matrix Lie groups

A group is a set of elements with an operation that combines any two
elements to form a third one also in the set. A group satisfies four
axioms: closure, associativity, identity, and invertibility

A Lie group is a group that is also a differentiable manifold with the
property that the group operations are smooth

A matrix Lie group further specifies that the group elements are
matrices, the combination operation is matrix multiplication, and the
inversion operation is matrix inversion

The exponential map relates a matrix Lie group to its Lie algebra

n > (_1)’171 n
exp(A) = Z —A Iog(A):Zf(A—I)

n=1



Lie Algebra

» A Lie algebra is associated with every matrix Lie group.

» A Lie algebra is a vector space V over some field F with a binary
operation, [+, -], called a Lie bracket

» The vector space of a Lie algebra is the tangent space of the
associated Lie group at the identity element of the group

» Forall X,Y,Z €V and a, b € F, the Lie bracket satisfies:

closure : X,Y]eV
bilinearity : [aX + bY, Z] = a[X, Z] + b|Y, Z]
[Z,aX + bY] = a[Z, X] + b[Z, Y]
alternating : [X,X]=0
Jacobi identity :  [X,[Y, Z]] +[Y,[Z, X]| + [Z.[X, Y]] = 0



Special Orthogonal Lie Algebra so(3)

» The Lie algebra of SO(3) is the space of skew-symmetric matrices
50(3) == {6 e R>3 | 9 e R}
» The Lie bracket of s0(3) is:
A A A N A
[017 92] = 9192 — 9291 = (9102) S 50(3)
> Generators of so(3): derivatives of rotations around each standard axis:
d 00 O 0 01 0 -1 0
GX:dRX(¢>)‘: 00 -1 G,=|0 00 G=|1 00
¢ le=o o 1 0 100 0 0 0

> The elements O = a1 G, + o Gy + a3G; € s0(3) are linear combinations
of generators and can be mapped to SO(3) via the exponential map:
A 1.2 143

R:exp(é):/—i—e—i-j@ —|—§9 +... 0 = log(R)"



Exponential Map from s0(3) to SO(3)

» The exponential map is surjective but not injective, i.e., every element
of SO(3) can be generated from multiple elements of s0(3)

» Rodrigues Formula: the surjective property of the exponential map can
be understood by obtaining a closed-from expression:

A 1 an > 1 2+ > 22
R:exp(O):I—i-ZEO :/+Z(2n+1 Y 2n+2

n:O

(1)) EVLIGAY
:/+<Z(zn+1).>"+(n§_3<zn+z)!>"

n=0

sin |0||> A (1 — cos||0|> 2
=1+ < 0+ ——75— 10
161l 1611

» Any vector 0 + 27k for integer k leads to the same R € SO(3)

» The exponential map is also not commutative:
01632 + 692691 £ eéﬁ-éz

unless #10, = 0,01, i.e., the Lie bracket on 50(3), [91, @2] =0.



Logarithm Map from SO(3) to so0(3)

» For any R € SO(3), there exists a (not unique) 8 € R3 such that
R = exp(0).

> The logarithm map log : SO(3) — s0(3) is the inverse of exp(8):
» If R=1, then 8§ =0 and

tr(R) — 1

6 = ||8]| = arccos <r()> n is undefined

0 R32 — Ro3 > |If tr(R) =—1,thenf =7
n=— — R31 and for any i € {1,2,3}:

o] 2 0))

CREET) e 1
b = log(R) = —12|_(r_ g7 RCven eTRe-)(IJrR)ei

-8 2sin 6] P

» The log map has a singularity at § = 0 because there is an infinite choice
of rotation axes or equivalently the exponential map is many-to-one.

> The matrix exponential “integrates” 6 € se(3) for one second; the
matrix logarithm “differentiates” R € SO(3) to obtain 6 € se(3)
10



Pose Kinematics

>

| 2

| 2

>

Angular velocity: R(t)RT(t)=1 = R(t)R7(t) = &(t) € s0(3)
Twist: Similarly for T(t) € SE(3) consider:

. - T : _F T ~

71 - [RORTE) 50 = RORT®O] _[2(6) V(0] _ 3
0 0 0 0

where &(t) := R(t)R7(t) and v(t) := p(t) — &(t)p(t) are the world

angular and linear velocities of the point in the body that corresponds

with the origin of the world frame.

w(t) is also equal to the angular velocity of the body frame
measured in the world frame

The linear velocity of a fixed body point sg, measured in the world
frame is:
sw(t) = R(t)sg + p(t)
sw(t) = @(t)R(t)ss + p(t) = o(t)sw(t) + v(t)
11



Special Euclidean Lie Algebra se(3)

» The Lie algebra of SE(3) is the space of twist matrices:

(e[} - ] e

» The Lie bracket of se(3) is:
N ~
[51@2] = &6 — & = (glé“z) € se(3) § = [0 ﬁ)} € RO*O

> The elements T € SE(3) are related to the elements £ € se(3) through
the exponential map:

> 1
= exp(é Z j ¢ =log(T)"

n=0
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Exponential Map from se(3) to SE(3)

» The exponential map is surjective but not injective, i.e., every element
of SE(3) can be generated from multiple elements of se¢(3)

» Rodrigues Formula: obtained using §A4 + |]9H2é2 =0:

—exp(d) = |75 A0

by (LmcosllOl o (161l —sinllBl]Y s
=1+E&+ ( EE &+ CE &

» The matrix J;(0) is the left Jacobian of SO(3)
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Logarithm Map from SE(3) to se(3)

> Logarithm map log : SE(3) — se(3): for any T € SE(3), there exists a
(not unique) ¢ € R® such that:

_[p] _ v, Jo=log(R).p=J"(0)p, ifR+I
5_[0]_|°g(T) '_{ezo,p:p, if R=1.

14



SO(3) Jacobians
> Left Jacobian of SO(3

1~ cos |6 16]] - sin 0]\ 42
=1 - 186
+< T LA S TE
N 1, 1+cos||0|]>
(0 =1-20+ ( 0
(©) 2262 ~ 216]sin 0]
cos||0|]
/ 1-—
*( —er )¢ -0

-1 16> A2
=1 1-2————
(h@@7) =1+ 1~ coslja]] ) ¢

J1(8)J.(8)"

» Right Jacobian of SO(3):
Ji(0) = RJR(0) = Jr(—0)

1 cos||6]]) 5 (1161l —sinll6]] 52
JM®:1—<9+ =) 6
[6]2 6]

_ 1,4 1 1+cos|@] \ 4
Jr(O)T=14+26 -
R(O) " =15 *(\\onz 2@l sin 0]
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Baker-Campbell-Hausdorff Formulas

» Rotations:

J1(602)7101 + 65 if 01 is small

log(exp(071) exp(§,))" ~
g(exp(61) exp(62)) {01+JR(91)_102 if @2 is small

exp ((0 +60)") ~ exp(8) exp ((Jr(6)56)")

~ exp ((J(0)56)") exp(8)

» Poses:

Ji(€) 726 + & if £ is small
&1+ Jr(&1)7  if & is small

exp (& + 6" )~exp(é) (( R(£)36)")
xp ((T1(€)36)") exp(€)

log(exp(&1) exp(£2))" = {

16



SE(3) Jacobians
» Left Jacobian of SE(3): 7.(¢) = {JL(O) QL(f)}

» Right Jacobian of SE(3): Jr(§) = [JR(B) QR(f)]

A 16]] —sin 6] s AA L Aad
p+< e <0p+ 0+9p9)

2(01*

26]| — 3sin 6] + [|6]| cos |6
" ( 26]F (

> Qr(&) = Qu(=§) = RQL(E) + (JL(8)p)"RIL(6)

p
6> + 2cos |6 — 2 0% — 3000
+<H [ +2cos 6] )(0p+f)02—39be)
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Distances in SO(3)

» There are two ways to define the difference between two rotations:
o\ \V
01> = log (Rl Rg) 0,1 = log (R2R1 ) R1, R» € SO(3)

» Inner product on s0(3):

PO 1 A AT
(81,02) = S tr (9192 ) — 070,

» The metric distance between two rotations is the magnitude of the
rotation difference:

\/('Og (R{ R2) ,log (R{ R2)) = |61z \/<|°€ (R2R{") ,log (R2RY")) = [|021]]

18



Integration in SO(3)

>

~

The distance between a rotation R = exp(6) and a small perturbation
exp((8 + 60)") can be approximated using the BCH formulas:

log <exp(@)T exp((0 + 50)A))V ~ log (RTR exp ((JR(0)50)A)>V = Jr(6)50
l0g (exp((6+ 6)) exp(8)T) " = log (exp (Ju(6)6)") RTR) " = Ju(6)56

Regardless of which distance metric we use, the infinitesimal volume
element is the same:

det(Jy(0)) = det(Jr(6))  dR = |det(J(9))|dO =2 (W) 40

Integrating functions of rotations can then be carried out as follows:
/ f(R)dR :/ f(0)|det(J(0))|d6
50(3) 0] <m
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Integration in SE(3)

A,

» The distance between a pose T = exp(&) and a small perturbation
exp((€ + 6€)™) can be approximated using the BCH formulas:

log (xp(8) ™ exp((€ +6€)")) " ~ Tr(€)o
log (exp((& + 56)" ) exp(d) 1) " = Ju(€)o

> |det(J(€))| = | det(J(0))|> = 4 (1?;] yen)2

» Integrating functions of poses can then be carried out as follows:

/ F(T)dT = / ()| det (T (&)l de
SE(3) |6f|<m

20



Derivatives in SO(3)
» Using the BCH formula with the right Jacobian of SO(3):

exp ((8 +00)") s ~ exp() exp ( (0)06)") s
~ exp(0) (I + (Jr(0)30)") s
= exp(B)s — exp(9)§JR(9)59
= Rs — R5Jr(0)56

» The derivative of a rotated point Rs with respect to the Lie algebra
vector O representing the rotation is:

d(Rs)
do

= —R$Jr(0) = —R5R7 J,(0) = — (Rs)" J.(6)

» Chain rule for a function u(x) of x = Rs:

OJu(x)  Ou(x)0x  OJu(x)

00 ~ Ox 00  0Ox

R5Jg(6)

21



Gradient Descent in SO(3)

» An even simpler way to think about optimization over rotation matrices
is to skip the derivatives altogether and think in terms of small
perturbations v := Jz(0)56 applied to an initial guess R(k):

u(RUs) = u(R™M exp()s) ~ u (RU(1 +0)s)

~ u(RWs) —%(R(k)s)R(k)s?zp — u(RWs) 45T

6T

» Gradient descent: ¢) = —aD¢ for a small step size @ > 0 and any
positive-definite matrix D = 0 leads to:

5 = 9 (i )t

R+ — R(K) exp (—aDS<k)>

22



Gauss-Newton Optimization in SO(3)

» Optimization problem:

le'nJ =3 Z Um Rvm)
> Linearize J(R) using S5 = um(R®v,) and 68%) = —dim(R(, YR g,

JR) = 5 (6T + )

m

» The cost is quadratic in 1 and setting its gradient to zero leads to:

(Z o) (o) T) O

» Apply the optimal perturbation (k) to the initial guess R(K) according
to our perturbation scheme:

R+ = R exp(4h(K)) € SO(3)
23



Rotation Kinematics

» Let R € SO(3) be the orientation of a rigid body rotating with angular
velocity w € R3 with respect to the world frame. Then, the kinematic
equations of motion of R are:

R = R&g = OwR

where wg and wy = Rwg are the body-frame and world-frame
coordinates of w, respectively.

» The relationship between the body-frame and world-frame coordinates is:
N
ww = RwB = RwBR

» Interestingly, wg does not depend on the choice of world frame and wy
does not depend on the choice of body frame

24



Rotation Kinematics

» The kinematics in the Lie algebra lead to the pleasing result:

ww = Ji(0)0  ws = Jr(0)6

> Note that J; !(8) does not exist at ||@]| = 2rm due to singularities of
the 3 x 1 representation of rotation but we do not have to worry about
constraints and can use numerical integration

» Assuming w is constant over a short period 7. Then:

R(t + 7) = exp(tow)R(t) = R(t) exp(T@®p)

25



Pose Kinematics

» Consider a moving body frame B with pose T(t) € SE(3). The velocity
of a point sg € R3 in the body frame with respect to the world frame
W can be determined as follows:

sw(t) = T(t)ss
sw(t) = T(t)sg = T(£) T(t) Fsw(t) = C(t)sw(t) = &(t)sw(t) + v(t)

» ((t) is the velocity of the body frame moving relative to the world
frame, as viewed in the world frame.

» The world frame and body frame twists are related via: (AW = TfB T1

26



Pose Kinematics

> A transformation matrix y Tg € SE(3) can be related to the
corresponding Lie algebra element £ € se(3):

T=[or £ <o) = [0 A0

» Pose kinematics for velocity v € R3 and rotational velocity w € R3:
p=dbwp+vw
R=OwR

» The pose kinematics can be written in combined form for a twist (:

. 2 2 1%
T=C(wT=T(g ¢ = . c RO

» Hybrid kinematics keeping the rotation in the Lie algebra:

AN

27



Pose Integration

» The kinematics in the Lie algebra are:

Cw=Ju&¢  CB=JTr()E

> We can integrate the se(3) kinematics without worrying about
constraints.

» Assume ( is constant over a short period 7. Then:

~

T(t 4 7) = exp(7Cw) T(t) = T(t) exp(7CB)

> To construct the relative transformation AT := exp(Cw):
—_|Pl = |V

Let £ = {0] =71y

Let R = exp(&) computed via Rodrigues formula

Let p= Ji(O)p

Update: T(t+7)= {’g ’f] T(t)

vV vvy vy

28



Lie Group Probability and Statistics

>

>

Lie Group: needed to transform points in the real world; free of
singularities but have constraints

Lie Algebra: can be treated as a vector space; free of constraints but
have singularities

The elements of matrix Lie groups do not satisfy some basic operations
that we normally take for granted

We need a different way to define random variables because matrix Lie
groups are not closed under the usual addition operation:

x=p+e e~N(0X)

Idea: define random variables over the Lie algebra, exploiting its vector
space characteristics:

50(3) s0(3)
left =exp(él)R 0=~ p+ J (e
right R = Rexp(ér) 0= pu+ Jz'(n)er
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Lie Group Probability and Statistics

» SO(3) Random Variable: R = exp(¢)R, where R is a ‘large’ noise-free
nominal rotation and € € R3 is a ‘small’ noisy component

» Note that € = log (RR’T)v

» Assuming € ~ N(0,X) with most mass on ||e|]| < 7 and using that
dR = |det(J.(€))|de, we can obtain the pdf of R using the Change of
Density formula:

R) = 1 ! (1og (RRT)") £ 1og (RRT)” 1
p“vm“p(‘z(%( )) s ))ldwm

» The choice of R and ¥ as the mean and variance of R are justified
because:

/Iog <RR’T)V p(R)dR = 0

/Iog (RRT)V <Iog (RR’T>V) p(R)dR = E[ecT] = ¥
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Rotation of a Rotation Random Variable

> Let @ € SO(3) and @ € R3. Then:
Qexp(9)QT = exp (QBQT) = exp ((Q6)")

> Let R be a random rotation with mean R and covariance ¥. Then, the
random variable Y = QR satisfies:

Y =QR = Qexp(€)R’ = exp ((Qe)/\) QR
E[Y] = QR
Var[Y] = Var[Qe = Q= Q”
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