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Linear Algebra Review
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Vectors
I A vector x ∈ Rd with d dimensions is a collection of scalars xi ∈ R for

i = 1, . . . , d organized is a column:

x =

x1
...

xd

 xT =
[
x1 · · · xd

]
I A norm on a vector space V over a subfield F is a function
‖ · ‖ : V → R such that for all a ∈ F and all x, y ∈ V :

I ‖ax‖ = |a|‖x‖ (absolute homogeneity)

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I ‖x‖ ≥ 0 (non-negativity)

I ‖x‖ = 0 iff x = 0 (definiteness)

I The Euclidean norm of a vector x ∈ Rd is ‖x‖2 :=
√

xTx and satisfies:
I max

1≤i≤d
|xi | ≤ ‖x‖2 ≤

√
d max

1≤i≤d
|xi |

I |xTy| ≤ ‖x‖2‖y‖2 (Cauchy-Schwarz Inequality)
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Matrices
I A matrix A ∈ Rm×n is a rectangular array of scalars Aij ∈ R for

i = 1, . . . ,m and j = 1, . . . , n

I The entries of the transpose AT ∈ Rn×m of a matrix A ∈ Rm×n are
AT
ij = Aji . The transpose satisfies: (AB)T = BTAT

I The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC ) = tr(BCA) = tr(CAB)

I The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j

times the determinant of the (n − 1)× (n − 1) submatrix that results
when the i th-row and j th-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.
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Matrices
I The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)T

I The inverse A−1 of A exists iff det(A) 6= 0 and satisfies:

A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1

I If A ∈ Rn×n and q ∈ Rn is a nonzero vector such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ.

I A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs. The n eigenvalues of A ∈ Rn×n are precisely
the n roots of the characteristic polynomial of A:

p(s) := det(sI − A)
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Matrices
I The roots of a polynomial are continuous functions of its coefficients and

hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) :=
n∑

i=1

λi det(A) :=
n∏

i=1

λi

I The product xTQx for Q ∈ Rn×n and x ∈ Rn is called a quadratic
form and Q can be assumed symmetric, Q = QT , because:

1

2
xT (Q + QT )x = xTQx , ∀x ∈ Rn

I A symmetric matrix Q ∈ Rn×n is positive semidefinite if xTQx ≥ 0 for
all x ∈ Rn.

I A symmetric matrix Q ∈ Rn×n is positive definite if it is positive
semidefinite and if xTQx = 0 implies x = 0

I All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of
a positive semidefinite matrix are non-negative and all eigenvalues of a
positive definite matrix are positive.
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Matrices

I The Schur complement of block D of M =

[
A B
C D

]
is SD =A−BD−1C

I A symmetric matrix M =

[
A B
BT D

]
is positive semidefinite if and only

if both A and SA are positive semidefinite (or both D and SD are
positive semidefinite).

I Square completion:

1

2
xTAx + bT x + c =

1

2

(
x + A−1b

)T
A
(
x + A−1b

)
+ c − 1

2
bTA−1b
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Matrix Inversion Lemma

I Woodbury matrix identity:

(A + BDC )−1 = A−1 − A−1B
(
CA−1B + D−1

)−1
CA−1

I Block matrix inversion:[
A B
C D

]−1

=

[
I 0

D−1C I

]−1 [
A− BD−1C 0

0 D

]−1 [
I BD−1

0 I

]−1

=

[
I 0

−D−1C I

] [(
A− BD−1C

)−1
0

0 D−1

] [
I −BD−1

0 I

]
=

[ (
A− BD−1C

)−1 −
(
A− BD−1C

)−1
BD−1

−D−1C
(
A− BD−1C

)−1
D−1 + D−1C

(
A− BD−1C

)−1
BD−1

]
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Derivatives (numerator layout)
I Derivatives by scalar

dy

dx
=


dy1
dx
...

dym
dx

 dY

dx
=


dY11
dx · · · dY1n

dx
...

. . .
...

dYm1
dx · · · dYmn

dx


I Derivatives by vector

dy

dx
=

[
dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy ]T (gradient transpose)

dy

dx
=


dy1
dx1

· · · dy1
dxp

...
. . .

...
dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

dY

dx
∈ Rm×n×p

I Derivatives by matrix

dy

dX
=


dy

dX11
· · · dy

dXp1

...
. . .

...
dy

dX1q
· · · dy

dXpq

 dy

dX
∈ Rm×p×q dY

dX
∈ Rm×n×p×q
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Probability Theory Review
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Events

I Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

I Sample space Ω: the set of possible outcomes of an experiment.
I Ω = {HH,HT ,TH,TT}
I Ω = { , , , , , }

I Event A: a subset of the possible outcomes Ω
I A = {HH}, B = {HT ,TH}

I Probability of an event: P(A) = NA
N = #possible occurances of A

#all possible outcomes
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Probability Axioms

I Probability Axioms:
I P(A) ≥ 0
I P(Ω) = 1
I If {Ai} are disjoint (Ai ∩ Aj = ∅), then P(

⋃
i Ai ) =

∑
i P(Ai )

I Corollary:
I P(∅) = 0
I max{P(A),P(B)} ≤ P(A ∪B) = P(A) + P(B)− P(A∩B) ≤ P(A) + P(B)
I A ⊆ B ⇒ P(A) ≤ P(B)
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Set of Events

I Conditional Probability: P(A ∩ B) = P(A | B)P(B)

I Total Probability Theorem: If {A1, . . . ,An} is a partition of Ω, i.e.,
Ω =

⋃
i Ai and Ai ∩ Aj = ∅, i 6= j , then:

P(B) =
n∑

i=1

P(B ∩ Ai )

I Bayes Theorem If {A1, . . . ,An} is a partition of Ω, then:

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

I Independent events: P (
⋂

i Ai ) =
∏

i P(Ai )
I observing one does not give any information about another
I in contrast, disjoint events never occur together: one occuring tells you

that others will not occur and hence, disjoint events are always dependent
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Measure and Probability Space

I σ-algebra: a collection of subsets of Ω closed under complementation
and countable unions.

I Borel σ-algebra B: the smallest σ-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).

I Measurable space: a tuple (Ω,F), where Ω is a sample space and F is
a σ-algebra.

I Measure: a function µ : F → R satisfying µ(A) ≥ µ(∅) = 0 for all
A ∈ F and countable additivity µ (∪iAi ) =

∑
i µ(Ai ) for disjoint Ai .

I Probability measure: a measure that satisfies µ(Ω) = 1.

I Probability space: a triple (Ω,F ,P), where Ω is a sample space, F is a
σ-algebra, and P : F → [0, 1] is a probability measure.
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Random Variable

I Random variable X : an F-measurable function from (Ω,F) to (R,B),
i.e., a function X : Ω→ R s.t. the preimage of every set in B is in F .

I Distribution function F (x) of a random variable X : a function
F (x) := P(X ≤ x) that is non-decreasing, right-continuous, and
limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

I Density/mass function f (x) of a random variable X
Continuous RV
X : (Ω,F ,P)→ (R,B,P ◦ X−1):

I f (x) ≥ 0

I
∫
f (y)dy = 1

I F (x) =
∫ x

−∞ f (y)dy = P(X ≤ x)

Discrete RV
X : (Ω, 2Ω,P)→ (R,B,P ◦ X−1):

I f (x) = P(X = x) ≥ 0

I
∑

i f (i) = 1

I F (x)=
∑

i∈Z,i≤x f (i) = P(X ≤ x)

I P(X = x) = F (x)− F (x−) = limε→0

∫ x

x−ε f (y)dy = 0

I P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f (x)dx
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Expectation and Variance

I Given a random variable X with pdf p and a measurable function g , the
expectation of g(X ) is:

E [g(X )] =

∫
g(x)p(x)dx

I The variance of g(X ) is:

Var [g(X )] = E
[
(g(X )− E[g(X )]) (g(X )− E[g(X )])T

]
= E

[
g(X )g(X )T

]
− E[g(X )]E[g(X )]T

I The variance of a sum of random variables is:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ) +
n∑

i=1

∑
j 6=i

Cov(Xi ,Xj)

Cov(Xi ,Xj) = E
(

(Xi − EXi )(Xj − EXj)
T
)

= E(XiX
T
j )− EXiEXT

j
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Set of Random Variables

I The joint distribution of random variables {Xi}ni=1 on (Ω,F ,P) defines
their simultaneous behavior and is associated with a cumulative
distribution function F (x1, . . . , xn) := P(X1 ≤ x1, . . . ,Xn ≤ xn). The
CDF Fi (xi ) of Xi defines its marginal distribution.

I Random variables {Xi}ni=1 on (Ω,F ,P) are jointly independent iff for
all {Ai}ni=1 ⊂ F , P(Xi ∈ Ai ,∀i) =

∏n
i=1 P(Xi ∈ Ai )

I Let X and Y be random variables and suppose EX , EY , and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X ,Y ) = 0.

I Independence implies uncorrelatedness
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Change of Density

I Convolution: Let X and Y be independent random variables with pdfs
f and g , respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g :

[f ∗ g ](z) :=

∫
f (z − y)g(y)dy

I Change of Density: Let Y = f (X ). Then, with dy =
∣∣det

(
df
dx (x)

)∣∣ dx :

P(Y ∈ A) = P(X ∈ f −1(A)) =

∫
f −1(A)

px(x)dx

=

∫
A

1∣∣det
(
df
dx (f −1(y))

)∣∣px(f −1(y))︸ ︷︷ ︸
py (y)

dy
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Conditional and Total Probability

I Total Probability Theorem: If two random variables X ,Y have a joint
pdf p, the marginal pdf of X is:

p(x) =

∫
p(x , y)dy

I Conditional Distribution: If two random variables X ,Y have a joint
pdf p, the pdf of X conditioned on Y = y is

p(x |y) :=
p(x , y)∫
p(x , y)dx

I Bayes Theorem: The conditional, marginal, and joint pdfs of X and Y
are related:

p(x , y) = p(y |x)p(x) = p(x |y)p(y) ⇒ p(x |y) =
p(y |x)p(x)∫

p(y | x ′)p(x ′)dx ′
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Gaussian Distribution

I The Mahalaonobis distance for vector x ∈ Rn and symmetric
positive-definie matrix S ∈ Sn>0 is: ‖x‖2

S := xTS−1x

I Gaussian random variable X ∼ N (µ,Σ)
I paramteres: mean µ ∈ Rn, covariance Σ ∈ Sn�0

I pdf: φ(x ;µ,Σ) := 1√
(2π)n det(Σ)

exp
(
− 1

2 (x − µ)TΣ−1(x − µ)
)

I expectation: E[X ] =
∫
xφ(x ;µ,Σ)dx = µ

I variance: Var [X ] = Σ

I Gaussian mixture X ∼ NM({αk}, {µk}, {Σk})
I parameters: weights αk ≥ 0,

∑
k αk = 1,

means µk ∈ Rn, covariances Σk ∈ Sn�0
I pdf: p(x) :=

∑
k αkφ(x ;µk ,Σk)

I expectation: E[X ] =
∫
xp(x)dx =

∑
k αkµk =: µ̄

I variance: E
[
XXT

]
− E[X ]E[X ]T =

∑
k αk

(
Σk + µkµ

T
k

)
− µ̄µ̄T
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PDF of a Mixture of Two 2-D Gaussians
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Examples
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Matrix Calculus

I d
dXij

X = eiej
T

I d
dxAx = A

I d
dx x

TAx = xT (A + AT )

I d
dxM

−1(x) = −M−1(x)dM(x)
dx M−1(x)

I d
dX tr(AX−1B) = −(X−1BAX−1)T

I d
dX log detX = X−T
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Matrix Calculus

I d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn


I d

dx x
TAx = xTAT dx

dx + xT dAx
dx = xT (AT + A)

I M(x)M−1(x) = I ⇒ 0 =
[
d
dxM(x)

]
M−1(x) + M(x)

[
d
dxM

−1(x)
]

I

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

T
j X−1B)

= −eTj X−1BAX−1ei = −eTi
(
X−1BAX−1

)T
ej

I

d

dXij
log detX =

1

det(X )

d

dXij

n∑
k=1

Xikcof ik(X )

=
1

det(X )
cof ij(X ) =

1

det(X )
adjji (X ) = eTi X−T ej
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Events

I An experiment consists of randomly selecting one chip among ten chips
marked 1, 2, 2, 3, 3, 3, 4, 4, 4, 4.
I What is a reasonable sample space for this experiment?

I What is the probability of observing a chip marked with an even number?

I What is the probability of observing a chip marked with a prime number?
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Events

I An experiment consists of randomly selecting one chip among ten chips
marked 1, 2, 2, 3, 3, 3, 4, 4, 4, 4.
I What is a reasonable sample space for this experiment? Ω = {1, 2, 3, 4}
I What is the probability of observing a chip marked with an even number?

P({2, 4}) = P({2} ∪ {4}) = P({2}) + P({4}) =
6

10

I What is the probability of observing a chip marked with a prime number?

P({2, 3}) = P({2} ∪ {3}) = P({2}) + P({3}) =
5

10
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Independent Events

I A box contains 7 green and 3 red chips.

I Experiment: select one chip, replace the drawn chip, and repeat until
the color red has been observed four times

I Assuming that no draw affects or is affected by any other draw, what is
the probability that the experiment terminates on the ninth draw?
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Independent Events
I Let Ω denote the sample space for this experiment, which is a countably

infinite set of all ordered tuples such that:
I Each term is either g or r
I The last component of the tuple is r
I There are exactly four components of r in the tuple

I Let E be the set of elements in Ω which have 9 components, e.g.,
(g , r , g , r , g , r , g , g , r) ∈ E

I Idea:
I Show that every singleton subset of E has the same probability pe
I Determine the cardinality of E so that P(E ) =

∑
e∈E P(e) = |E |pe

I Due to independence, for any element e ∈ E we have:

P(e) = P (e1 ∩ e2 ∩ · · · ∩ e9) =
9∏

i=1

P(ei ) =

(
3

10

)4( 7

10

)5

I Since the last component of each 9-tuple e ∈ E must be r , the
cardinality of E is the number of ways to distribute 3 red chips among 8
slots, i.e., |E | =

(8
3

)
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Expectation

I Suppose V = (X ,Y ) is a continuous random vector with density
fV (x , y) = 8xy for 0 < y < x and 0 < x < 1. Let g(x , y) := 2x + y .
I Determine E [g(V )]

I Evaluate E [X ] and E [Y ] by finding the marginal densities of X and Y
and then evaluating the appropriate univariate integrals

I Determine Var [g(V )]
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Expectation

E [2X + Y ] =

∫ 1

0

∫ x

0
(2x + y)8xy dydx =

32

15

fX (x) =

∫ x

0
8xy dy = 4x3 for 0 ≤ x ≤ 1

E [X ] =

∫ 1

0
xfX (x)dx =

∫ 1

0
4x4dx =

4

5

fY (y) =

∫ 1

y
8xy dx = 4y − 4y3 for 0 ≤ y ≤ 1

E [Y ] =

∫ 1

0
yfY (y)dy =

∫ 1

0
4y2 − 4y4dy =

8

15

Var [g(V )] = E
[
(g(V )− E [g(V )])2

]
= E

[(
2X + Y − 32

15

)2
]

=

∫ 1

0

∫ x

0

(
2x + y − 32

15

)2

8xy dydx =
17

75
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Conditional Probability
I Suppose that V = (X ,Y ) is a discrete random vector with probability

mass function

fV (x , y) =



0.10 if (x , y) = (0, 0)

0.20 if (x , y) = (0, 1)

0.30 if (x , y) = (1, 0)

0.15 if (x , y) = (1, 1)

0.25 if (x , y) = (2, 2)

0 elsewhere

I What is the conditional probability that V is (0, 0) given that V is (0, 0)
or (1, 1)?

I What is the conditional probability that X is 1 or 2 given that Y is 0 or 1?

I What is the probability that X is 1 or 2?

I What is the probability mass function of X | Y = 0?

I What is the expected value of X | Y = 0?
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Conditional Probability

P (V ∈ {(0, 0)} | V ∈ {(0, 0), (1, 1)}) =
P (V ∈ {(0, 0)} ∩ {(0, 0), (1, 1)})

P (V ∈ {(0, 0), (1, 1)})

=
0.10

0.25
= 0.4

P (X ∈ {1, 2} | Y ∈ {0, 1}) = P (V ∈ {1, 2} × R | V ∈ R× {0, 1})

=
P (V ∈ {(1, 0), (1, 1)})

P (V ∈ {(0, 0), (0, 1), (1, 0), (1, 1)})
=

45

75

P (X ∈ {1, 2}) = P (V ∈ {1, 2} × R) = 0.7

fX |Y=0(x) =
fV (x , 0)∑

x ′ fV (x ′, 0)dx ′
=

1

4
fV (x , 0) =

{
0.25 if x = 0

0.75 if x = 1

E [X | Y = 0] =
∑

x∈{0,1}

xfX |Y=0(x) =
3

4
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Change of Density

I Let X ∼ N (0, σ2) be a Gaussian random variable

I Let Y = f (X ) be a random variable defined as a nonlinear
transformation of X according to the function f (x) := exp(x)

I What is the pdf p(y) of Y ?
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Change of Density

I Note that f (x) is invertible f −1(y) = log(y)

I The infinitesimal integration volumes for y and x are related by:

dy =

∣∣∣∣det

(
df

dx
(x)

)∣∣∣∣ dx = exp(x)dx

I Using the change of density theorem:

1 =

∫ ∞
−∞

φ(x ; 0, σ2)dx =

∫ ∞
0

1

exp(log(y))
φ(log(y); 0, σ2)dy

=

∫ ∞
0

1

y

1√
2πσ2

exp

(
−1

2

log2(y)

σ2

)
︸ ︷︷ ︸

p(y)

dy
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Change of Density
I Let V := (X ,Y ) be a random vector with pdf:

pV (x , y) :=

{
2y − x x < y < 2x and 1 < x < 2

0 else

I Let T := (M,N) = g(V ) :=
(

2X−Y
3 , X+Y

3

)
be a function of V

I Note that X = M + N and Y = 2N −M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

det

(
dg

dv

)
= det

[
2/3 − 1/3
1/3 1/3

]
=

1

3

I The pdf T is:

pT (m, n) =


1

|det( dg
dv

(m+n,2n−m))|pV (m + n, 2n −m),
0 < m < n/2 and

1 < m + n < 2,

0, else.
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