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Gaussian (Mixture) Discriminant Analysis

» A generative model that uses a Gaussian Mixture with J components
to model p(x; | yi,w):

p(y, X | w,0) = p(y | 0)p(X | y,w) = p(y | 0) [ ] p(xi | yi,w)
i=1

p(y|0): HH‘QE{M g p(xi | yi = k,w) Zakj Xnﬂkjvzkj)

i=1 k=1 Jj=1
» Training via MLE: rgaxp(y,X | 6,w)
W

» The MLE of 6 can be obtained via the softmax trick and differentiation as
we saw for the single-Gaussian discriminant analysis

» Obtaining MLE estimates for w := {au;, fukj, Xk} is no longer straight
forward because log ijzl o (Xi; tkj, Lij) is not convex/concave

» Also, need to ensure that Zle ag =1, Vk.



Data Log Likelihood

> log p(y, X | w,0) Zzll{y, = k} log 0
i= lk 1

+Zzﬂ{y,—k}log Z% ¢ (% 1uig, Z45)

i=1 k=1
» Focus on max wrt w 1= {ay;, jtkj, Xk }; the first term can be ignored

» To simplify notation, let Dy := {(x;,¥;) | yi = k} € D and define:

K J
AX,w) =" log | D cujod (x: pusgs Tig)

k=1 x€Dy j=1



Gaussian Mixtures

» Gaussian Mixtures are well suited for modeling clusters of points:
P each cluster is assigned a Gaussian
P the mean is somewhere in the middle of the cluster
» the covariance measures the cluster spread

» Sampling from a Gaussian Mixture:
» Draw an integer between 1 and J with probability oy
» Draw a vector x from the j-th Gaussian pdf ¢ (x; tkj, ;)

» It is useful to understand the meaning of qx(Jj,x) := i (X; tikj, Lj)

> Given class k, gx(j,x)dx is the joint probability of drawing component j
and data point x in a volume dx around it

» The membership probability of data point x is the conditional
probability of having selected component j given x:

J

r(j | x :M r(/ | x) =
k(%) : ST (1) jz_;k(J’ )=1



Local maxima of A(X, )

» Maxima of Z Z log Zaquﬁ (X; fij, Xij) | occur at critical points

k=1xeDy
> L)\(X,w): > — S ¢ (X Hims Zim)
dptim 25, i i (% g, Tyf) Dbt
= > nlm | x)(um —x) "5,
xeD;

d 1
> X i E -1 _ _ Tsy—-1_ §-1

» Use softmax trick for ay; to handle simplex constraints

d 1 d I
dYim )g;{ zle i (x; g, le) Z dVim i) 21j

= (n(m]x) = am)

xeD,




Local maxima of A\(X,w)

» Setting the previous derivatives to zero, we obtain:

o = iz Myi = k(G | xi) i = > iy My = ki | xi)xi
! >iy Hyi = k} T Yy =k I xi)
5= > Wy = k3G | xi) (xi — puig ) (xi — ) ™
’ >in Hyi = k}ncU [ xi)

» The mixture weights are equal to the sample mean of the membership
probabilities rc(j | x;) assuming a uniform distribution over Dy

» The latter are the sample mean and covariance of the data, weighted by
the membership probabilities

» The three equations are coupled through ri(j | x), which depends on
w 1= {oug, fikj, ki }, and hence are hard to solve directly

» Optimization ldea:
> start with a guess w(® and use a descent method
> iterate between updating r,(j | x;) and updating w(®)



Clustering

» How do we obtain an initial guess w(®) := {afg),,ug), ZS{?)}?

» Clustering (or vector quantization) is the task of grouping objects in a
way that those in the same group (a cluster) are more similar (according
to a distance metric) to each other than to those in other groups.

» Unsupervised Learning: given an unlabeled dataset D = {x;}7_;, the
goal is to partition it into J clusters



k-means Algorithm

» The k-means algorithm is an iterative clustering algorithm that uses
coordinate descent to solve the following optimization:

min C(p, r erlj”;uj X:Hz

o i=1 j=1
» u; are the cluster centroids
P rjj i= 15 is closest to ;) are the cluster membership indicators

» It is common to repeat the algorithm several times with different
initialization of y;

» Since k-means is optimizing || - ||2, it implicitly makes a spherical
assumption on the shape of the clusters.



k-means Algorithm

Algorithm 1 k-means clustering

1:

o

S

Input: unlabeled dataset D = {x;}"_;, number of clusters k
Output: cluster centroids j;, cluster assignments {r;;}
Init: pick k cluster centroids p1, ..., tk
repeat
# Assign examples to the nearest centroid:
ri =1, if j = argmin ||, — x;||3, and r; = 0, otherwise.
/

# Set each centroid to the mean of the examples assigned to it:
i i

Wi = arg#mln C(:u7 r) - m

until convergence




k-means Example

» Consider the following unlabeled dataset:
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» Use k-means to cluster X into kK = 2 clusters. Initialize:

o1 |1
H1 = X3 = 1 Mo = X5 = 1
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k-means Example
» Assign examples to the nearest

centroid, rjj:

OGP W N
OO R R F
R ==ROI OO N

» Update the cluster means:

- Z?:l ritXp —2.00
=S T | 466

133
H2= 1333
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k-means Example

» Repeat until convergence
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Expectation Maximization

» lterative maximization technique based on auxiliary lower bounds
» Old idea (late 50's) formalized by Dempster, Laird and Rubin in 1977

> Has two steps: Expectation (E) and Maximization (M)
> Generalizes k-means to probabilistic (soft) cluster assignments

» Similar to Newton’s method but is not restricted to a quadratic
approximations of the objective

» Applicable to a wide range of problems:
> Fitting mixture models

» Probabilistic latent semantic analysis: produce concepts related to
documents and terms (NLP)

» Learning parts and structure models (vision)

> Segmentation of layers in video (vision)

13



Expectation Maximization

T(dw,0®) T(w,0®)  J(w)

» Goal: min, J(w)

» J(w) is not necessarily
©) = 7(0, 0©
convex J(w T)(sz"((“),Z(“)g \
](w(ﬂ) = :r((),w(l)) \
f]'(é‘w‘v(U'w(l)) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ’
) —— o
0@ wMey©

> Initialize w(©® and iterate:
E. Construct an auxiliary upper-bound function 7 at w(®) such that:

J(w®) = T(w®, w®) < T(w,w®)
M. Solve the easier auxiliary minimization to obtain the next point:

W = arg min T (w, w®)

» The properties of 7 guarantee that each step gets closer to a local min:

J(@®) = T(w®, w®) > min T(w,w®) > J(wEHD)
v 14



Auxiliary Function

» EM is related to parameter estimation since it can be used to solve:
min J(w) for J(w) := —log p(D;w)

» The above might not be solvable in closed form by setting the gradient
VJ(w) to zero

» EM uses latent/hidden variables to construct an auxiliary upper bound
T (w,w®) to the negative data log likelihood J(w) at a given parameter
estimate w(t)

» The auxiliary upper bound is obtained by applying Jensen’s inequality
to the convex function — log(+)
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Convexity and Jensen’s Inequality
» f:R"™ — R is convex if one of the following holds:
> F(Ax+ (1= Ny) <A (x)+ (1= Nf(y), Vx,y e R" Xe][0,1]
> fy) = f(x) + VF(x) (y —x), Vxy€eR
> V2f(x) =0, VxcR"
» Jensen’s Inequality: let Y be a random variable and f : R — R be a
convex function. Then:

FE[Y]) < E[f(Y)]

» Example:
> f(x) := —log(x) is convex because f”(x) = & > 0 for x € (0, 00)

» Let Z be a discrete random variable with probability mass function
p(zj)) =P({Z=2z})=riforj=1,....m
P> Jensen's inequality applied to f and Y := ﬁ shows that:

~log(ELY]) log <Zo ) anog( ) =51
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Auxiliary Function

> Given the current parameter estimate w(t), EM introduces a latent
random variable Z with pdf r(z | D;w(t)):

J(w) = —log p(D; w) Jotal law _ Iog/p(D,z; w)dz

of prob.

__ ey PO zw)

— Iog/r(z|D,w )r(z|D;w(t))dZ

J ! .
ngne / H(z2] D: w®) log PLL:Zi0).
inequality r(z]D; w(t))

Auxiliary
— T (w, w(t) )
function

dz
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Auxiliary Function

» Assuming that — log p(D, z; w) is convex in w, the auxiliary function is
convex in w for a fixed r and convex in r for a fixed w (but not jointly
convex)

> The local minima of 7 (w,w(®) are local minima of — log p(D; w)

» The EM algorithm alternates between

(E step) finding the minimum upper bound to J(w) at w(®) (which is equivalent to
determining the pdf of the latent variable Z):

w® = arg min T(w?, 1)
n

(M step) minimizing the upper bound T to update the parameters:

p(D,z w)

———d
r(z|D; w(®) ‘

W) = arg min T (w, w®) = arg min — / r(z|D; w®) log

w
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M Step Details

p(D,z;w)

———d.
r(z|D; w(t)) ‘

min T (w, w®) = /r(z|D;w(t))Iog

= h(r(- | D;w(t)))—l—/r(z|D;w(t))Iogp(D,z;w)dz
N—_——

Entropy of r;

Weighted MLE where labeled examples
does not depend on w

{(x;, yi,zj)} are weighted by r(z | D; w(t))

» Differential entropy of a continuous random variable X with pdf p:

h(X) = —/p(x) log p(x)dx

» Kullback-Leibler (KL) divergence from pdf p to pdf g:

dez(pl|q) :—/ p(x) log E ;dx
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E Step Details
> Why is w() = argmin T (w(t),n)?
n

O p(D: (D
—log p(D; W) < T(w¥), ) = —/r(ZID:n) log "2 D’rzule)-prg)D,w Yo

= —log p(D; ) + de (r(- | D3 )Ir(- | D;))

» When minimizing the upper bound 7 (w(?), ) with respect to 7, we are
maximizing the similarity between r(- | D;n) and r(- | D;w(®)

» Choosing 77 = w() makes the upper bound 7 (w,w(®) tight, i.e., it
touches the negative log-likelihood function at w(?):

T(w®,w®) = — / r(z | D;w®)log p(D; w®)dz

= —log p(D;w®) = J(w®)
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Auxiliary Function for the GM Log Likelihood

> Latent variable: soft cluster assignment Z with pdf r,(- | x; w(*))

» Upper-bound the negative Gaussian Mixture log likelihood via Jensen's

inequality:
Z Z log qu J, %X w)
k= ].XEDk
: qk(j X'w)
s - ne( | % w®)log —2 22— T (w, w(®)
;xgkj; rk(,] ‘ X, W(t))

» A theoretical construction only since we already know that the minimum
of T(w(®),n) with respect to 7 occurs at w(t)
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Gaussian Mixture MLE via EM (summary)

> Start with initial guess w(t) := {0455)7/159) (t)} for t =0,
k=1,....K,j=1,...,J and iterate:

oz(kj)qﬁ(x, W, £19)
Z/:l O‘k/ (X““il) Zm)

(Estep) |9 %)=

n _ (t)(;
(t+1) i Hyi = ki '( | xi)
M ste Q. = -
( p) & Zizl 1{y; = k}

(1) _ Sora My = K G | xi)xi

kj t),.
S0y = kG | %)
.
s(t+1) _ Yy = k}rit)(/ | x;) ( MSH)) (Xi - HE;H))
k - n
7 S 1y = k3G | xi)
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Gaussian Mixture MLE via EM (comments)

» Sometimes the data is not enough to estimate all these parameters:
> Fix the weights oy = %

> Fix diagonal ¥4 = diag (laijl, e Jijn]T) or spherical ¥4 = 0%/,
» Estimate a diagonal covariance:
2
7 B : t+1
s (t+1) _ i Hyi = k}r£ )(J | x;)diag (Xi - uij )>
Ko = - .
’ S Uy = k0G| xi)

» Estimate a spherical covariance:

2
n (t) /- (t+1)
12 Wy = kin G I xi) ([xi = H
Uij(t+1) = - - ’ ) Xj € Rd

d S 1y = k3G | %)

» How should we initialize w(®)? Use k-means++!

» If o4;j — 0, the GM component assignments of EM become hard and
EM works like k-means.



