
ECE276A: Sensing & Estimation in Robotics
Lecture 3: Color Vision and Parameter Estimation

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Color Imaging

I Image sensor: converts light into
small bursts of current

I Analog imaging technology uses
charge-coupled devices (CCD) or
complementary metal-oxide
semiconductors (CMOS)

I CCD/CMOS photosensor array:
I A phototransistor converts light into current

I Each transistor charges a capacitor to measure:

#photons/sampling time

I R,G,B filters are used to modify the absorption profiles of photons

I Analog-to-digital conversion of R,G,B transistor values to pixel values:

R = 127︸ ︷︷ ︸
8 bits (0-255)

, G = 200, B = 103 (24-bit color)

2

Why RGB, Why 3?
I Retina: types of photoreceptors: rod & cone cells (S,M,L)

I Rod cells:
I insensitive to wavelength but highly sensitive to intensity
I mostly saturated during daylight conditions

3

I Cone cells:
I Given an arbitrary light spectral distribution f (λ), the cone cells act as

filters that provide a convolution-like signal to the brain:

I Color blind people are deficient in 1 or more of these cones
I Other animals (e.g., fish) have more than 3 cones

4

Luma-Chroma Color Space
I YUV (YCbCr): a linear transformation of RGB

I Luminance/Brightness (Y) ≈ (R + G + B)/3 } gray-scale image

I Blueness (U/Cb) ≈ (B − G)
}

chrominance
I Redness (V/Cr) ≈ (R − G)

I Used in analog TV for PAL/SECAM composite color video standards

5

HSV and LAB Color Spaces

I HSV: cylindrical coordinates of RGB points
I Hue (H): angular dimension (red ≈ 0◦, green
≈ 120◦, blue ≈ 240◦)

I Saturation (S): pure red has saturation 1,
while tints have saturation < 1

I Value/Brightness (V): achromatic/gray
colors ranging from black (V = 0, bottom) to
white (V = 1, top)

I LAB: nonlinear transformation of RGB; device independent
I Lightness (L): from black (L = 0) to white (L = 100)
I Position between green and red/magenta (A)
I Position between blue and yellow (B)

6

Image Formation

I Pixel values depend on:
I Scene geometry

I Scene photometry (illumination and reflective properties)

I Scene dynamics (moving objects)

I Using camera images to infer a representation of the world is challenging
because the shape, material properties, and motion of the observed
scene are in general unknown

I Color Segmentation: aims to segment the 3-D color space into a set
of discrete volumes:
I Each pixel is a 3-D vector: x = (Y ,Cb,Cr)

I Discrete color labels: y ∈ {1, . . . ,N}

7

Classification Problem
I Pixel values are noisy

I Learn a probabilistic model p(y | x) of the color classes y given
color-space training data D = {(xi , yi)}

I Define a color map that transforms a color-space input into a discrete
color label:

x
classifier−−−−−→ arg max

y
p(y | x)

8

Color-based Object Detection

9

Project 1: Color Segmentation
I Train a probabilistic color model based on a set of training images

I Use the model to classify the colors on an unseen test image

I Detect a blue barrel based on the color segmentation (last year was red!)

10

Project 1 Tips

I Define K color classes, e.g., barrel-blue, not-barrel-blue, brown, green

I Label examples for each color class to obtain a training dataset
D = {xi , yi} (use roipoly)

I Train a discriminative p(y | x) (Logistic Regression) or p(y | x)
generative (Gaussian or Gaussian Mixture) model

I Given a test image, classify each pixel into one of the K color classes
using your model

I Find blue regions (use findContours)

I Enumerate blue region combinations and score them based on
“barrelness” (use regionprops)

I Experiment with different colorspaces and parameters

11

Example: findContours and regionprops

I Use the openCV function “findContours” to combine individual pixels
into blue regions:

import numpy as np

import cv2

im = cv2.imread(’test.jpg’)

binaryIm = myBlueDetector(im)

contours, hierarchy = cv2.findContours(binaryIm,

cv2.RETR EXTERNAL,cv2.CHAIN APPROX SIMPLE)

I Enumerate blue region combinations and score them based on
“barrelness” using regionprops

from skimage.measure import label, regionprops

props = skimage.measure.regionprops(contour mask)

12

Orange Ball Recognition

I Center of mass:
(cX , cY) = 1

Np

∑
p(xp, yp)

I Fit an ellipse:

VXX =
1

Np

∑
p

(xp − cX)2

VYY =
1

Np

∑
p

(yp − cY)2

VXY =
1

Np

∑
p

(xp − cX)(yp − cY)

I Recognize a spherical ball based on thresholds ε0, ε1 on the eigenvalues

λ0, λ1 of

[
VXX VXY

VXY VYY

]
I size: minλ1, λ2 ≥ ε0

I eccentricity: 1− ε1 ≤ λ1

λ2
≤ 1 + ε1

13

Supervised Learning

I Given iid training data D := {xi , yi}ni=1 of examples xi ∈ Rd with
associated labels yi ∈ R (often also written as D = (X , y)), generated
from an unknown joint pdf

I Goal: learn a function: h : Rd → R that can assign a label y to a given
data point x, either from the training dataset D or from an unseen test
set generated from the same unknown pdf

I The function h should perform “well”:
I Classification (discrete y ∈ {−1, 1}n):

minh Loss0−1(h) :=
1

n

n∑
i=1

1h(xi)6=yi

I Regression (continuous y ∈ Rn):

minh RMSE (h) :=
√

1
n

∑n
i=1(h(xi)− yi)2

14

Generative vs Discriminative Models

I Generative model
I h(x) := arg max

y
p(y , x)

I Choose p(y , x) so that it approximates the unknown data-generating pdf
I Can generate new examples x with associated labels y by sampling from

p(y , x)
I Examples: Naive Bayes, Mixture Models, Hidden Markov Models,

Restricted Boltzmann Machines, Latent Dirichlet Allocation, etc.

I Discriminative model
I h(x) := arg max

y
p(y |x)

I Choose p(y |x) so that it approximates the unknown label-generating pdf
I Because it models p(y |x) directly, a discriminative model cannot generate

new examples x but given x it can predict (discriminate) y .
I Examples: Linear Regression, Logistic Regression, Support Vector

Machines, Neural Networks, Random Forests, Conditional Random Fields,
etc.

15

Parameteric Learning

I Represent the pdfs p(y |x;ω) (discriminative) or p(y , x;ω) (generative)
using parameters ω

I Estimate/optimize/learn ω based on the training set D = (X , y) in a
way that ω∗ produces good results on a test set

I Parameter estimation strategies:
I Maximum Likelihood Estimation (MLE): maximize the likelihood of

the data D given the parameters ω

I Maximum A Posteriori (MAP): maximize the likelihood of the
parameters ω given the data D

I Bayesian Inference: estimate the whole distribution of the parameters ω
given the data D

16

Parameteric Learning

I Maximum Likelihood Estimation (MLE):
MLE Discriminative Model Generative Model

Training ωMLE := arg max
ω

p(y | X , ω) ωMLE := arg max
ω

p(y,X | ω)

Testing arg max
y∗

p(y∗ | x∗, ωMLE) arg max
y∗

p(y∗, x∗ | ωMLE)

I Maximum A Posteriori (MAP):
MAP Discriminative Model Generative Model

Training

ωMAP = arg max
ω

p(ω | y,X)

= arg max
ω

p(y | X , ω)p(ω | X)

ωMAP = arg max
ω

p(ω | y,X)

= arg max
ω

p(y,X | ω)p(ω)

Testing arg max
y∗

p(y∗ | x∗, ωMAP) arg max
y∗

p(y∗, x∗ | ωMAP)

I Bayesian Inference:
BI Discriminative Model Generative Model

Training p(ω | y,X) ∝ p(y | X , ω)p(ω | X) p(ω | y,X) ∝ p(y,X | ω)p(ω)

Testing p(y∗ | x∗, y,X) =
∫
p(y∗ | x∗, ω)p(ω | y,X)dω p(y∗, x∗ | y,X) =

∫
p(y∗, x∗ | ω)p(ω | y,X)dω

17

Unconstrained Optimization
I The MLE, MAP, and, often, Bayesian Inference approaches lead to an

optimization problem of the form:

min
ω

J(ω)

Descent Direction Theorem

Suppose J is differentiable at ω̄. If ∃ δω such that ∇J(ω̄)T δω < 0, then
∃ ε > 0 such that J(ω̄ + αδω) < J(ω̄) for all α ∈ (0, ε).

I The vector δω is called a descent direction

I The theorem states that if a descent direction exists at ω̄, then it is
possible to move to a new point that has a lower J value.

I Steepest descent direction: δω := − ∇J(ω̄)
‖∇J(ω̄)‖

I Based on this theorem, we can derive conditions for determining the
optimality of ω̄

18

Optimality Conditions

First-order Necessary Condition

Suppose J is differentiable at ω̄. If ω̄ is a local minimizer, then ∇f (ω̄) = 0.

Second-order Necessary Condition

Suppose J is twice-differentiable at ω̄. If ω̄ is a local minimizer, then
∇f (ω̄) = 0 and ∇2f (ω̄) � 0.

Second-order Sufficient Condition

Suppose J is twice-differentiable at ω̄. If ∇f (ω̄) = 0 and ∇2f (ω̄) � 0, then
ω̄ is a local minimizer.

Necessary and Sufficient Condition

Suppose J is differentiable at ω̄. If J is convex, then ω̄ is a global minimizer
if and only if ∇J(ω̄) = 0.

19

Descent Optimization Methods
I Convex unconstrained optimization: just need to solve the equation
∇J(ω) = 0 to determine the optimal parameters ω∗

I Even if J is not convex, we can obtain a critical point by solving
∇J(ω) = 0

I However, ∇J(ω) = 0 might not be easy to solve explicitly

I Descent methods: iterative methods for unconstrained optimization.
Given an initial guess ω(k), take a step of size α(k) > 0 along a certain
direction δω(k):

ω(k+1) = ω(k) + α(k)δω(k)

I Different methods differ in the way δω(k) and α(k) are chosen but
I δω(k) should be a descent direction: ∇J(ω(k))T δω(k) < 0 for all ω(k) 6= ω∗

I α(k) needs to ensure sufficient decrease in J to guarantee convergence:

α(k),∗ ∈ arg min
α>0

J(ω(k) + αδω(k))

Usually α(k) is obtained via inexact line search methods
20

Gradient Descent (First Order Method)

I Idea: −∇ωJ(ω(k)) points in the direction of steepest local descent

I Gradient descent: let δω(k) := −∇ωJ(ω(k)) and iterate:

ω(k+1) = ω(k) − α(k)∇ωJ(ω(k))

I A good choice for α(k) is 1
L , where L is the Lipschitz constant of ∇J

21

Newton’s Method (Second Order Method)

I Newton’s method: iteratively approximates J by a quadratic function

I Since δω is a ‘small‘ change to the initial guess ω(k), we can
approximate J using a Taylor-series expansion:

J(ω(k) + δω) ≈ J(ω(k)) +

(
∂J(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
︸ ︷︷ ︸

Gradient Transpose

δω +
1

2
δωT

(
∂2J(ω)

∂ω∂ωT

∣∣∣∣
ω=ω(k)

)
︸ ︷︷ ︸

Hessian

δω

I The symmetric Hessian matrix ∇2J(ω(k)) needs to be positive-definite
for this method to work.

22

Newton’s Method (Second Order Method)

23

Newton’s Method (Second Order Method)
I Find δω that minimizes the quadratic approximation J(ω(k) + δω)

I Since this is an unconstrained optimization problem, δω∗ can be
determined by setting the derivative with respect to δω to zero:

∂J(ω(k) + δω)

∂δω
=

(
∂J(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
+ δωT

(
∂2J(ω)

∂ω∂ωT

∣∣∣∣
ω=ω(k)

)
⇒

(
∂2J(ω)

∂ω∂ωT

∣∣∣∣
ω=ω(k)

)
δω = −

(
∂J(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T

I The above is a linear system of equations and can be solved when the
Hessian is invertible, i.e., ∇2J(ω(k)) � 0:

δω∗ = −
[
∇2J(ω(k))

]−1
∇J(ω(k))

I Newton’s method:

ω(k+1) = ω(k) − α(k)
[
∇2J(ω(k))

]−1
∇J(ω(k))

24

Newton’s Method (Comments)

I Newton’s method, like any other descent method, converges only to a
local minimum

I Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes α(k) are small

I Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e. α(k) = 1, and
the function value converges quadratically to the optimum

I A disadvantage of Newton’s method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high dimensional problems

25

Gauss-Newton’s Method

I Gauss-Newton is an approximation to the Newton’s method that
avoids computing the Hessian. It is applicable when the objective
function has the following quadratic form:

J(ω) =
1

2
u(ω)Tu(ω)

I The Jacobian and Hessian matrices are:

Jacobian:
∂J(ω)

∂ω

∣∣∣∣
ω=ω(k)

= u(ω(k))T
(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
Hessian:

∂2J(ω)

∂ω∂ω2

∣∣∣∣
ω=ω(k)

=

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T (∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
+

M∑
i=1

ui (ω
(k))

(
∂2ui (ω)

∂ω∂ω2

∣∣∣∣
ω=ω(k)

)

26

Gauss-Newton’s Method

I Near the minimum of J, the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

∂2J(ω)

∂ω∂ω2

∣∣∣∣
ω=ω(k)

≈
(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T (∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
I The above does not involve any second derivatives and leads to the

system:(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T (∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
δω = −

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T

u(ω(k))

I Gauss-Newton’s method:

ω(k+1) = ω(k) − α(k)δω∗

27

Gauss-Newton’s Method (Alternative Derivation)

I Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of u(ω) instead of J(ω):

u(ω(k) + δω) ≈ u(ω(k)) +

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
δω

I Substituting into J leads to:

J(ω(k) + δω) ≈ 1

2

(
u(ω(k)) +

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
δω

)T (
u(ω(k)) +

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
δω

)
I Minimizing this with respect to δω leads to the same system as before:(

∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T (∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
δω = −

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T

u(ω(k))

28

Levenberg-Marquardt’s Method

I The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian matrix:((

∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T (∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)
+ λD

)
δω = −

(
∂u(ω)

∂ω

∣∣∣∣
ω=ω(k)

)T

u(ω(k))

I When λ ≥ 0 is large, the descent vector δω corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

29

