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Color Imaging

» Image sensor: converts light into
small bursts of current

» Analog imaging technology uses
charge-coupled devices (CCD) or
complementary metal-oxide
semiconductors (CMOS)

» CCD/CMOS photosensor array:

» A phototransistor converts light into current
»> Each transistor charges a capacitor to measure:
#tphotons/sampling time
> R,G,B filters are used to modify the absorption profiles of photons
» Analog-to-digital conversion of R,G,B transistor values to pixel values:

R=127 , G =200, B =103 (24-bit color)
——
8 bits (0-255) 2



Why RGB, Why 37
> Retina: types of photoreceptors: rod & cone cells (S,M,L)

» Rod cells:
» insensitive to wavelength but highly sensitive to intensity
» mostly saturated during daylight conditions
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» Cone cells:
> Given an arbitrary light spectral distribution f(\), the cone cells act as
filters that provide a convolution-like signal to the brain:

wavelength

wavelength

» Color blind people are deficient in 1 or more of these cones
» Other animals (e.g., fish) have more than 3 cones



Luma-Chroma Color Space

» YUV (YCbCr): a linear transformation of RGB
» Luminance/Brightness (Y) ~ (R+ G+ B)/3  } gray-scale image

» Blueness (U/Cb) ~ (B — G)
» Redness (V/Cr) = (R - G)

» Used in analog TV for PAL/SECAM composite color video standards
7Y

} chrominance




HSV and LAB Color Spaces

» HSV: cylindrical coordinates of RGB points
» Hue (H): angular dimension (red ~ 0°, green HSV
A~ 120°, blue = 240°) Saturation

> Saturation (S): pure red has saturation 1,
while tints have saturation < 1 T

Value

> Value/Brightness (V): achromatic/gray
colors ranging from black (V = 0, bottom) to
white (V =1, top)

)Hue

» LAB: nonlinear transformation of RGB; device independent
> Lightness (L): from black (L = 0) to white (L = 100)
> Position between green and red/magenta (A)
> Position between blue and yellow (B)



Image Formation

» Pixel values depend on:
P> Scene geometry

> Scene photometry (illumination and reflective properties)
> Scene dynamics (moving objects)
» Using camera images to infer a representation of the world is challenging

because the shape, material properties, and motion of the observed
scene are in general unknown

» Color Segmentation: aims to segment the 3-D color space into a set
of discrete volumes:
> Each pixel is a 3-D vector: x = (Y, Cb, Cr)

> Discrete color labels: y € {1,..., N}



Classification Problem

» Pixel values are noisy

» Learn a probabilistic model p(y | x) of the color classes y given
color-space training data D = {(x;,y;)}

» Define a color map that transforms a color-space input into a discrete

color label:
classifier
x ———— argmaxp(y | x)
y
Cb
p(x|"blue")

Cr Y
Q

p(x|"orange")



Color-based Object Detection

real-time robot vision system

Robot Soccer Example:

RGB color image at 30 fps from camera
1 Color Segmentation
Each pixel is labelled by symbolic colors

Union-find algorithm

Connected components (blobs)

Extract region properties: centroid,
bounding box, major/minor axis,

v etc.
Classify objects based on shape




Project 1: Color Segmentation

» Train a probabilistic color model based on a set of training images

» Use the model to classify the colors on an unseen test image

» Detect a blue barrel based on the color segmentation (last year was red!)
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Project 1 Tips

>

>

Define K color classes, e.g., barrel-blue, not-barrel-blue, brown, green

Label examples for each color class to obtain a training dataset
D = {x;,yi} (use roipoly)

Train a discriminative p(y | x) (Logistic Regression) or p(y | x)
generative (Gaussian or Gaussian Mixture) model

Given a test image, classify each pixel into one of the K color classes
using your model

Find blue regions (use findContours)

Enumerate blue region combinations and score them based on
“barrelness” (use regionprops)

Experiment with different colorspaces and parameters
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Example: findContours and regionprops

» Use the openCV function “findContours” to combine individual pixels
into blue regions:

import numpy as np

import cv2

im = cv2.imread('test.jpg’)

binarylm = myBlueDetector(im)

contours, hierarchy = cv2.findContours(binarylm,
cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

» Enumerate blue region combinations and score them based on
“barrelness” using regionprops

from skimage.measure import label, regionprops

props = skimage.measure.regionprops(contour_mask)
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Orange Ball Recognition

Color image:

» Center of mass:

(ex,cy) = N%, > (X0 ¥p)
» Fit an ellipse: orange
1 connected
Vxx = ﬁ (Xp o CX)Z N region
p N
1
Vyy = N, —cy)? X -
Vxy = L cx)(yp —cy)
XY — N X Y

» Recognize a spherical ball based on thresholds €, €1 on the eigenvalues
% %
)\0, /\1 of I: XX XY:|

Vxy Vyy
> size: min Ay, A2 > €
» eccentricity: 1—¢ < % <1l+e
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Supervised Learning

» Given iid training data D := {x;, y;}"_; of examples x; € RY with
associated labels y; € R (often also written as D = (X,y)), generated
from an unknown joint pdf

» Goal: learn a function: h:RY — R that can assign a label y to a given
data point x, either from the training dataset D or from an unseen test
set generated from the same unknown pdf

» The function h should perform “well”:
> Classification (dlscrete ye{-1,1}"):

mln;, LOSSO 1 Z ]lh NEYi
> Regression (contmuous y € ]R”)
min, RMSE (h \/ > —yi)?
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Generative vs Discriminative Models

» Generative model
> h(x) := arg max p(y, x)
y

> Choose p(y,x) so that it approximates the unknown data-generating pdf

> Can generate new examples x with associated labels y by sampling from
p(y,x)

» Examples: Naive Bayes, Mixture Models, Hidden Markov Models,
Restricted Boltzmann Machines, Latent Dirichlet Allocation, etc.

» Discriminative model
> h(x) := arg max p(y|x)
y

> Choose p(y|x) so that it approximates the unknown label-generating pdf

> Because it models p(y|x) directly, a discriminative model cannot generate
new examples x but given x it can predict (discriminate) y.

> Examples: Linear Regression, Logistic Regression, Support Vector
Machines, Neural Networks, Random Forests, Conditional Random Fields,
etc.
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Parameteric Learning

» Represent the pdfs p(y|x;w) (discriminative) or p(y, x;w) (generative)
using parameters w

» Estimate/optimize/learn w based on the training set D = (X,y) in a
way that w* produces good results on a test set

» Parameter estimation strategies:

> Maximum Likelihood Estimation (MLE): maximize the likelihood of
the data D given the parameters w

» Maximum A Posteriori (MAP): maximize the likelihood of the
parameters w given the data D

> Bayesian Inference: estimate the whole distribution of the parameters w
given the data D
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Paramete

ric Learning

» Maximum Likelihood Estimation (MLE):

MLE Discriminative Model Generative Model
Training | wye := argmaxp(y | X,w) | wmie := argmax p(y, X | w)
w w
Testing | argmaxp(y*” | X wmie) | argmaxply*,x" | wmie)
y* y*
» Maximum A Posteriori (MAP):
MAP Discriminative Model Generative Model
wmap = argmax p(w | y, X) wmap = argmax p(w | y, X)
Training @ @
= argmaxp(y | X,w)p(w | X) = argmaxp(y, X | w)p(w)
w w
Testing argmax p(y* | x*, wmap) arg max p(y*, x* | wmap)
y* y*
» Bayesian Inference:
2] Discriminative Model Generative Model
Training p(w |y, X) o< ply | X,w)p(w [ X) p(w |y, X) < p(y, X | w)p(w)
Testing | p(y* | x*,y, X) = [ p(y* [ x*,w)p(w |y, X)dw | p(y*,x* [y, X) = [ p(y*,x" [ w)p(w | y, X)dw
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Unconstrained Optimization

» The MLE, MAP, and, often, Bayesian Inference approaches lead to an
optimization problem of the form:

m(jn J(w)

Descent Direction Theorem

Suppose J is differentiable at @. If 3 §w such that VJ(&)Téw < 0, then
3 € > 0 such that J(@ + adw) < J(@) for all a € (0, ¢€).

» The vector dw is called a descent direction

» The theorem states that if a descent direction exists at @, then it is
possible to move to a new point that has a lower J value.

» Steepest descent direction: jw := —%

» Based on this theorem, we can derive conditions for determining the
optimality of @
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Optimality Conditions

First-order Necessary Condition

Suppose J is differentiable at @. If @ is a local minimizer, then V(&) = 0.

Second-order Necessary Condition

Suppose J is twice-differentiable at @. If @ is a local minimizer, then
V(@) =0 and V?f(@) = 0.

Second-order Sufficient Condition

Suppose J is twice-differentiable at @. If V(@) = 0 and V?f(@) = 0, then
@ is a local minimizer.

Necessary and Sufficient Condition

Suppose J is differentiable at @. If J is convex, then @ is a global minimizer
if and only if VJ(©) =0.
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Descent Optimization Methods

» Convex unconstrained optimization: just need to solve the equation
VJ(w) = 0 to determine the optimal parameters w*

» Even if J is not convex, we can obtain a critical point by solving
VJ(w) =0

» However, VJ(w) = 0 might not be easy to solve explicitly

» Descent methods: iterative methods for unconstrained optimization.
Given an initial guess w(k), take a step of size (k) > 0 along a certain
direction dw(k):

W) — (k) (k) 5, (k)

» Different methods differ in the way dw(k) and (%) are chosen but
> 5w(k) should be a descent direction: VJ(w))Tw®) < 0 for all wk) £ w*

» k) needs to ensure sufficient decrease in J to guarantee convergence:

ok e argmin J(w) + adw®)
a>0

Usually a(%) is obtained via inexact line search methods
20



Gradient Descent (First Order Method)

» Idea: —V,,J(w)) points in the direction of steepest local descent
» Gradient descent: let dw(¥) := -V, J(w(K) and iterate:
w1 = ) — (v, J(wk)

> A good choice for a(¥) is % where L is the Lipschitz constant of VJ
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Newton's Method (Second Order Method)

» Newton’s method: iteratively approximates J by a quadratic function

> Since dw is a ‘small* change to the initial guess w(*), we can
approximate J using a Taylor-series expansion:

0J(w) 1 0?J(w)

(k) ~ J(wk) 1o 7

J(w\ + dw) = J(W') + ( R w_w(k)) ow + 25w (&u@wT o ow
Gradient Transpose Hessian

» The symmetric Hessian matrix V2J(w(¥)) needs to be positive-definite
for this method to work.
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Newton's Method (Second Order Method)

A T(Sw, wD) T (6w, w®) J(w)

J(@©@) =70, w®)
T (6w, w®)
J(@®) =70, w™®)
T(Sw D, 0®)
J(@®)

A\ 4

0 0@ M y©
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Newton's Method (Second Order Method)

» Find dw that minimizes the quadratic approximation J(w(*) 4 dw)

» Since this is an unconstrained optimization problem, dw* can be
determined by setting the derivative with respect to dw to zero:

J(wk) 4 6w) ~ [(0J(w) 45T 0 J(w)
dow O\ w | _w QwOw ™| _ w0
-
w:w(k)>

Owdw T

» The above is a linear system of equations and can be solved when the
Hessian is invertible, i.e., V2J(w(k)) > 0:

-1
Sw* = — [V2J(w(k>)] v J(w k)
» Newton’s method:
-1
WD) — (k) _ (k) [Vz J(w(k))} v J(w )
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Newton's Method (Comments)

» Newton's method, like any other descent method, converges only to a
local minimum

» Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes a(¥) are small

» Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e. (k) =1, and
the function value converges quadratically to the optimum

» A disadvantage of Newton's method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high dimensional problems
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Gauss-Newton’'s Method

» Gauss-Newton is an approximation to the Newton's method that
avoids computing the Hessian. It is applicable when the objective
function has the following quadratic form:

1

Jw) = u(@) Tu(w)

» The Jacobian and Hessian matrices are:

o 0@ ey (2u)

Jacobian: o | u(w™) 0w |,
W) [ Bu(w) " (du(w)

Hessian: Bwd? | = ( Ow w:w(k)> < Ow w:w(k)>

M
0%u;(w)
k i
* Z ui(w) < Owdw?
i=1

w—w(k))
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Gauss-Newton’'s Method

» Near the minimum of J, the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

N <8u(w) )T <8u(w) )
w=w(k) - Ow w=w(k) Ow w=w(k)

» The above does not involve any second derivatives and leads to the

system:
T Ju(w) ou(w)
) L)
w=w(k) 0w | ,— 0 Ow

<6u(w)
» Gauss-Newton’s method:
Wkt — (k) _ (k) §,*

92 J(w)
OwOw?

-
) u(w(k))
w=wk)

ow
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Gauss-Newton's Method (Alternative Derivation)

» Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of u(w) instead of J(w):
) dw
w=w(k)

) (s (52 ) )

» Minimizing this with respect to dw leads to the same system as before:

(52 ) () (L) e

ou(w)
Ow

u(w® + 6w) ~ u(w®)) + <

» Substituting into J leads to:

e i (38
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Levenberg-Marquardt's Method

» The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian matrix:

((82(:]) w_w(k)> T (6?35:0) oJ_u,(k)) i AD) W <al:3£:d) )T u(e)

» When A > 0 is large, the descent vector dw corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

w=wk)
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