ECE276A: Sensing \& Estimation in Robotics Lecture 3: Color Vision and Parameter Estimation

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Color Imaging

- Image sensor: converts light into small bursts of current
- Analog imaging technology uses charge-coupled devices (CCD) or complementary metal-oxide semiconductors (CMOS)
- CCD/CMOS photosensor array:

- A phototransistor converts light into current
- Each transistor charges a capacitor to measure:

\#photons/sampling time

- R,G,B filters are used to modify the absorption profiles of photons
- Analog-to-digital conversion of $\mathrm{R}, \mathrm{G}, \mathrm{B}$ transistor values to pixel values:

$$
\underbrace{R=127}_{8 \text { bits }(0-255)}, \quad G=200, \quad B=103 \quad \text { (24-bit color) }
$$

Why RGB, Why 3?

- Retina: types of photoreceptors: rod \& cone cells (S,M,L)
- Rod cells:
- insensitive to wavelength but highly sensitive to intensity
- mostly saturated during daylight conditions

- Cone cells:

- Given an arbitrary light spectral distribution $f(\lambda)$, the cone cells act as filters that provide a convolution-like signal to the brain:

- Color blind people are deficient in 1 or more of these cones
- Other animals (e.g., fish) have more than 3 cones

Luma-Chroma Color Space

- YUV (YCbCr): a linear transformation of RGB
- Luminance/Brightness $(\mathrm{Y}) \approx(R+G+B) / 3 \quad\}$ gray-scale image
- Blueness $(\mathrm{U} / \mathrm{Cb}) \approx(B-G)$
- Redness $(\mathrm{V} / \mathrm{Cr}) \approx(R-G) \quad\}$
- Used in analog TV for PAL/SECAM composite color video standards

HSV and LAB Color Spaces

- HSV: cylindrical coordinates of RGB points
- Hue (H): angular dimension (red $\approx 0^{\circ}$, green $\approx 120^{\circ}$, blue $\approx 240^{\circ}$)
- Saturation (S): pure red has saturation 1, while tints have saturation <1
- Value/Brightness (V): achromatic/gray colors ranging from black ($V=0$, bottom) to white ($V=1$, top)

HS

Saturation

- LAB: nonlinear transformation of RGB; device independent
- Lightness (L): from black $(L=0)$ to white $(L=100)$
- Position between green and red/magenta (A)
- Position between blue and yellow (B)

Image Formation

- Pixel values depend on:
- Scene geometry
- Scene photometry (illumination and reflective properties)
- Scene dynamics (moving objects)
- Using camera images to infer a representation of the world is challenging because the shape, material properties, and motion of the observed scene are in general unknown
- Color Segmentation: aims to segment the 3-D color space into a set of discrete volumes:
- Each pixel is a 3-D vector: $\mathbf{x}=(Y, C b, C r)$
- Discrete color labels: $y \in\{1, \ldots, N\}$

Classification Problem

- Pixel values are noisy
- Learn a probabilistic model $p(y \mid \mathbf{x})$ of the color classes y given color-space training data $D=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}$
- Define a color map that transforms a color-space input into a discrete color label:

$$
\mathbf{x} \xrightarrow{\text { classifier }} \underset{y}{\arg \max } p(y \mid \mathbf{x})
$$

Color-based Object Detection

Robot Soccer Example: real-time robot vision system

RGB color image at 30 fps from camera

${ }^{\|}$
Color Segmentation
Each pixel is labelled by symbolic colors

Union-find algorithm

Connected components (blobs)
Extract region properties: centroid, bounding box, major/minor axis, etc.

Classify objects based on shape

Project 1: Color Segmentation

- Train a probabilistic color model based on a set of training images
- Use the model to classify the colors on an unseen test image
- Detect a blue barrel based on the color segmentation (last year was red!)

Project 1 Tips

- Define K color classes, e.g., barrel-blue, not-barrel-blue, brown, green
- Label examples for each color class to obtain a training dataset $D=\left\{\mathbf{x}_{i}, y_{i}\right\}$ (use roipoly)
- Train a discriminative $p(y \mid \mathbf{x})$ (Logistic Regression) or $p(y \mid \mathbf{x}$) generative (Gaussian or Gaussian Mixture) model
- Given a test image, classify each pixel into one of the K color classes using your model
- Find blue regions (use findContours)
- Enumerate blue region combinations and score them based on "barrelness" (use regionprops)
- Experiment with different colorspaces and parameters

Example: findContours and regionprops

- Use the openCV function "findContours" to combine individual pixels into blue regions:

```
import numpy as np
import cv2
im = cv2.imread('test.jpg')
binarylm = myBlueDetector(im)
contours, hierarchy = cv2.findContours(binarylm,
        cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
```

- Enumerate blue region combinations and score them based on "barrelness" using regionprops
from skimage.measure import label, regionprops props $=$ skimage.measure.regionprops(contour_mask)

Orange Ball Recognition

- Center of mass:

$$
\left(c_{X}, c_{Y}\right)=\frac{1}{N_{p}} \sum_{p}\left(x_{p}, y_{p}\right)
$$

- Fit an ellipse:

$$
\begin{aligned}
& V_{X X}=\frac{1}{N_{p}} \sum_{p}\left(x_{p}-c_{X}\right)^{2} \\
& V_{Y Y}=\frac{1}{N_{p}} \sum_{p}\left(y_{p}-c_{Y}\right)^{2} \\
& V_{X Y}=\frac{1}{N_{p}} \sum_{p}\left(x_{p}-c_{X}\right)\left(y_{p}-c_{Y}\right)
\end{aligned}
$$

Color image:

- Recognize a spherical ball based on thresholds $\epsilon_{0}, \epsilon_{1}$ on the eigenvalues
λ_{0}, λ_{1} of $\left[\begin{array}{ll}V_{X X} & V_{X Y} \\ V_{X Y} & V_{Y Y}\end{array}\right]$
- size: $\quad \min \lambda_{1}, \lambda_{2} \geq \epsilon_{0}$
- eccentricity: $\quad 1-\epsilon_{1} \leq \frac{\lambda_{1}}{\lambda_{2}} \leq 1+\epsilon_{1}$

Supervised Learning

- Given iid training data $D:=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$ of examples $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with associated labels $y_{i} \in \mathbb{R}$ (often also written as $D=(X, \mathbf{y})$), generated from an unknown joint pdf
- Goal: learn a function: $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that can assign a label y to a given data point \mathbf{x}, either from the training dataset D or from an unseen test set generated from the same unknown pdf
- The function h should perform "well":
- Classification (discrete $\mathbf{y} \in\{-1,1\}^{n}$):

$$
\min _{h} \operatorname{Loss}_{0-1}(h):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{h\left(\mathrm{x}_{\mathrm{i}}\right) \neq y_{i}}
$$

- Regression (continuous $\mathbf{y} \in \mathbb{R}^{n}$):

$$
\min _{h} \operatorname{RMSE}(h):=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}}
$$

Generative vs Discriminative Models

- Generative model
$-h(\mathbf{x}):=\arg \max p(y, \mathbf{x})$ y
- Choose $p(y, \mathbf{x})$ so that it approximates the unknown data-generating pdf
- Can generate new examples \mathbf{x} with associated labels y by sampling from $p(y, \mathbf{x})$
- Examples: Naive Bayes, Mixture Models, Hidden Markov Models, Restricted Boltzmann Machines, Latent Dirichlet Allocation, etc.
- Discriminative model
- $h(\mathbf{x}):=\arg \max p(y \mid \mathbf{x})$
- Choose $p(y \mid \mathbf{x})$ so that it approximates the unknown label-generating pdf
- Because it models $p(y \mid \mathbf{x})$ directly, a discriminative model cannot generate new examples \mathbf{x} but given \mathbf{x} it can predict (discriminate) y.
- Examples: Linear Regression, Logistic Regression, Support Vector Machines, Neural Networks, Random Forests, Conditional Random Fields, etc.

Parameteric Learning

- Represent the pdfs $p(y \mid \mathbf{x} ; \omega)$ (discriminative) or $p(y, \mathbf{x} ; \omega)$ (generative) using parameters ω
- Estimate/optimize/learn ω based on the training set $D=(X, \mathbf{y})$ in a way that ω^{*} produces good results on a test set
- Parameter estimation strategies:
- Maximum Likelihood Estimation (MLE): maximize the likelihood of the data D given the parameters ω
- Maximum A Posteriori (MAP): maximize the likelihood of the parameters ω given the data D
- Bayesian Inference: estimate the whole distribution of the parameters ω given the data D

Parameteric Learning

- Maximum Likelihood Estimation (MLE):

MLE	Discriminative Model	Generative Model
Training	$\omega_{M L E}:=\underset{\omega}{\arg \max p(\mathbf{y} \mid X, \omega)}$	$\omega_{M L E}:=\underset{\omega}{\arg \max p(\mathbf{y}, X \mid \omega)}$
Testing	$\underset{y^{*}}{\arg \max p\left(y^{*} \mid \mathbf{x}^{*}, \omega_{M L E}\right)}$	$\underset{y^{*}}{\arg \max } p\left(y^{*}, \mathbf{x}^{*} \mid \omega_{M L E}\right)$

- Maximum A Posteriori (MAP):

MAP	Discriminative Model	Generative Model
Training	$\omega_{M A P}=\underset{\omega}{\arg \max } p(\omega \mid \mathbf{y}, X)$ $\underset{\omega}{\arg \max } p(\mathbf{y} \mid X, \omega) p(\omega \mid X)$	$\omega_{M A P}=\underset{\omega}{\arg \max p(\omega \mid \mathbf{y}, X)}$ Testing $\arg \max p(\mathbf{y}, X \mid \omega) p(\omega)$ $\arg \max p\left(y^{*} \mid \mathbf{x}^{*}, \omega_{M A P}\right)$$\underset{y^{*}}{\arg \max p\left(y^{*}, \mathbf{x}^{*} \mid \omega_{M A P}\right)}$

- Bayesian Inference:

BI	Discriminative Model	Generative Model
Training	$p(\omega \mid \mathbf{y}, X) \propto p(\mathbf{y} \mid X, \omega) p(\omega \mid X)$	$p(\omega \mid \mathbf{y}, X) \propto p(\mathbf{y}, X \mid \omega) p(\omega)$
Testing	$p\left(y^{*} \mid \mathbf{x}^{*}, \mathbf{y}, X\right)=\int p\left(y^{*} \mid \mathbf{x}^{*}, \omega\right) p(\omega \mid \mathbf{y}, X) d \omega$	$p\left(y^{*}, \mathbf{x}^{*} \mid \mathbf{y}, X\right)=\int p\left(y^{*}, \mathbf{x}^{*} \mid \omega\right) p(\omega \mid \mathbf{y}, X) d \omega$

Unconstrained Optimization

- The MLE, MAP, and, often, Bayesian Inference approaches lead to an optimization problem of the form:

$$
\min _{\omega} J(\omega)
$$

Descent Direction Theorem

Suppose J is differentiable at $\bar{\omega}$. If $\exists \delta \omega$ such that $\nabla J(\bar{\omega})^{T} \delta \omega<0$, then $\exists \epsilon>0$ such that $J(\bar{\omega}+\alpha \delta \omega)<J(\bar{\omega})$ for all $\alpha \in(0, \epsilon)$.

- The vector $\delta \omega$ is called a descent direction
- The theorem states that if a descent direction exists at $\bar{\omega}$, then it is possible to move to a new point that has a lower J value.
- Steepest descent direction: $\delta \omega:=-\frac{\nabla J(\bar{\omega})}{\|\nabla J(\bar{\omega})\|}$
- Based on this theorem, we can derive conditions for determining the optimality of $\bar{\omega}$

Optimality Conditions

First-order Necessary Condition

Suppose J is differentiable at $\bar{\omega}$. If $\bar{\omega}$ is a local minimizer, then $\nabla f(\bar{\omega})=0$.

Second-order Necessary Condition

Suppose J is twice-differentiable at $\bar{\omega}$. If $\bar{\omega}$ is a local minimizer, then $\nabla f(\bar{\omega})=0$ and $\nabla^{2} f(\bar{\omega}) \succeq 0$.

Second-order Sufficient Condition

Suppose J is twice-differentiable at $\bar{\omega}$. If $\nabla f(\bar{\omega})=0$ and $\nabla^{2} f(\bar{\omega}) \succ 0$, then $\bar{\omega}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose J is differentiable at $\bar{\omega}$. If J is convex, then $\bar{\omega}$ is a global minimizer if and only if $\nabla J(\bar{\omega})=0$.

Descent Optimization Methods

- Convex unconstrained optimization: just need to solve the equation $\nabla J(\omega)=0$ to determine the optimal parameters ω^{*}
- Even if J is not convex, we can obtain a critical point by solving $\nabla J(\omega)=0$
- However, $\nabla J(\omega)=0$ might not be easy to solve explicitly
- Descent methods: iterative methods for unconstrained optimization. Given an initial guess $\omega^{(k)}$, take a step of size $\alpha^{(k)}>0$ along a certain direction $\delta \omega^{(k)}$:

$$
\omega^{(k+1)}=\omega^{(k)}+\alpha^{(k)} \delta \omega^{(k)}
$$

- Different methods differ in the way $\delta \omega^{(k)}$ and $\alpha^{(k)}$ are chosen but
- $\delta \omega^{(k)}$ should be a descent direction: $\nabla J\left(\omega^{(k)}\right)^{T} \delta \omega^{(k)}<0$ for all $\omega^{(k)} \neq \omega^{*}$
- $\alpha^{(k)}$ needs to ensure sufficient decrease in J to guarantee convergence:

$$
\alpha^{(k), *} \in \underset{\alpha>0}{\arg \min } J\left(\omega^{(k)}+\alpha \delta \omega^{(k)}\right)
$$

Usually $\alpha^{(k)}$ is obtained via inexact line search methods

Gradient Descent (First Order Method)

- Idea: $-\nabla_{\omega} J\left(\omega^{(k)}\right)$ points in the direction of steepest local descent
- Gradient descent: let $\delta \omega^{(k)}:=-\nabla_{\omega} J\left(\omega^{(k)}\right)$ and iterate:

$$
\omega^{(k+1)}=\omega^{(k)}-\alpha^{(k)} \nabla_{\omega} J\left(\omega^{(k)}\right)
$$

- A good choice for $\alpha^{(k)}$ is $\frac{1}{L}$, where L is the Lipschitz constant of ∇J

Newton's Method (Second Order Method)

- Newton's method: iteratively approximates J by a quadratic function
- Since $\delta \omega$ is a 'small' change to the initial guess $\omega^{(k)}$, we can approximate J using a Taylor-series expansion:

$$
J\left(\omega^{(k)}+\delta \omega\right) \approx J\left(\omega^{(k)}\right)+\underbrace{\left(\left.\frac{\partial J(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)}_{\text {Gradient Transpose }} \delta \omega+\frac{1}{2} \delta \omega^{T} \underbrace{\left(\left.\frac{\partial^{2} J(\omega)}{\partial \omega \partial \omega^{T}}\right|_{\omega=\omega^{(k)}}\right)}_{\text {Hessian }} \delta \omega
$$

- The symmetric Hessian matrix $\nabla^{2} J\left(\omega^{(k)}\right)$ needs to be positive-definite for this method to work.

Newton's Method (Second Order Method)

Newton's Method (Second Order Method)

- Find $\delta \omega$ that minimizes the quadratic approximation $J\left(\omega^{(k)}+\delta \omega\right)$
- Since this is an unconstrained optimization problem, $\delta \omega^{*}$ can be determined by setting the derivative with respect to $\delta \omega$ to zero:

$$
\begin{aligned}
\frac{\partial J\left(\omega^{(k)}+\delta \omega\right)}{\partial \delta \omega} & =\left(\left.\frac{\partial J(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)+\delta \omega^{T}\left(\left.\frac{\partial^{2} J(\omega)}{\partial \omega \partial \omega^{T}}\right|_{\omega=\omega^{(k)}}\right) \\
& \Rightarrow\left(\left.\frac{\partial^{2} J(\omega)}{\partial \omega \partial \omega^{T}}\right|_{\omega=\omega^{(k)}}\right) \delta \omega=-\left(\left.\frac{\partial J(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}
\end{aligned}
$$

- The above is a linear system of equations and can be solved when the Hessian is invertible, i.e., $\nabla^{2} J\left(\omega^{(k)}\right) \succ 0$:

$$
\delta \omega^{*}=-\left[\nabla^{2} J\left(\omega^{(k)}\right)\right]^{-1} \nabla J\left(\omega^{(k)}\right)
$$

- Newton's method:

$$
\omega^{(k+1)}=\omega^{(k)}-\alpha^{(k)}\left[\nabla^{2} J\left(\omega^{(k)}\right)\right]^{-1} \nabla J\left(\omega^{(k)}\right)
$$

Newton's Method (Comments)

- Newton's method, like any other descent method, converges only to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimal point, the function value is decreased sublinearly, i.e., the step sizes $\alpha^{(k)}$ are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e. $\alpha^{(k)}=1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian, which can be numerically ill-conditioned or very computationally expensive in high dimensional problems

Gauss-Newton's Method

- Gauss-Newton is an approximation to the Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$
J(\omega)=\frac{1}{2} \mathbf{u}(\omega)^{T} \mathbf{u}(\omega)
$$

- The Jacobian and Hessian matrices are:

Jacobian:

$$
\begin{aligned}
\left.\frac{\partial J(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}= & \mathbf{u}\left(\omega^{(k)}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \\
\left.\frac{\partial^{2} J(\omega)}{\partial \omega \partial \omega^{2}}\right|_{\omega=\omega^{(k)}}= & \left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \\
& +\sum_{i=1}^{M} \mathbf{u}_{i}\left(\omega^{(k)}\right)\left(\left.\frac{\partial^{2} \mathbf{u}_{i}(\omega)}{\partial \omega \partial \omega^{2}}\right|_{\omega=\omega^{(k)}}\right)
\end{aligned}
$$

Hessian:

Gauss-Newton's Method

- Near the minimum of J, the second term in the Hessian is small relative to the first and the Hessian can be approximated according to:

$$
\left.\frac{\partial^{2} J(\omega)}{\partial \omega \partial \omega^{2}}\right|_{\omega=\omega^{(k)}} \approx\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)
$$

- The above does not involve any second derivatives and leads to the system:

$$
\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \delta \omega=-\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T} \mathbf{u}\left(\omega^{(k)}\right)
$$

- Gauss-Newton's method:

$$
\omega^{(k+1)}=\omega^{(k)}-\alpha^{(k)} \delta \omega^{*}
$$

Gauss-Newton's Method (Alternative Derivation)

- Another way to think about the Gauss-Newton method is to start with a Taylor expansion of $\mathbf{u}(\omega)$ instead of $J(\omega)$:

$$
\mathbf{u}\left(\omega^{(k)}+\delta \omega\right) \approx \mathbf{u}\left(\omega^{(k)}\right)+\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \delta \omega
$$

- Substituting into J leads to:

$$
J\left(\omega^{(k)}+\delta \omega\right) \approx \frac{1}{2}\left(\mathbf{u}\left(\omega^{(k)}\right)+\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \delta \omega\right)^{T}\left(\mathbf{u}\left(\omega^{(k)}\right)+\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \delta \omega\right)
$$

- Minimizing this with respect to $\delta \omega$ leads to the same system as before:

$$
\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right) \delta \omega=-\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T} \mathbf{u}\left(\omega^{(k)}\right)
$$

Levenberg-Marquardt's Method

- The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix \mathbf{D} to condition the Hessian matrix:

$$
\left(\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T}\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)+\lambda \mathbf{D}\right) \delta \omega=-\left(\left.\frac{\partial \mathbf{u}(\omega)}{\partial \omega}\right|_{\omega=\omega^{(k)}}\right)^{T} \mathbf{u}\left(\omega^{(k)}\right)
$$

- When $\lambda \geq 0$ is large, the descent vector $\delta \omega$ corresponds to a very small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

