ECE276A: Sensing & Estimation in Robotics
Lecture 6: Bayesian and Particle Filtering

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiwl61@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha®@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Structure of Robotics Problems

» Time: t (discrete or continuous)

Robot state: x; (e.g., position, orientation, velocity, etc.)

| 2

» Control input: u; (e.g., quadrotor thrust and moment of rotation)
» Observation: z; (e.g., image, laser scan, inertial measurements)

| 2

Environment state: m; (e.g., map of the occupancy of space)

Structure of Robotics Problems

>

>

The sequences of control inputs up.; and observations zy.; are assumed
known /observed

The sequences of robot states xp.; and environment states myg.; are
unknown /hidden

Markov Assumptions
P> The state x;11 only depends on the previous input u; and state x;
» The observation z; only depends on the robot state x; and the
environment state m;

Motion Model: a function f (or equivalently a probability density
function pr) that describes the motion of the robot to a new state x;41
after applying control input u; at state x;

Xey1 = F(xe, ug, we) ~ pr(- | Xe, Ug) w; = motion noise

Observation Model: a function h (or a probability density function pj)
that describes the observation z; of the robot depending on x; and m;

zr = h(xe, me, ve) ~ pp(- | xe, my) v; = observation noise

Bayes Filter

» A Bayes filter is a probabilistic tool for estimating the state of
dynamical systems (robot and/or environment) that combines evidence
from control inputs and observations using Markov assumptions and
Bayes rule:

> Total probability: p(x) = [p(x,y)dy
> Conditioning: p(x,y) = p(y | x)p(x)
_ Py [x,2)p(x | 2) _ ply | x 2)p(z | x)p(x)

> Bayesrule: p(x|y.2) = = s — oy | 2)p(2)

» Special cases of the Bayes filter:
> Kalman filter
> Particle filter
» Forward algorithm for Hidden Markov Models (HMMs)

Filtering Examples

» Track the center ¢; € R? and radius r; € R of a ball in images:
http://www.pyimagesearch.com/2015/09/14/
ball-tracking-with-opencv/

» Track the position p; € R3 and orientation R; € SO(3) of a camera:
https://www.youtube.com/watch?v=CsJkciblfco

» Estimate the probability of occupancy of the environment:
https://www.youtube.com/watch?v=RhP1zIyTT58

http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
https://www.youtube.com/watch?v=CsJkci5lfco
https://www.youtube.com/watch?v=RhPlzIyTT58

Filtering Problem

» The Markov assumptions
are used to decompose the ...
joint pdf of the states xg.1
(robot and map combined),
observations zy.r, and
controls ug.7_1

» Joint distribution:

T T
p(xo0: 7, 20:7, Up: T—1) = Po\o(Xo) H Ph(zt | Xt) H pr(Xe | Xe—1, Us—1)
=0 > t=1 Y
prior observation model motion model
» Filtering: keeps track of » Smoothing: keeps track of
Pt\t(Xt) = p(xt | zo:t, to:t—1) Pt\t(XO:t) = p(xo:t | 20:¢, Uo:e—1)
pt+1|t(Xt+l) = p(Xe+1 | Zo:t, Uo:t) Pt+1\t(X0:t+1) = p(x0:t+1 | 20:¢, Uo:t)

6

Bayes Filter

> Prediction step: given a prior density p;|; over x; and the control input
ut, uses the motion model pr to compute the predicted density p;i ¢
over Xey1:

Pri1je(x) = /Pf(x | s, ue)pyje(s)ds

> Update step: given the predicted density p;1; over x¢+1 and the
measurement z;41, uses the observation model pp to incorporate the
measurement information and obtain the posterior p; ;¢4 over xey1:

_ Ph(zt+1 | X)pt+1|t(X)
J pr(ze+1 | 5)Pt+1|t(5)d5

Pt+1\t+1(X)

Bayes Filter

Pt+1|t+1(Xt+1) :P(Xt+1 | 20:t+1, UO:t)

Bayes 1
P(Zes1 | Xe41s Z0:e5 Uo:t) P(Xet1 | 20:¢5 Uo:t)
Nt+1
Markov 1
———pn(ze41 | Xe41)P(Xe+1 | 20:¢, Uo:t)
Ne+1
Total prob. 1
ﬂ7Ph(2t+1 | Xt+1)/P(Xt+1,Xt ’ 20:¢, Uo:t)dXt
Ne+1
Cond. prob. 1
&ﬁph(ztﬂ-l | Xt+1)/P(Xt+1 | 20:t, uO:taXt)p(Xt | 20:t, UO:t)dX
t+
Markov 1
7Ph(zt+1 | Xt+1) Pf(Xt+1 | Xty Ut)p(Xt ‘ 20:t, UO:t—l)dXt
Ne+1
1
= Pr(ze+1 | xe1) [Pr(Xeqa | Xe, ut)pee(xe) dxe
Ne+1

» Normalization constant: 71 := p(zt41 | 2o:t, Yo:t)

Bayes Filter

Py (%)= p(x, | 2y,,uy)

~

Prediction step

Pu() = [p, (x| 5,1) py (s)dis

Update step

Py (x)=

Pi(2 | x)pzu(x)

p(z, | 2y)

Bayes Filter Summary

» Motion model: x;1 = f(x¢, ur, wt) ~ pr(- | X, ur)
» Observation model: z; = h(x¢, v¢) ~ pp(- | xt)

» Joint distribution:

T T
p(x0: T, Z0:T> to:T—1) = Pojo(*0) H Ph(z: | Xt) H pr(xe | Xe—1, Ur—1)
——

o N e’ -
prior t=0 observation model t=0

motion model
» Filtering: recursive implementation that keeps track of
Pt\t(xt) = p(xt | Zo:t, to:t—1)
Pt+1\t(Xt+1) = p(xe+1 | 20:¢, Uo:e)

> Bayes filter:

71 .
Netl Predict: p, 1| (xe+1)

—_—

1
— d
ey e o) [o s udpadls)on

pt+1|t+1(Xt+1) =

Update
10

Bayes Smoother
» Smoothing: keeps track of

Pt|t(X0:t) = p(xo:t | 20:¢, Uo:t—1)
):=p

Pt+1|t(X0:t+1 (XO:t+1 | 20:t, UO:t)
» Forward pass (Bayes filter): compute p(x¢+1 | Zo:t+1, Uo:¢) and
p(xt+1 | zo:e, Up:t) for t =0,..., T

» Backward pass (Bayes smoother): for t = T —1,...,0 compute:

Total

p(xt | zo.7, to:7—1) /P(Xt | Xet1, 20:7, to: T—1)P(Xex1 | Z0:7, Up: T—1)dXe41

Probability
Markov

=——— [p(xt | Xt+1, Zo:t, Uo:t)P(Xe1 | 207 Uo:T—1)dXe41

Assumption

motion model
—_—~
B e | 2o, UO:t—l)/ [Pf(xt+1 | X¢, ue) p(Xe41 | 207, Uo:T-1)

Rule p(xe+1 | Zo:t, Uo:t)
—
forward pass

dxey1

forward pass

11

Histogram Filter

> Represents the pdfs p;; and p. 1) via a histogram over a discrete set of
possible values

» The accuracy is limited by the grid size

» A small grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in
the number of dimensions

» Adaptive Histogram Filter: represents the pdf via adaptive
discretization, e.g., octrees

o o

Histogram Filter

» Prediction step
» Assumes bounded Gaussian noise in the motion model
P> Realizes the prediction step by shifting the data in the grid according to
the control input and convolving the grid with a separable Gaussian
kernel:

1/16 1/8 1/16 1/4

IR
+

1/8 1/4 1/8

1/16 1/8 1/16 1/4

> This reduces the prediction step cost from O(n?) to O(n) where n is the
number of cells

» Update step

» To update and normalize the pdf upon sensory input, one has to iterate
over all cells

P Is it possible to monitor which part of the state space is affected by the
observations and only update that?

13

Markov Localization

» Robot Localization Problem: Given a map m, a sequence of control
inputs up.;—1, and a sequence of measurements zy.;, infer the state of
the robot x;

» Approach: use a Bayes filter with a multi-modal distribution in order to
capture multiple hypotheses about the robot state, e.g.:

> Histogram filter
» Particle filter
» Gaussian mixture filter

» Pruning: need to keep the number of hypotheses/components under
control

» Important considerations: What are the motion and observation
models and how is the map represented?

14

Histogram Filter Localization (1-D)

Pl’iOI’Z Bel(g)

15

Histogram Filter Localization (1-D)

Bd(s)

Piols)

Bel(s)

Prior:

Update:

15

Histogram Filter Localization (1-D)

Bel(s)

Prols)

Bd(z)

Bd(s)

Prior:

Update:

Predict:

15

Histogram Filter Localization (1-D)

Bel(s)

Prols)

Bd(z)

Bd(s)

Piols)

Bel(s)

Prior:

Update:

Predict:

Update:

15

Particle Filter

» Uses a mixture of delta functions (particles):

1 — (k)
§(x; pk)) = {O ;se a fork=1,...,N

with weights a(¥) to represent the pdfs Peje and peyq)e

» To derive the filter, substitute the delta mixture pdf in the Bayes filter
prediction and update steps

. . e . N,
> Prior distribution: x; | 2.1, Up:t—1 ~ Pee(Xt) 1= Sk at|t (xt /é't))

» Prediction:
Nt\t Nt+1\t

K K K k
Pes1)e(x) = /Pf(X | s, “t)za£|t)5(E‘|t)) ds ~ Z a$:+)1|t (X “(t+)1|t)
k=1
» Update:

N
pr (ze1 |) X" 0] 0 (X “5:?1&) N%Hl (0
e ~ O‘t+1|f+1 ;“t+1|t+1%
fPh (zt+1]s) ZJ 3 &m‘s (5 ﬂf+1\f> ds 1

Pty1)t+1\X) =

Particle Filter Prediction

» How do we approximate the prediction step as a delta-mixture pdf?

Per1)e(x) = /Pf x| s, ue Zat‘t (5 Mt|t>
Nyt Nt 1t

_ (k) (k) (k)
- Zaﬂt pr(x | Frype s Ut Z at+1|t (X Mt-{—l\t)
k=1

» Since pyy1)¢(x) is a mixture pdf, we can approximate it with particles by
drawing samples directly from it

> Let N¢i1): be the number of particles in the approximation (usually,
Nt+1|t = Nt|t)))

> Bootstrap approximation: repeat N; |, times and normalize the
weights at the end:

> Draw j € {1,..., Ny} with probability ag)t

» Draw /‘?le\t ~ pr (| ,ugl)t, ut)

» Add the weighted sample </1‘££1|t’ Pes1)t (u(tj;zl‘t)) to the new particle set
17

Particle Filter Update

» Update step: evaluates Bayes rule with the delta mixture pdf

Nepre (k k
i (zesn |0 Th" a8 6 (i)

Nejwe (G]
S pn(ze41] s) Zj:?‘ a(tjlllté (5; “(fJJZl\J ds

Pt+1\t+1(X) =

. : X; U
Nevie () () Fere
k=1 Zj:l at—i—l‘tph Zt+1 ‘ /’Lt+1|t

) Nilt agi)”tph (Zt+1 | Mgi)m>) 5 ((k))

» The resulting pdf turns out to be a delta mixture so no approximation is
necessary

» The update step does not update the particle positions but only their
weights

18

Particle Filter Resampling

» How do we avoid particle depletion - a situation in which most of the
updated particle weights become close to zero because the finite set of
particles are not accurate hypotheses, i.e., the observation likelihoods

Ph (th | ugl_?m) aresmall at all k =1,..., Npjq)?

» The particle filter uses a procedure called resampling to avoid particle
depletion during the update step

» Given a weighted set of particles, resampling creates a new particles set
with equal weights by adding many particles to the locations that had
high weight and few particles to the locations that had low weights

» Resampling focuses the representation power of the particles to likely
regions, while leaving unlikely regions with only few particles

» Resampling is applied at time t if the effective number of particles:

Nesr :=

Nt|t
k=1

1

(a

(k)

t|t

5

is less than a threshold

19

Particle Filter Resampling

i=1...n=10 particles

oe o e e oo e] {[l,(‘fjl,%}

D - ———

I
| : :|
| | [|
Update ' i ‘ ‘ ‘H : {,uf‘f),af‘f)}
Resampling : E f é ! {ﬁf(\f)’%}
| / : |'A| II
N AL
8! $

(et /)

Prediction & A

|
|
|
|
: (k) (k)
9 9
® {#t+l\t+l’at+l\t+l}

|
|
|
|
:
¥

L]

Al
Update °
20

Particle Filter Localization (1-D)

21

Particle Filter Localization (1-D)

21

Particle Filter Localization (1-D)

Prior:

Piols)
Update: T A A A s

‘ h\ e

21

Particle Filter Localization (1-D)

Prior: [p(s)

s
O RRT R S ST R TR (TN VR R LU TR (TR RTIT T TR I AT SRRU ST TRURE AT U (0F CRTRITTON L SRU R WO T WA 1/ (IR

Update:

M)

Predict:

Resample:

21

Particle Filter Localization (1-D)

22

Particle Filter Localization (1-D)

22

Particle Filter Localization (1-D)

22

Particle Filter Localization (1-D)

Prior:

555155555555555Efifiﬁififif.:::.:.:::5555:fifiiififi.ii:Efiiififiiii

Update: A A A s
1G]

Predict:

Resample:

[I [T Im—) VW11 N1 T TARR T -

22

Inverse Transform Sampling

» Target distribution: How do we sample from a distribution with pdf

p(x) and CDF F(x) = [*_ p(s)ds?

» Inverse Transform Sampling:

1.
2.

Draw u ~ U(0,1)

Return inverse CDF value:
p=F"(u)

The CDF of F~1(u) is:

P(F~(u) < %) = B(u < F(x)
= F(x)

Inverse transforming sampling for normal distribution

— pdf flx)
[— cde-T,.r':-:f f(t) dt

-

’ | 1 .
L P r=F"(u)
10} L :
’
’
’ I|
-1sf |
L |
- |
L
=20 1 | 1 1 1
-20 -15 -10 -05 0.0 05 10 15 20

23

Rejection Sampling
» Target distribution: How do we sample from a complicated pdf p(x)?

» Proposal distribution: use another pdf g(x) that is easy to sample
from (e.g., Uniform, Gaussian) and: Ap(x) < g(x) with A € (0,1)

» Rejection Sampling:
1. Draw u ~U(0,1) and p ~ ¢(+)
2. Return ponly if u < %}%l. If X is small, many rejections are necessary

» Good g(x) and A are hard to choose in practice

%q(x)

reject reg

u~q(x) 24

Sample Importance Resampling (SIR)

» How about rejection sampling without \?

» Sample Importance Resampling for a target distribution p(-) with
proposal distribution g(-)
1. Draw p® ..., u™ ~ g()

. . (k) . (k)
2. Compute importance weights a(k) = ZEZW; and normalize: a(k) = X:O;a(f)

3. Draw p(k) independently with replacement from {M(l), e ,M(N)} with
probability %) and add to the final sample set with weight %

» If g(-) is a poor approximation of p(-), then the best samples from g are
not necessarily good samples for resampling

» SIR applied to the particle filter:
» draw ;%) independently with replacement from {u(l), e ,,u(N)} with
probability o) and add to the final sample set with weight +

25

Markov Chain Monte Carlo Resampling

» The main drawback of rejection sampling and SIR is that choosing a
good proposal distribution ¢(-) is hard

» ldea: let the proposed samples i depend on the last accepted sample

i, i.e., obtain correlated samples from a conditional proposal

distribution ,u(k) ~q (’ ,u(k_l))

» Under certain conditions, the samples generated from q(- | i) form an
ergodic Markov chain with p(+) as its stationary distribution

» MCMC methods include Metropolis-Hastings and Gibbs sampling

26

Stratified Resampling

» In the last step of SIR, the weighted sample set {M(k), a(k)} is resampled
independently with replacement

» This might result in high variance resampling, i.e., sometimes some
samples with large weights might not be selected or samples with very
small weights may be selected multiple times

» Stratified resampling: guarantees that samples with large weights
appear at least once and those with small weights — at most once.
Stratified resampling is optimal in terms of variance (Thrun et al.
2005)

» Instead of selecting samples independently, use a sequential process:
» Add the weights along the circumference of a circle
» Divide the circle into N equal pieces and sample a uniform on each piece
» Samples with large weights are chosen at least once and those with small
weights — at most once

27

Stratified and Systematic Resampling

Stratified (low variance) resampling

Input: particle set {u(k),a(k)}ivzl
Output: resampled particle set
j—1,ceald
for k=1,...,N do -
u~U (0, %) ‘ Random
B=u+ %1
while > c do
j:j+1 c=c+al)
add (), 1) to the new set

© o N gk n s

» Systematic resampling: the same as stratified resampling except that
the same uniform is used for each piece, i.e., u ~ U (O7 N) is sampled
only once before the for loop above.

28

Particle Filter Summary

. Nee (k k
> Prior: x; | zo:t, Uo:e—1 ~ Pee(x) == S at|t)5 <Xt;,u£|t)>

» Prediction: approximate the mixture by sampling:

Nt\t Nt+1\t
(k)
Pet1|e(x Zat\t pr(x | Nt|t7“t) ~ Z at+1|t5 (X '“t+1|t>
k=1

» Update: rescale the particles based on the observation likelihood:

k k
Ney1)e O‘i—f—)1|tph (Zt+1 | Ng-ﬁl\t) (k)
Petleni () = > | Sy 0 o y|° (X; “t+1\t)
k=1 Zj:]_ t+1‘tph (Zt+1 ‘ /’Lt+1|t>

> If N = Nihreshold, Yesample the particle set

1
ST (o)

{u&?mﬂ,aiﬁhﬂ} via stratified or sample importance resampling

29

