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Representation of Orientation
I Rotation Matrix: an element of the Special Orthogonal Group:

R ∈ SO(3) :=

R ∈ R3×3

∣∣∣∣ RTR = I︸ ︷︷ ︸
distances preserved

, det(R) = 1︸ ︷︷ ︸
no reflection


I Unit Quaternion: q = [qs , qv ] ∈

{
q ∈ H | q2

s + qT
v qv = 1

}
:

R = E (q)G (q)T E (q) = [−qv , qs I + q̂v ] G (q) = [−qv , qs I − q̂v ]

I Euler Angles: roll φ, pitch θ, roll ψ specifying a rzyx rotation:

R = Rz(ψ)Ry (θ)Rx(φ)

I Rotation Vector: θ ∈ R3 specifying a rotation about an axis θ
‖θ‖

through an angle ‖θ‖:

R = exp(θ̂) = I + θ̂ +
1

2!
θ̂

2
+

1

3!
θ̂

3
+ . . .
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Representation of Pose
I The pose of a rigid body is described by the Special Euclidean Group:

SE (3) :=

{
T :=

[
R p
0 1

] ∣∣∣∣ R ∈ SO(3), p ∈ R3

}
⊂ R4×4

I The pose T of a rigid body in the world frame specifies a transformation
from the body frame to the world frame

I A point with body frame coordinates sB , has world frame coordiantes:[
sW
1

]
=

[
R p
0 1

] [
sB
1

]
I A point with world frame coordinates sW , has body frame coordiantes:[

sB
1

]
=

[
RT −RTp
0 1

] [
sW
1

]
I The relative transformation from inertial frame {2} with world-frame

pose T2 to an inertial frame {1} with world-frame pose T1 is:

1T2 = T−1
1 T2
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Rotation Kinematics
I Suppose that a point s0 is rotated about an

axis η := ω
‖ω‖ through an angle θ := ‖ω‖

I The rotation can be achieved by imagining
that s(t) rotates at a constant rate of 1
rad/s from time t = 0 to t = θ:

ṡ(t) = η × s(t) = η̂s(t), s(0) = s0

⇒ s(θ) = e η̂θs0 = Rη,θs0

I If ‖ω‖ = 1 and R(t0) = I , then R(t) = exp(ω̂t) is simply a rotation
around the axis ω ∈ R3 by an angle of t radians.

I t can be absorbed into ω so that R = exp(θ̂) for θ with arbitrary norm.

I The matrix exponential defines a map from the space so(3) of
skew symmetric matrices to the space SO(3) of rotation matrices.

4



Rotation Kinematics

I The trajectory R(t) of a continuous rotation motion should satisfy:

R(t)RT (t) = I ⇒ Ṙ(t)RT (t) + R(t)ṘT (t) = 0.

I The matrix Ṙ(t)RT (t) is skew-symmetric and there must exist some
vector-valued function ω(t) ∈ R3 such that:

Ṙ(t)RT (t) = ω̂(t) ⇒ Ṙ(t) = ω̂(t)R(t)

I A skew-symmetric matrix gives a first order approximation to a rotation
matrix: R(t + dt) ≈ R(t) + ω̂(t)R(t)dt.

I Locally, elements of SO(3) depend only on three parameters θ ∈ R3

I The space of skew-symmetric matrices so(3) := {θ̂ ∈ R3×3 | θ ∈ R3} is
the tangent space at the identity of the rotation group SO(3).
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Special Orthogonal and Euclidean Groups

I SO(3) and SE (3) are matrix Lie groups

I A group is a set of elements with an operation that combines any two
elements to form a third one also in the set. A group satisfies four
axioms: closure, associativity, identity, and invertibility

I A Lie group is a group that is also a differentiable manifold with the
property that the group operations are smooth

I A matrix Lie group further specifies that the group elements are
matrices, the combination operation is matrix multiplication, and the
inversion operation is matrix inversion

I The exponential map relates a matrix Lie group to its Lie algebra

exp(A) =
∞∑
n=0

1

n!
An log(A) =

∞∑
n=1

(−1)n−1

n
(A− I )n
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Lie Algebra

I A Lie algebra is associated with every matrix Lie group.

I A Lie algebra is a vector space V over some field F with a binary
operation, [·, ·], called a Lie bracket

I The vector space of a Lie algebra is the tangent space of the
associated Lie group at the identity element of the group

I For all X ,Y ,Z ∈ V and a, b ∈ F, the Lie bracket satisfies:

closure : [X ,Y ] ∈ V
bilinearity : [aX + bY ,Z ] = a[X ,Z ] + b[Y ,Z ]

[Z , aX + bY ] = a[Z ,X ] + b[Z ,Y ]

alternating : [X ,X ] = 0

Jacobi identity : [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0
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Special Orthogonal Lie Algebra so(3)

I The Lie algebra of SO(3) is the space of skew-symmetric matrices

so(3) := {θ̂ ∈ R3×3 | θ ∈ R3}

I The Lie bracket of so(3) is:

[θ̂1, θ̂2] = θ̂1θ̂2 − θ̂2θ̂1 =
(
θ̂1θ2

)∧
∈ so(3)

I Generators of so(3): derivatives of rotations around each standard axis:

Gx =
d

dφ
Rx(φ)

∣∣∣∣
φ=0

=

0 0 0
0 0 −1
0 1 0

 Gy =

 0 0 1
0 0 0
−1 0 0

 Gz =

0 −1 0
1 0 0
0 0 0


I The elements θ̂ = α1Gx + α2Gy + α3Gz ∈ so(3) are linear combinations

of generators and can be mapped to SO(3) via the exponential map:

R = exp(θ̂) = I + θ̂ +
1

2!
θ̂

2
+

1

3!
θ̂

3
+ . . . θ = log(R)∨
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Exponential Map from so(3) to SO(3)
I The exponential map is surjective but not injective, i.e., every element

of SO(3) can be generated from multiple elements of so(3)

I Rodrigues Formula: the surjective property of the exponential map can
be understood by obtaining a closed-from expression:

R = exp(θ̂) = I +
∞∑
n=1

1

n!
θ̂
n

= I +
∞∑
n=0

1

(2n + 1)!
θ̂

2n+1
+
∞∑
n=0

1

(2n + 2)!
θ̂

2n+2

= I +

( ∞∑
n=0

(−1)n‖θ‖2n

(2n + 1)!

)
θ̂ +

( ∞∑
n=0

(−1)n‖θ‖2n

(2n + 2)!

)
θ̂

2

= I +

(
sin ‖θ‖
‖θ‖

)
θ̂ +

(
1− cos ‖θ‖
‖θ‖2

)
θ̂

2

I Any vector θ + 2πk for integer k leads to the same R ∈ SO(3)

I The exponential map is also not commutative:

e θ̂1e θ̂2 6= e θ̂2e θ̂1 6= e θ̂1+θ̂2

unless θ̂1θ̂2 = θ̂2θ̂1, i.e., the Lie bracket on so(3), [θ̂1, θ̂2] = 0.
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Logarithm Map from SO(3) to so(3)
I For any R ∈ SO(3), there exists a (not unique) θ ∈ R3 such that

R = exp(θ̂).

I The logarithm map log : SO(3)→ so(3) is the inverse of exp(θ̂):

θ = ‖θ‖ = arccos

(
tr(R)− 1

2

)

η =
θ

‖θ‖
=

1

2 sin(‖θ‖)

R32 − R23

R13 − R31

R21 − R12


θ̂ = log(R) =

‖θ‖
2 sin ‖θ‖

(R − RT )

I If R = I , then θ = 0 and
η is undefined

I If tr(R) = −1, then θ = π
and for any i ∈ {1, 2, 3}:

η =
1√

2(1 + eTi Rei )
(I+R)ei

I The log map has a singularity at θ = 0 because there is an infinite choice
of rotation axes or equivalently the exponential map is many-to-one.

I The matrix exponential “integrates” θ̂ ∈ se(3) for one second; the
matrix logarithm “differentiates” R ∈ SO(3) to obtain θ̂ ∈ se(3)
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Pose Kinematics
I Angular velocity: R(t)RT (t) = I ⇒ Ṙ(t)RT (t) = ω̂(t) ∈ so(3)

I Twist: Similarly for T (t) ∈ SE (3) consider:

Ṫ (t)T−1(t) =

[
Ṙ(t)RT (t) ṗ(t)− Ṙ(t)RT (t)p(t)

0 0

]
=

[
ω̂(t) v(t)

0 0

]
∈ se(3)

where ω̂(t) := Ṙ(t)RT (t) and v(t) := ṗ(t)− ω̂(t)p(t) are the world
angular and linear velocities of the point in the body that corresponds
with the origin of the world frame.

I ω(t) is also equal to the angular velocity of the body frame
measured in the world frame

I The linear velocity of a fixed body point sB , measured in the world
frame is:

sW (t) = R(t)sB + p(t)

ṡW (t) = ω̂(t)R(t)sB + ṗ(t) = ω̂(t)sW (t) + v(t)
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Special Euclidean Lie Algebra se(3)

I The Lie algebra of SE (3) is the space of twist matrices:

se(3) :=

{
ξ̂ :=

[
θ̂ ρ
0 0

] ∣∣∣∣ ξ =

[
ρ
θ

]
∈ R6

}
I The Lie bracket of se(3) is:

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1 =

(
f
ξ1ξ2

)∧
∈ se(3)

f
ξ :=

[
θ̂ ρ̂

0 θ̂

]
∈ R6×6

I The elements T ∈ SE (3) are related to the elements ξ̂ ∈ se(3) through
the exponential map:

T = exp(ξ̂) =
∞∑
n=0

1

n!
(ξ̂)n ξ = log(T )∨
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Exponential Map from se(3) to SE (3)

I The exponential map is surjective but not injective, i.e., every element
of SE (3) can be generated from multiple elements of se(3)

I Rodrigues Formula: obtained using ξ̂4 + ‖θ‖2ξ̂2 = 0:

T = exp(ξ̂) =

[
exp(θ̂) JL(θ)ρ

0T 1

]
= I + ξ̂ +

(
1− cos ‖θ‖
‖θ‖2

)
ξ̂2 +

(
‖θ‖ − sin ‖θ‖
‖θ‖3

)
ξ̂3

I The matrix JL(θ) is the left Jacobian of SO(3)

JL(θ) :=
∞∑
n=0

1

(n + 1)!

(
θ̂
)n

R = I + θ̂JL(θ)
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Logarithm Map from SE (3) to se(3)

I Logarithm map log : SE (3)→ se(3): for any T ∈ SE (3), there exists a
(not unique) ξ ∈ R6 such that:

ξ =

[
ρ
θ

]
= log(T )∨ :=

{
θ = log(R)∨,ρ = J−1

L (θ)p, if R 6= I ,

θ = 0,ρ = p, if R = I .
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SO(3) Jacobians
I Left Jacobian of SO(3):

JL(θ) = I +

(
1− cos ‖θ‖
‖θ‖2

)
θ̂ +

(
‖θ‖ − sin ‖θ‖
‖θ‖3

)
θ̂

2

JL(θ)−1 = I − 1

2
θ̂ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ sin ‖θ‖

)
θ̂

2

JL(θ)JL(θ)T = I +

(
1− 2

1− cos ‖θ‖
‖θ‖2

)
θ̂

2 � 0(
JL(θ)JL(θ)T

)−1
= I +

(
1− 2

‖θ‖2

1− cos ‖θ‖

)
θ̂

2

I Right Jacobian of SO(3):

JL(θ) = RJR(θ) = JR(−θ)

JR(θ) = I −
(

1− cos ‖θ‖
‖θ‖2

)
θ̂ +

(
‖θ‖ − sin ‖θ‖
‖θ‖3

)
θ̂

2

JR(θ)−1 = I +
1

2
θ̂ +

(
1

‖θ‖2
− 1 + cos ‖θ‖

2‖θ‖ sin ‖θ‖

)
θ̂

2
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Baker-Campbell-Hausdorff Formulas

I Rotations:

log(exp(θ̂1) exp(θ̂2))∨ ≈

{
JL(θ2)−1θ1 + θ2 if θ1 is small

θ1 + JR(θ1)−1θ2 if θ2 is small

exp
(
(θ + δθ)∧

)
≈ exp(θ̂) exp

(
(JR(θ)δθ)∧

)
≈ exp

(
(JL(θ)δθ)∧

)
exp(θ̂)

I Poses:

log(exp(ξ̂1) exp(ξ̂2))∨ ≈

{
JL(ξ2)−1ξ1 + ξ2 if ξ1 is small

ξ1 + JR(ξ1)−1ξ2 if ξ2 is small

exp
(
(ξ + δξ)∧

)
≈ exp(ξ̂) exp

(
(JR(ξ)δξ)∧

)
≈ exp

(
(JL(ξ)δξ)∧

)
exp(ξ̂)
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SE (3) Jacobians

I Left Jacobian of SE (3): JL(ξ) =

[
JL(θ) QL(ξ)

0 JL(θ)

]

I Right Jacobian of SE (3): JR(ξ) =

[
JR(θ) QR(ξ)

0 JR(θ)

]

QL(ξ) =
1

2
ρ̂ +

(
‖θ‖ − sin ‖θ‖
‖θ‖3

)(
θ̂ρ̂ + ρ̂θ̂ + θ̂ρ̂θ̂

)
+

(
‖θ‖2 + 2 cos ‖θ‖ − 2

2‖θ‖4

)(
θ̂

2
ρ̂ + ρ̂θ̂

2 − 3θ̂ρ̂θ̂
)

+

(
2‖θ‖ − 3 sin ‖θ‖+ ‖θ‖ cos ‖θ‖

2‖θ‖5

)(
θ̂ρ̂θ̂

2
+ θ̂

2
ρ̂θ̂
)

I QR(ξ) = QL(−ξ) = RQL(ξ) + (JL(θ)ρ)∧RJL(θ)
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Distances in SO(3)

I There are two ways to define the difference between two rotations:

θ12 = log
(
RT

1 R2

)∨
θ21 = log

(
R2R

T
1

)∨
R1,R2 ∈ SO(3)

I Inner product on so(3):

〈θ̂1, θ̂2〉 =
1

2
tr
(
θ̂1θ̂

T
2

)
= θT

1 θ2

I The metric distance between two rotations is the magnitude of the
rotation difference:√
〈log

(
RT

1 R2

)
, log

(
RT

1 R2

)
〉 = ‖θ12‖

√
〈log

(
R2RT

1

)
, log

(
R2RT

1

)
〉 = ‖θ21‖
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Integration in SO(3)

I The distance between a rotation R = exp(θ̂) and a small perturbation
exp((θ + δθ)∧) can be approximated using the BCH formulas:

log
(

exp(θ̂)T exp((θ + δθ)∧)
)∨
≈ log

(
RTR exp

(
(JR(θ)δθ)∧

))∨
= JR(θ)δθ

log
(

exp((θ + δθ)∧) exp(θ̂)T
)∨
≈ log

(
exp

(
(JL(θ)δθ)∧

)
RTR

)∨
= JL(θ)δθ

I Regardless of which distance metric we use, the infinitesimal volume
element is the same:

det(JL(θ)) = det(JR(θ)) dR = |det(J(θ))|dθ = 2

(
1− cos ‖θ‖
‖θ‖2

)
dθ

I Integrating functions of rotations can then be carried out as follows:∫
SO(3)

f (R)dR =

∫
‖θ‖<π

f (θ)|det(J(θ))|dθ
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Integration in SE (3)

I The distance between a pose T = exp(ξ̂) and a small perturbation
exp((ξ + δξ)∧) can be approximated using the BCH formulas:

log
(

exp(ξ̂)−1 exp((ξ + δξ)∧)
)∨
≈ JR(ξ)δξ

log
(

exp((ξ + δξ)∧) exp(ξ̂)−1
)∨
≈ JL(ξ)δξ

I | det(J (ξ))| = | det(J(θ))|2 = 4
(

1−cos ‖θ‖
‖θ‖2

)2

I Integrating functions of poses can then be carried out as follows:∫
SE(3)

f (T )dT =

∫
‖θ‖<π

f (ξ)|det(J (ξ))|dξ
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Derivatives in SO(3)

I Using the BCH formula with the right Jacobian of SO(3):

exp
(
(θ + δθ)∧

)
s ≈ exp(θ̂) exp

(
(JR(θ)δθ)∧

)
s

≈ exp(θ̂)
(
I + (JR(θ)δθ)∧

)
s

= exp(θ̂)s − exp(θ̂)ŝJR(θ)δθ

= Rs − RŝJR(θ)δθ

I The derivative of a rotated point Rs with respect to the Lie algebra
vector θ representing the rotation is:

d(Rs)

dθ
= −RŝJR(θ) = −RŝRT JL(θ) = − (Rs)∧ JL(θ)

I Chain rule for a function u(x) of x = Rs:

∂u(x)

∂θ
=
∂u(x)

∂x

∂x

∂θ
= −∂u(x)

∂x
RŝJR(θ)
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Gradient Descent in SO(3)

I An even simpler way to think about optimization over rotation matrices
is to skip the derivatives altogether and think in terms of small
perturbations ψ := JR(θ)δθ applied to an initial guess R(k):

u(R(k+1)s) = u(R(k) exp(ψ̂)s) ≈ u
(
R(k)(I + ψ̂)s

)
≈ u(R(k)s)−du

dx
(R(k)s)R(k)ŝ︸ ︷︷ ︸

δT

ψ = u(R(k)s) + δTψ

I Gradient descent: ψ = −αDδ for a small step size α > 0 and any
positive-definite matrix D � 0 leads to:

δ(k) = −du

dx
(R(k)s)R(k)ŝ

R(k+1) = R(k) exp
(
−αD δ̂(k)

)
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Gauss-Newton Optimization in SO(3)
I Optimization problem:

min
R

J(R) :=
1

2

∑
m

(um(Rvm))2

I Linearize J(R) using β
(k)
m = um(R(k)vm) and δ

(k)
m = −dum

dx (R(k)vm)R(k)v̂m

J(R) ≈ 1

2

∑
m

(δTmψ + βm)2

I The cost is quadratic in ψ and setting its gradient to zero leads to:(∑
m

δ
(k)
m

(
δ

(k)
m

)T)
ψ(k) = −

∑
m

β
(k)
m δ

(k)
m

I Apply the optimal perturbation ψ(k) to the initial guess R(k) according
to our perturbation scheme:

R(k+1) = R(k) exp(ψ̂(k)) ∈ SO(3)
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Rotation Kinematics

I Let R ∈ SO(3) be the orientation of a rigid body rotating with angular
velocity ω ∈ R3 with respect to the world frame. Then, the kinematic
equations of motion of R are:

Ṙ = Rω̂B = ω̂WR

where ωB and ωW = RωB are the body-frame and world-frame
coordinates of ω, respectively.

I The relationship between the body-frame and world-frame coordinates is:

ω̂W = R̂ωB = Rω̂BR
T

I Interestingly, ωB does not depend on the choice of world frame and ωW

does not depend on the choice of body frame
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Rotation Kinematics

I The kinematics in the Lie algebra lead to the pleasing result:

ωW = JL(θ)θ̇ ωB = JR(θ)θ̇

I Note that J−1
L (θ) does not exist at ‖θ‖ = 2πm due to singularities of

the 3× 1 representation of rotation but we do not have to worry about
constraints and can use numerical integration

I Assuming ω is constant over a short period τ . Then:

R(t + τ) = exp(τ ω̂W )R(t) = R(t) exp(τ ω̂B)

25



Pose Kinematics

I Consider a moving body frame B with pose T (t) ∈ SE (3). The velocity
of a point sB ∈ R3 in the body frame with respect to the world frame
W can be determined as follows:

sW (t) = T (t)sB

ṡW (t) = Ṫ (t)sB = Ṫ (t)T (t)−1sW (t) = ζ̂(t)sW (t) = ω̂(t)sW (t) + v(t)

I ζ̂(t) is the velocity of the body frame moving relative to the world
frame, as viewed in the world frame.

I The world frame and body frame twists are related via: ζ̂W = T ζ̂BT
−1
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Pose Kinematics
I A transformation matrix WTB ∈ SE (3) can be related to the

corresponding Lie algebra element ξ ∈ se(3):

T =

[
R p
0T 1

]
= exp(ξ̂) =

[
exp(θ̂) JL(θ)ρ

0T 1

]
I Pose kinematics for velocity v ∈ R3 and rotational velocity ω ∈ R3:

ṗ = ω̂W p + vW

Ṙ = ω̂WR

I The pose kinematics can be written in combined form for a twist ζ:

Ṫ = ζ̂WT = T ζ̂B ζ =

[
v
ω

]
∈ R6

I Hybrid kinematics keeping the rotation in the Lie algebra:[
ṗ

θ̇

]
=

[
I −p̂
0 JL(θ)−1

] [
v
ω

]
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Pose Integration

I The kinematics in the Lie algebra are:

ζW = JL(ξ)ξ̇ ζB = JR(ξ)ξ̇

I We can integrate the se(3) kinematics without worrying about
constraints.

I Assume ζ is constant over a short period τ . Then:

T (t + τ) = exp(τ ζ̂W )T (t) = T (t) exp(τ ζ̂B)

I To construct the relative transformation ∆T := exp(τ ζ̂W ):

I Let ξ =

[
ρ
θ

]
= τ

[
v
ω

]
I Let R = exp(ω̂) computed via Rodrigues formula
I Let p = JL(θ)ρ

I Update: T (t + τ) =

[
R p
0 1

]
T (t)
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Lie Group Probability and Statistics
I Lie Group: needed to transform points in the real world; free of

singularities but have constraints

I Lie Algebra: can be treated as a vector space; free of constraints but
have singularities

I The elements of matrix Lie groups do not satisfy some basic operations
that we normally take for granted

I We need a different way to define random variables because matrix Lie
groups are not closed under the usual addition operation:

x = µ+ ε ε ∼ N (0,Σ)

I Idea: define random variables over the Lie algebra, exploiting its vector
space characteristics:

SO(3) so(3)

left R = exp(ε̂L)R̄ θ ≈ µ+ J−1
L (µ)εL

right R = R̄ exp(ε̂R) θ ≈ µ+ J−1
R (µ)εR
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Lie Group Probability and Statistics
I SO(3) Random Variable: R = exp(ε̂)R̄, where R̄ is a ‘large’ noise-free

nominal rotation and ε ∈ R3 is a ‘small’ noisy component

I Note that ε = log
(
RR̄T

)∨
I Assuming ε ∼ N (0,Σ) with most mass on ‖ε‖ < π and using that

dR = |det(JL(ε))|dε, we can obtain the pdf of R using the Change of
Density formula:

p(R) =
1√

(2π)3 det(Σ)
exp

(
−1

2

(
log
(
RR̄T

)∨)T

Σ−1 log
(
RR̄T

)∨) 1

|det(JL(ε))|

I The choice of R̄ and Σ as the mean and variance of R are justified
because:∫

log
(
RR̄T

)∨
p(R)dR = 0∫

log
(
RR̄T

)∨(
log
(
RR̄T

)∨)∨
p(R)dR = E[εεT ] = Σ
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Rotation of a Rotation Random Variable

I Let Q ∈ SO(3) and θ ∈ R3. Then:

Q exp(θ̂)QT = exp
(
Qθ̂QT

)
= exp

(
(Qθ)∧

)
I Let R be a random rotation with mean R̄ and covariance Σ. Then, the

random variable Y = QR satisfies:

Y = QR = Q exp(ε̂)R̄ = exp
(
(Qε)∧

)
QR̄

E[Y ] = QR̄

Var[Y ] = Var[Qε] = QΣQT
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