
ECE276A: Sensing & Estimation in Robotics
Lecture 5: Unsupervised Learning

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Gaussian (Mixture) Discriminant Analysis

I A generative model that uses a Gaussian Mixture with J components
to model p(xi | yi , ω):

p(y,X | ω, θ) = p(y | θ)p(X | y, ω) = p(y | θ)
n∏

i=1

p(xi | yi , ω)

p(y | θ) :=
n∏

i=1

K∏
k=1

θ
1{yi=k}
k p(xi | yi = k , ω) :=

J∑
j=1

αkjφ (xi ;µkj ,Σkj)

I Training via MLE: max
θ,ω

p(y,X | θ, ω)

I The MLE of θ can be obtained via the softmax trick and differentiation as
we saw for the single-Gaussian discriminant analysis

I Obtaining MLE estimates for ω := {αkj , µkj ,Σkj} is no longer straight

forward because log
∑J

j=1 αkjφ (xi ;µkj ,Σkj) is not convex/concave

I Also, need to ensure that
∑J

j=1 αkj = 1, ∀k .

2

Data Log Likelihood

I log p(y,X | ω, θ) =
n∑

i=1

K∑
k=1

1{yi = k} log θk

+
n∑

i=1

K∑
k=1

1{yi = k} log

 J∑
j=1

αkjφ (xi ;µkj ,Σkj)


I Focus on max wrt ω := {αkj , µkj ,Σkj}; the first term can be ignored

I To simplify notation, let Dk := {(xi , yi) | yi = k} ⊆ D and define:

λ(X , ω) :=
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

αkjφ (x;µkj ,Σkj)



3

Gaussian Mixtures
I Gaussian Mixtures are well suited for modeling clusters of points:

I each cluster is assigned a Gaussian
I the mean is somewhere in the middle of the cluster
I the covariance measures the cluster spread

I Sampling from a Gaussian Mixture:
I Draw an integer between 1 and J with probability αkj

I Draw a vector x from the j-th Gaussian pdf φ (x;µkj ,Σkj)

I It is useful to understand the meaning of qk(j , x) := αkjφ (x;µkj ,Σkj)

I Given class k , qk(j , x)dx is the joint probability of drawing component j
and data point x in a volume dx around it

I The membership probability of data point x is the conditional
probability of having selected component j given x:

rk(j | x) :=
qk(j , x)∑J
l=1 qk(l , x)

J∑
j=1

rk(j | x) = 1

4

Local maxima of λ(X , ω)

I Maxima of
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

αkjφ (x;µkj ,Σkj)

 occur at critical points

I
d

dµlm
λ(X , ω) =

∑
x∈Dl

αlm∑J
j=1 αljφ (x;µlj ,Σlj)

d

dµlm
φ (x;µlm,Σlm)

=
∑
x∈Dl

rl(m | x)(µlm − x)TΣ−1lm

I
d

dΣlm
λ(X , ω) =

1

2

∑
x∈Dl

rl(m | x)
(

Σ−1lm (µlm − x)(µlm − x)TΣ−1lm − Σ−1lm

)
I Use softmax trick for αkj to handle simplex constraints

d

dγlm
λ(X , ω) =

∑
x∈Dl

1∑J
j=1 αljφ (x;µlj ,Σlj)

J∑
j=1

dαlj

dγlm
φ (x;µlj ,Σlj)

=
∑
x∈Dl

(rl(m | x)− αlm)

5

Local maxima of λ(X , ω)
I Setting the previous derivatives to zero, we obtain:

αkj =

∑n
i=1 1{yi = k}rk(j | xi)∑n

i=1 1{yi = k}
µkj =

∑n
i=1 1{yi = k}rk(j | xi)xi∑n
i=1 1{yi = k}rk(j | xi)

Σkj =

∑n
i=1 1{yi = k}rk(j | xi)(xi − µkj)(xi − µkj)T∑n

i=1 1{yi = k}rk(j | xi)

I The mixture weights are equal to the sample mean of the membership
probabilities rk(j | xi) assuming a uniform distribution over Dk

I The latter are the sample mean and covariance of the data, weighted by
the membership probabilities

I The three equations are coupled through rk(j | x), which depends on
ω := {αkj , µkj ,Σkj}, and hence are hard to solve directly

I Optimization Idea:
I start with a guess ω(0) and use a descent method
I iterate between updating rk(j | xi) and updating ω(t)

6

Clustering

I How do we obtain an initial guess ω(0) :=
{
α
(0)
kj , µ

(0)
kj ,Σ

(0)
kj

}
?

I Clustering (or vector quantization) is the task of grouping objects in a
way that those in the same group (a cluster) are more similar (according
to a distance metric) to each other than to those in other groups.

I Unsupervised Learning: given an unlabeled dataset D = {xi}ni=1, the
goal is to partition it into J clusters

7

k-means Algorithm

I The k-means algorithm is an iterative clustering algorithm that uses
coordinate descent to solve the following optimization:

min
µ,r

C (µ, r) :=
n∑

i=1

J∑
j=1

rij‖µj − xi‖22

I µj are the cluster centroids

I rij := 1{xi is closest to µj} are the cluster membership indicators

I It is common to repeat the algorithm several times with different
initialization of µj

I Since k-means is optimizing ‖ · ‖2, it implicitly makes a spherical
assumption on the shape of the clusters.

8

k-means Algorithm

Algorithm 1 k-means clustering

1: Input: unlabeled dataset D = {xi}ni=1, number of clusters k
2: Output: cluster centroids µj , cluster assignments {rij}
3: Init: pick k cluster centroids µ1, . . . , µk
4: repeat
5: # Assign examples to the nearest centroid :
6: rij = 1, if j = arg min

l
‖µl − xi‖22, and rij = 0, otherwise.

7: # Set each centroid to the mean of the examples assigned to it:

8: µj = arg min
µ

C (µ, r) =
∑n

i=1 rijxi∑n
i=1 rij

9: until convergence

9

k-means Example

I Consider the following unlabeled dataset:

X =



−3 9
−2 4
−1 1
0 0
1 1
3 9

 ∈ Rn×d

I Use k-means to cluster X into k = 2 clusters. Initialize:

µ1 = x3 =

[
−1
1

]
µ2 = x5 =

[
1
1

]
10

k-means Example
I Assign examples to the nearest

centroid, rij :

i
j

1 2

1 1 0

2 1 0

3 1 0

4 0 1

5 0 1

6 0 1

I Update the cluster means:

µ1 =

∑n
i=1 ri1xi∑n
i=1 ri1

=

[
−2.00
4.66

]
µ2 =

[
1.33
3.33

]
11

k-means Example

I Repeat until convergence

12

Expectation Maximization

I Iterative maximization technique based on auxiliary lower bounds
I Old idea (late 50’s) formalized by Dempster, Laird and Rubin in 1977

I Has two steps: Expectation (E) and Maximization (M)

I Generalizes k-means to probabilistic (soft) cluster assignments

I Similar to Newton’s method but is not restricted to a quadratic
approximations of the objective

I Applicable to a wide range of problems:
I Fitting mixture models

I Probabilistic latent semantic analysis: produce concepts related to
documents and terms (NLP)

I Learning parts and structure models (vision)

I Segmentation of layers in video (vision)

13

Expectation Maximization

I Goal: minω J(ω)

I J(ω) is not necessarily
convex

I Initialize ω(0) and iterate:
E. Construct an auxiliary upper-bound function T at ω(t) such that:

J(ω(t)) = T (ω(t), ω(t)) ≤ T (ω, ω(t))

M. Solve the easier auxiliary minimization to obtain the next point:

ω(t+1) = arg min
ω
T (ω, ω(t))

I The properties of T guarantee that each step gets closer to a local min:

J(ω(t)) = T (ω(t), ω(t)) ≥ min
ω
T (ω, ω(t)) ≥ J(ω(t+1))

14

Auxiliary Function

I EM is related to parameter estimation since it can be used to solve:

min
ω

J(ω) for J(ω) := − log p(D;ω)

I The above might not be solvable in closed form by setting the gradient
∇ωJ(ω) to zero

I EM uses latent/hidden variables to construct an auxiliary upper bound
T (ω, ω(t)) to the negative data log likelihood J(ω) at a given parameter
estimate ω(t)

I The auxiliary upper bound is obtained by applying Jensen’s inequality
to the convex function − log(·)

15

Convexity and Jensen’s Inequality
I f : Rn → R is convex if one of the following holds:

I f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y), ∀x, y ∈ Rn, λ ∈ [0, 1]
I f (y) ≥ f (x) +∇f (x)T (y − x), ∀x, y ∈ Rn

I ∇2f (x) � 0, ∀x ∈ Rn

I Jensen’s Inequality: let Y be a random variable and f : R→ R be a
convex function. Then:

f (E[Y]) ≤ E[f (Y)]

I Example:
I f (x) := − log(x) is convex because f ′′(x) = 1

x2 > 0 for x ∈ (0,∞)

I Let Z be a discrete random variable with probability mass function
p(zj) := P({Z = zj}) = rj for j = 1, . . . ,m

I Jensen’s inequality applied to f and Y := Z
p(Z) shows that:

− log(E[Y]) = − log

∑
j

rj
zj
rj

 ≤ −∑
j

rj log

(
zj
rj

)
= E[f (Y)]

16

Auxiliary Function

I Given the current parameter estimate ω(t), EM introduces a latent
random variable Z with pdf r(z | D;ω(t)):

J(ω) = − log p(D;ω)
Total law

======
of prob.

− log

∫
p(D, z ;ω)dz

= − log

∫
r(z |D;ω(t))

p(D, z ;ω)

r(z |D;ω(t))
dz

Jensen’s
≤

inequality
−
∫

r(z |D;ω(t)) log
p(D, z ;ω)

r(z |D;ω(t))
dz

Auxiliary
======
function

T (ω, ω(t))

17

Auxiliary Function

I Assuming that − log p(D, z ;ω) is convex in ω, the auxiliary function is
convex in ω for a fixed r and convex in r for a fixed ω (but not jointly
convex)

I The local minima of T (ω, ω(t)) are local minima of − log p(D;ω)

I The EM algorithm alternates between

(E step) finding the minimum upper bound to J(ω) at ω(t) (which is equivalent to
determining the pdf of the latent variable Z):

ω(t) = arg min
η
T (ω(t), η)

(M step) minimizing the upper bound T to update the parameters:

ω(t+1) = arg min
ω
T (ω, ω(t)) = arg min

ω
−
∫

r(z |D;ω(t)) log
p(D, z ;ω)

r(z |D;ω(t))
dz

18

M Step Details

min
ω
T (ω, ω(t)) =

∫
r(z |D;ω(t)) log

p(D, z ;ω)

r(z |D;ω(t))
dz

= h(r(· | D;ω(t)))︸ ︷︷ ︸
Entropy of r ;

does not depend on ω

+

∫
r(z |D;ω(t)) log p(D, z ;ω)dz︸ ︷︷ ︸
Weighted MLE where labeled examples

{(xi , yi , zi)} are weighted by r(zi | D;ω(t))

I Differential entropy of a continuous random variable X with pdf p:

h(X) := −
∫

p(x) log p(x)dx

I Kullback-Leibler (KL) divergence from pdf p to pdf q:

dKL(p||q) :=

∫
p(x) log

p(x)

q(x)
dx

19

E Step Details

I Why is ω(t) = arg min
η
T (ω(t), η)?

− log p(D;ω(t)) ≤ T (ω(t), η) = −
∫

r(z |D; η) log
r(z | D;ω(t))p(D;ω(t))

r(z |D; η)
dz

= − log p(D;ω(t)) + dKL

(
r(· | D;ω(t))||r(· | D; η)

)
I When minimizing the upper bound T (ω(t), η) with respect to η, we are

maximizing the similarity between r(· | D; η) and r(· | D;ω(t))

I Choosing η = ω(t) makes the upper bound T (ω, ω(t)) tight, i.e., it
touches the negative log-likelihood function at ω(t):

T (ω(t), ω(t)) = −
∫

r(z | D;ω(t)) log p(D;ω(t))dz

= − log p(D;ω(t)) = J(ω(t))

20

Auxiliary Function for the GM Log Likelihood

I Latent variable: soft cluster assignment Z with pdf rk(· | x;ω(t))

I Upper-bound the negative Gaussian Mixture log likelihood via Jensen’s
inequality:

−λ(X , ω) :=−
K∑

k=1

∑
x∈Dk

log

 J∑
j=1

qk(j , x;ω)


≤−

K∑
k=1

∑
x∈Dk

J∑
j=1

rk(j | x;ω(t)) log
qk(j , x;ω)

rk(j | x;ω(t))
=: T (ω, ω(t))

I A theoretical construction only since we already know that the minimum
of T (ω(t), η) with respect to η occurs at ω(t)

21

Gaussian Mixture MLE via EM (summary)

I Start with initial guess ω(t) :=
{
α
(t)
kj , µ

(t)
kj ,Σ

(t)
kj

}
for t = 0,

k = 1, . . . ,K , j = 1, . . . , J and iterate:

(E step) r
(t)
k (j | xi) =

α
(t)
kj φ

(
xi ;µ

(t)
kj ,Σ

(t)
kj

)
∑J

l=1 α
(t)
kl φ

(
xi ;µ

(t)
kl ,Σ

(t)
kl

)
(M step) α

(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)∑n

i=1 1{yi = k}

µ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)xi∑n
i=1 1{yi = k}r (t)k (j | xi)

Σ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)

(
xi − µ

(t+1)
kj

)(
xi − µ

(t+1)
kj

)T
∑n

i=1 1{yi = k}r (t)k (j | xi)

22

Gaussian Mixture MLE via EM (comments)
I Sometimes the data is not enough to estimate all these parameters:

I Fix the weights αkj = 1
J

I Fix diagonal Σkj = diag
(

[σ2
kj1, . . . , σ

2
kjn]T

)
or spherical Σkj = σ2

kj In
I Estimate a diagonal covariance:

Σ
(t+1)
kj =

∑n
i=1 1{yi = k}r (t)k (j | xi)diag

(
xi − µ(t+1)

kj

)2
∑n

i=1 1{yi = k}r (t)k (j | xi)

I Estimate a spherical covariance:

σ
2,(t+1)
kj =

1

d

∑n
i=1 1{yi = k}r (t)k (j | xi)

∥∥∥xi − µ(t+1)
kj

∥∥∥2∑n
i=1 1{yi = k}r (t)k (j | xi)

, xi ∈ Rd

I How should we initialize ω(0)? Use k-means++!

I If σkj → 0, the GM component assignments of EM become hard and
EM works like k-means.

23

