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Linear Algebra Review



Vectors

> A vector x € R? with d dimensions is a collection of scalars x; € R for

i=1,...,d organized is a column:
X1
X=1: x" =[x -+ x4
Xd

» A norm on a vector space V over a subfield F is a function
| -] : V — R such that for all a € F and all x,y € V:

v

llax|| = |a|||x]] (absolute homogeneity)
> x-+yll < x| + [yl (triangle inequality)
> |x||>0 (non-negativity)
> [x]|=0iffx=0 (definiteness)
» The Euclidean norm of a vector x € R? is ||x||» := V/xTx and satisfies:

> max, xi| < ||x]. < Vd max_ [xi

> x"y| < [Ix]l2]lyll2 (Cauchy-Schwarz Inequality)



Matrices

> A matrix A € R™ " is a rectangular array of scalars A;; € R for
i=1...,mandj=1,...,n

» The entries of the transpose A7 € R"™ of a matrix A € R™*" are
A,-JT = Aji. The transpose satisfies: (AB)T = BTAT

» The trace of a matrix A € R"*" is the sum of its diagonal entries:

tr(A) =) Aj tr(ABC) = tr(BCA) = tr(CAB)
i=1
» The determinant of a matrix A € R™*" is:
n
det(A) := Z Ajicofii(A) det(AB) = det(A) det(B) = det(BA)
j=1

where cof;(A) is the cofactor of the entry A; and is equal to (—1)'*/
times the determinant of the (n — 1) x (n — 1) submatrix that results
when the it"-row and jt"-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.



Matrices
» The adjugate is the transpose of the cofactor matrix:
adj(A) := cof(A)T

> The inverse A~! of A exists iff det(A) # 0 and satisfies:

_1 _ adj(A) ~1 141
= AB)™"=B"A
det(A) (AB)
» If Ae R™" and g € R" is a nonzero vector such that:
Ag=Aq

then g is an eigenvector corresponding to the eigenvalue ).

» A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs. The n eigenvalues of A € R™*" are precisely
the n roots of the characteristic polynomial of A:

p(s) := det(sl — A)



Matrices

» The roots of a polynomial are continuous functions of its coefficients and
hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) = i Aj det(A) = 12[)\,'

» The product xT Qx for @ € R"" and x € R" is called a quadratic
form and Q can be assumed symmetric, Q = Q' , because:

%XT(Q—F QT)x:xTQx, Vx € R”

» A symmetric matrix Q € R™" is positive semidefinite if xTQx >0 for
all x e R™.

» A symmetric matrix @ € R"*" is positive definite if it is positive
semidefinite and if x7 Qx = 0 implies x =0

» All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of
a positive semidefinite matrix are non-negative and all eigenvalues of a
positive definite matrix are positive.



Matrices

» The Schur complement of block D of M = [é g] is Sp=A—BD~1C

» A symmetric matrix M = [BAT [B)] is positive semidefinite if and only

if both A and S, are positive semidefinite (or both D and Sp are
positive semidefinite).

» Square completion:

%XTAX +bh'x+c= (x + A_lb)TA (x + A_lb) +c— %bTA_lb

N~



Matrix Inversion Lemma

» Woodbury matrix identity:

(A+BDC) ' =Al—A1B(CA'B+D 1) At

» Block matrix inversion:

A B
c D

]_1_

/ 0]‘1 [A BD-1C 0}‘1 [/ BDT -t

DIC | 0 p| o I

I 0l[(A-BDC)™" o ][I -BD!
—DC I 0 Do
[ (A-BDlC)! —(A-BD71C) ' BD!

-D7'C(A-BD'C)™" D'+ DIC(A-BDIC) T BD!




Derivatives (numerator layout)

» Derivatives by scalar

dy;

dy | *
dx dym
dx

» Derivatives by vector

dy _ [dy ... dy
dx dxy dxp
—_—

[Vxy]" (gradient transpose)

» Derivatives by matrix

dy .. _dy
T
dX dy .. _dy
dX1g dXpg

dYu . dYi,
dY B dx
R
dx dx
dyi ., dy
dxi dxp
ﬂ _ : . : ﬂ e RM*nxp
dx dym ., dym dx
dxi dxp
Jacobian
ﬂ c RM*PXq dy c RMXnxpxq
dX dX



Probability Theory Review
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Events

» Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

» Sample space Q: the set of possible outcomes of an experiment.
> Q= {HH, HT,TH,TT}
> Q= {068}

» Event A: a subset of the possible outcomes 2
> A= {HH}, B={HT, TH}

ops . _ Nj __ #possible occurances of A
> Probability of an event: P(A) = 3¢ = all possible outcomes
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Probability Axioms

» Probability Axioms:
> P(A) >0
> P(Q)=1
> If {A;} are disjoint (A; N A; = 0), then P(U; A)) = 32, P(A))

» Corollary:
> P(0)=0
> max{P(A), B(B)} <
> ACB=PA) <P

(AU B) = P(A) + P(B) — P(AN B) < P(A) + P(B)

12



Set of Events
» Conditional Probability: P(AN B) = P(A | B)P(B)

> Total Probability Theorem: If {A;,..., A,} is a partition of Q, i.e.,
Q=U;Aiand AiNA; =0,i #j, then:

P(B) = ZH:P(B NA)

i=1
» Bayes Theorem If {A1,...,A,} is a partition of Q, then:
P(B [ A)P(A)
Y P(B | A)P(A))
» Independent events: P(); A;) = [[; P(A))
» observing one does not give any information about another

P in contrast, disjoint events never occur together: one occuring tells you
that others will not occur and hence, disjoint events are always dependent

P(A; | B) =

13



Measure and Probability Space

» o-algebra: a collection of subsets of €2 closed under complementation
and countable unions.

» Borel g-algebra 5: the smallest o-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).

» Measurable space: a tuple (2, F), where Q is a sample space and F is
a o-algebra.

» Measure: a function p : F — R satisfying p(A) > pu(0) = 0 for all
A € F and countable additivity p (U;A;) = >, u(A;) for disjoint A;.
Q) =

—~

» Probability measure: a measure that satisfies

/-\

> Probability space: a triple (Q2, F,P), where Q is a sample space, F is a
o-algebra, and P : F — [0,1] is a probability measure.
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Random Variable

» Random variable X: an F-measurable function from (Q, F) to (R, B),
i.e., a function X : Q — R s.t. the preimage of every set in B is in F.

» Distribution function F(x) of a random variable X: a function
F(x) :=P(X < x) that is non-decreasing, right-continuous, and
limy—o00 F(x) =1 and limy_,_o, F(x) = 0.

» Density/mass function f(x) of a random variable X

Continuous RV Discrete RV
X:(QF,P) = (R,BPoX1): X:(Q,29P) = (R B,PoX1):
> f(x)>0 > f(x)=P(X=x)>0
> [fly)dy =1 > 3if(h=1

> F(x) = ffoo fly)dy =P(X <x) » F(X):Ziez,igx f(i)=P(X <x)
> P(X =x)=F(x)— F(x) =limeo [, f(y)dy =0
> P(a< X < b)=F(b) — F(a) = [ f(x)dx
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Expectation and Variance

» Given a random variable X with pdf p and a measurable function g, the
expectation of g(X) is

E[(X)] = [ g(x)p(x)dx
> The variance of g(X) is:
Varlg(X)] = E [ (g(X) — Elg(X)]) (g(X) ~ Elg(X)])”
= E |g(X)g(X)| ~ Elg(X)[E[g(X)]”

» The variance of a sum of random variables is:

ar<zn:X,-> ZVar X)—i—ZZCov Xi, X;)
i=1

i=1 j#i
Cov(X;, X;) = E ((X,- — EX;)(X; — EX)) ) — E(X;X") - EXEX]
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Set of Random Variables

» The joint distribution of random variables {X;}7_; on (€2, F,P) defines
their simultaneous behavior and is associated with a cumulative
distribution function F(xy,...,x,) :=P(X1 < x1,...,Xp < xp). The
CDF Fi(x;) of X; defines its marginal distribution.

» Random variables {X;}7_; on (2, F,P) are jointly independent iff for
all {Ai}izl C F,P(X; € A, Vi) = H7:1 P(X; € A))

» Let X and Y be random variables and suppose EX, EY, and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X,Y)=0.

» Independence implies uncorrelatedness
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Change of Density

» Convolution: Let X and Y be independent random variables with pdfs
f and g, respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g:

Feel(z) = [ £z~ y)tr)dy
> Change of Density: Let Y = f(X). Then, with dy = |det (% (x))] dx:

P(Y € A)=P(X € f1(A)) = /fl(A) Px(x)dx

_ L -1
= L@y 0

py(y)
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Conditional and Total Probability

» Total Probability Theorem: If two random variables X, Y have a joint
pdf p, the marginal pdf of X is:

p(x) = / p(x,y)dy

» Conditional Distribution: If two random variables X, Y have a joint
pdf p, the pdf of X conditioned on Y =y is

p(x,y)
p(xly) = —————
O = Tty de
» Bayes Theorem: The conditional, marginal, and joint pdfs of X and Y

are related:

p(y|x)p(x)
S p(y | X )p(x")dx’

p(x,y) = p(y|x)p(x) = p(x|y)p(y) = |p(xly)=
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Gaussian Distribution

» The Mahalaonobis distance for vector x € R” and symmetric

positive-definie matrix S € ST, is: [|x||3 := x"S7x

» Gaussian random variable X ~ N (u, X)
> paramteres: mean . € R", covariance ¥ € ST

> pdf: ¢(x;u, ) = ——L1——exp (—%(X — ,u)_TZ_l(x —

(27)" det(T)
> expectation: E[X] = [ x¢(x; p, L)dx = p
> variance: Var[X] =

» Gaussian mixture X ~ N M ({ak}, {1}, {Zk})
> parameters: weights o, >0, >, ax =1,
means y, € R", covariances ¥, € S,
> pdf: p(x) == >4 wd(x; puie; X))
> expectation: E[X] = [ xp(x)dx = >, axpk =: [
> variance: E [XXT] — E[X]E[X]" =, ax (Zk + prpg ) —

1))

an”
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PDF

of a Mixture of Two 2-D Gaussians
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Examples
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Matrix Calculus

> d%UX = e,-ejT
d
> EAX =A
> d%XTAX = XT(A + AT)

> L ML(x) = — M1 (x) M 1)

> L tr(AXT1B) = —(X71BAX )T

> & logdetX = X~ T
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Matrix Calculus

d n
dx1 Z_] 1 AlJXJ T dxp Zj:l Alej A1 - A
d _ . B . . '
> AX = : . . _ : . :
dX1 Z_/ 1 Am_l)(_] . e dx,, ZJ 1 Am_])<_] Aml cee Amn
> dx TAX:XTATdX+ TdAX—XT(AT+A)

> MM Y(x)=1 = 0= [LM(x)]ML(x)+ M(x)[LM(x)]

d d
tr(AX1B) = tr(A—- X~
> dXj dX;;

= —ejTX_lBAX_le,- = ¢ (X 'BAX )T

1B) = —tr(AX leje] X71B)

d 1
log det X = Xiecof (X
L X T T det(X) aX; Z keofi(X)
1 1
fi(X) = ——<adj;(X) = .TX_T
det(X)co i(X) det(X)a i(X) = e
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Events

» An experiment consists of randomly selecting one chip among ten chips
marked 1,2,2,3,3,3,4,4,4,4.
» What is a reasonable sample space for this experiment?

P> What is the probability of observing a chip marked with an even number?

» What is the probability of observing a chip marked with a prime number?

25



Events

» An experiment consists of randomly selecting one chip among ten chips
marked 1,2,2,3,3,3,4,4,4 4.
> What is a reasonable sample space for this experiment? Q = {1,2,3,4}

» What is the probability of observing a chip marked with an even number?

6
P({2,4}) = P({2} U {4}) = P({2}) + P({4}) = 3
» What is the probability of observing a chip marked with a prime number?

P({2,3}) = P({2} U {3}) = B({2}) + B({3}) = 1
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Independent Events

» A box contains 7 green and 3 red chips.

» Experiment: select one chip, replace the drawn chip, and repeat until
the color red has been observed four times

» Assuming that no draw affects or is affected by any other draw, what is
the probability that the experiment terminates on the ninth draw?

27



Independent Events

> Let Q denote the sample space for this experiment, which is a countably
infinite set of all ordered tuples such that:
» Each term is either g or r
» The last component of the tuple is r
» There are exactly four components of r in the tuple

» Let E be the set of elements in Q which have 9 components, e.g.,
(g,r.g:r.,8,r.8.8.r)€E

» lIdea:
» Show that every singleton subset of E has the same probability pe
» Determine the cardinality of E so that P(E) = > ... P(e) = |E|pe

» Due to independence, for any element e € E we have:

P(e) =P(etNexN---Neg) = f[lﬁ”(ei) - <130>4 (170>5

» Since the last component of each 9-tuple e € E must be r, the
cardinality of E is the number of ways to distribute 3 red chips among 8
slots, i.e., |E| = (§) 8



Expectation

» Suppose V = (X, Y) is a continuous random vector with density
fv(x,y) =8xy for 0 <y < x and 0 < x < 1. Let g(x,y) :=2x+y.
» Determine E[g(V)]

> Evaluate E[X] and E[Y] by finding the marginal densities of X and Y
and then evaluating the appropriate univariate integrals

» Determine Var[g(V)]

29



Expectation

1 X 2
E2X + Y] = / / (2x + y)8xy dydx = 32
0o Jo 15

fX(X)Z/ 8xy dy = 4x3 for 0 < x < 1
0
1 1 4
E [X] :/ xfx(x)dx:/ Ax*dx = —
0 0 5
1
fv(y)Z/ 8xy dx =4y —4y3for0<y <1
y
1 1 ) 8
IE[Y]:/ yfv(y)dyz/ 4y —4y4dy=T5
0 0

2
Vor (V)] = £ [(e(V) - BLe(VI]?) = | (2 + v - 32) ]

2 17
// <2X—|—y—> 8xydydx:%
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Conditional Probability

» Suppose that V = (X, Y) is a discrete random vector with probability

mass function

fV(Xay) =

(0.10
0.20
0.30
0.15
0.25

0

elsewhere

> What is the conditional probability that V is (0,0) given that V is (0, 0)

or (1,1)?

vV v.v Yy

What is the probability mass function of X | Y =07
What is the expected value of X | Y =07

What is the conditional probability that X is 1 or 2 given that Y is 0 or 17
What is the probability that X is 1 or 27
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Conditional Probability
P(V €{(0,0)} n{(0,0),(1,1)})

PV {000}V & {(0,0,.(LDD) = 5 ra o0 . 1))
0.10
= 558 =04
P(Xe{1,2}|Ye{0,1})=P(Ve{l,2}xR|VeRx{0,1})
_ P(Ve{(1,0).(1,1)}) _4
P(V €{(0,0),(0,1),(1,0),(1,1)}) 75

P(X €{1,2}) =P(V € {1,2} xR) = 0.7

fy(x,0) 1 025 ifx=0
f. _ — = —fi ,0 -
x|y =0(x) S fu(x,0)dx’ 4 v(x.0) {0.75 if x=1

3
E[X|Y =0]= Z xfx|y—o(x) = 2
x€{0,1}
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Change of Density

» Let X ~ N(0,02) be a Gaussian random variable

» Let Y = f(X) be a random variable defined as a nonlinear
transformation of X according to the function f(x) := exp(x)

» What is the pdf p(y) of Y?
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Change of Density

> Note that f(x) is invertible f~1(y) = log(y)

» The infinitesimal integration volumes for y and x are related by:

det (ii(x))

» Using the change of density theorem:

dy = dx = exp(x)dx

1 . 2
1= / 6(x;0,02)d /0 Satiogyy 0B 0. 2)dy

log(y))
lo
- s (55

n'g

p(y)
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Change of Density
» Let V:=(X,Y) be a random vector with pdf:

2y —x x<y<2xandl<x<?2

0 else

pV(va) = {

> Let T:=(M,N)=g(V):= (25X, X£¥) be a function of V

» Note that X = M + N and Y = 2N — M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m+ n < 2. Also:

o)l 0TS

» The pdf T is:
1 (m+n2 ) 0<m< n/2and
m+n,2n — m),
pr(m, n) = { [ee(ZE(men2n-m)[PY l<m+4n<2,
0, else.
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