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Structure of Robotics Problems
I Time: t (discrete or continuous)

I Robot state: xt (e.g., position, orientation, velocity, etc.)

I Control input: ut (e.g., quadrotor thrust and moment of rotation)

I Observation: zt (e.g., image, laser scan, inertial measurements)

I Environment state: mt (e.g., map of the occupancy of space)
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Structure of Robotics Problems
I The sequences of control inputs u0:t and observations z0:t are assumed

known/observed

I The sequences of robot states x0:t and environment states m0:t are
unknown/hidden

I Markov Assumptions
I The state xt+1 only depends on the previous input ut and state xt

I The observation zt only depends on the robot state xt and the
environment state mt

I Motion Model: a function f (or equivalently a probability density
function pf ) that describes the motion of the robot to a new state xt+1

after applying control input ut at state xt

xt+1 = f (xt , ut ,wt) ∼ pf (· | xt , ut) wt = motion noise

I Observation Model: a function h (or a probability density function ph)
that describes the observation zt of the robot depending on xt and mt

zt = h(xt ,mt , vt) ∼ ph(· | xt ,mt) vt = observation noise
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Bayes Filter

I A Bayes filter is a probabilistic tool for estimating the state of
dynamical systems (robot and/or environment) that combines evidence
from control inputs and observations using Markov assumptions and
Bayes rule:
I Total probability: p(x) =

∫
p(x , y)dy

I Conditioning: p(x , y) = p(y | x)p(x)

I Bayes rule: p(x | y , z) =
p(y | x , z)p(x | z)∫

p(y , s | z)ds
=

p(y | x , z)p(z | x)p(x)

p(y | z)p(z)

I Special cases of the Bayes filter:
I Kalman filter
I Particle filter
I Forward algorithm for Hidden Markov Models (HMMs)
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Filtering Examples

I Track the center ct ∈ R2 and radius rt ∈ R of a ball in images:
http://www.pyimagesearch.com/2015/09/14/

ball-tracking-with-opencv/

I Track the position pt ∈ R3 and orientation Rt ∈ SO(3) of a camera:
https://www.youtube.com/watch?v=CsJkci5lfco

I Estimate the probability of occupancy of the environment:
https://www.youtube.com/watch?v=RhPlzIyTT58
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Filtering Problem

I The Markov assumptions
are used to decompose the
joint pdf of the states x0:T
(robot and map combined),
observations z0:T , and
controls u0:T−1

I Joint distribution:

p(x0:T , z0:T , u0:T−1) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=1

pf (xt | xt−1, ut−1)︸ ︷︷ ︸
motion model

I Filtering: keeps track of

pt|t(xt) := p(xt | z0:t , u0:t−1)

pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

I Smoothing: keeps track of

pt|t(x0:t) := p(x0:t | z0:t , u0:t−1)

pt+1|t(x0:t+1) := p(x0:t+1 | z0:t , u0:t)
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Bayes Filter

I Prediction step: given a prior density pt|t over xt and the control input
ut , uses the motion model pf to compute the predicted density pt+1|t
over xt+1:

pt+1|t(x) =

∫
pf (x | s, ut)pt|t(s)ds

I Update step: given the predicted density pt+1|t over xt+1 and the
measurement zt+1, uses the observation model ph to incorporate the
measurement information and obtain the posterior pt+1|t+1 over xt+1:

pt+1|t+1(x) =
ph(zt+1 | x)pt+1|t(x)∫
ph(zt+1 | s)pt+1|t(s)ds
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Bayes Filter

pt+1|t+1(xt+1) =p(xt+1 | z0:t+1, u0:t)

Bayes
====

1

ηt+1
p(zt+1 | xt+1, z0:t , u0:t)p(xt+1 | z0:t , u0:t)

Markov
=====

1

ηt+1
ph(zt+1 | xt+1)p(xt+1 | z0:t , u0:t)

Total prob.
========

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1, xt | z0:t , u0:t)dxt

Cond. prob.
========

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1 | z0:t , u0:t , xt)p(xt | z0:t , u0:t)dxt

Markov
=====

1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt , ut)p(xt | z0:t , u0:t−1)dxt

=
1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt , ut)pt|t(xt)dxt

I Normalization constant: ηt+1 := p(zt+1 | z0:t , u0:t)
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Bayes Filter
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Bayes Filter Summary
I Motion model: xt+1 = f (xt , ut ,wt) ∼ pf (· | xt , ut)

I Observation model: zt = h(xt , vt) ∼ ph(· | xt)

I Joint distribution:

p(x0:T , z0:T , u0:T−1) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=0

pf (xt | xt−1, ut−1)︸ ︷︷ ︸
motion model

I Filtering: recursive implementation that keeps track of

pt|t(xt) := p(xt | z0:t , u0:t−1)

pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

I Bayes filter:

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t , u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt , ut)pt|t(xt)dxt︸ ︷︷ ︸

Update
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Bayes Smoother
I Smoothing: keeps track of

pt|t(x0:t) := p(x0:t | z0:t , u0:t−1)

pt+1|t(x0:t+1) := p(x0:t+1 | z0:t , u0:t)

I Forward pass (Bayes filter): compute p(xt+1 | z0:t+1, u0:t) and
p(xt+1 | z0:t , u0:t) for t = 0, . . . ,T

I Backward pass (Bayes smoother): for t = T − 1, . . . , 0 compute:

p(xt | z0:T , u0:T−1)
Total

=======
Probability

∫
p(xt | xt+1, z0:T , u0:T−1)p(xt+1 | z0:T , u0:T−1)dxt+1

Markov
========
Assumption

∫
p(xt | xt+1, z0:t , u0:t)p(xt+1 | z0:T , u0:T−1)dxt+1

Bayes
====
Rule

p(xt | z0:t , u0:t−1)︸ ︷︷ ︸
forward pass

∫ [ motion model︷ ︸︸ ︷
pf (xt+1 | xt , ut) p(xt+1 | z0:T , u0:T−1)

p(xt+1 | z0:t , u0:t)︸ ︷︷ ︸
forward pass

]
dxt+1
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Histogram Filter
I Represents the pdfs pt|t and pt+1|t via a histogram over a discrete set of

possible values

I The accuracy is limited by the grid size

I A small grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in
the number of dimensions

I Adaptive Histogram Filter: represents the pdf via adaptive
discretization, e.g., octrees
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Histogram Filter

I Prediction step
I Assumes bounded Gaussian noise in the motion model
I Realizes the prediction step by shifting the data in the grid according to

the control input and convolving the grid with a separable Gaussian
kernel:

I This reduces the prediction step cost from O(n2) to O(n) where n is the
number of cells

I Update step
I To update and normalize the pdf upon sensory input, one has to iterate

over all cells
I Is it possible to monitor which part of the state space is affected by the

observations and only update that?
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Markov Localization

I Robot Localization Problem: Given a map m, a sequence of control
inputs u0:t−1, and a sequence of measurements z0:t , infer the state of
the robot xt

I Approach: use a Bayes filter with a multi-modal distribution in order to
capture multiple hypotheses about the robot state, e.g.:
I Histogram filter
I Particle filter
I Gaussian mixture filter

I Pruning: need to keep the number of hypotheses/components under
control

I Important considerations: What are the motion and observation
models and how is the map represented?
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Histogram Filter Localization (1-D)

Prior:
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Histogram Filter Localization (1-D)

Prior:

Update:
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Histogram Filter Localization (1-D)

Prior:

Update:

Predict:

15



Histogram Filter Localization (1-D)

Prior:

Update:

Predict:

Update:
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Particle Filter
I Uses a mixture of delta functions (particles):

δ(x ;µ(k)) :=

{
1 x = µ(k)

0 else
for k = 1, . . . ,N

with weights α(k) to represent the pdfs pt|t and pt+1|t

I To derive the filter, substitute the delta mixture pdf in the Bayes filter
prediction and update steps

I Prior distribution: xt | z0:t , u0:t−1 ∼ pt|t(xt) :=
∑Nt|t

k=1 α
(k)
t|t δ

(
xt ;µ

(k)
t|t

)
I Prediction:

pt+1|t(x) =

∫
pf (x | s, ut)

Nt|t∑
k=1

α
(k)
t|t δ

(
s;µ

(k)
t|t

)
ds

??
≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
I Update:

pt+1|t+1(x) =
ph (zt+1 | x)

∑Nt+1|t
k=1 α

(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
∫
ph (zt+1 | s)

∑Nt+1|t
j=1 α

(j)
t+1|tδ

(
s;µ

(j)
t+1|t

)
ds

??
≈

Nt+1|t+1∑
k=1

α
(k)
t+1|t+1δ

(
x ;µ

(k)
t+1|t+1

)
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Particle Filter Prediction
I How do we approximate the prediction step as a delta-mixture pdf?

pt+1|t(x) =

∫
pf (x | s, ut)

Nt|t∑
k=1

α
(k)
t|t δ

(
s;µ

(k)
t|t

)
ds

=

Nt|t∑
k=1

α
(k)
t|t pf (x | µ(k)t|t , ut)

??
≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
I Since pt+1|t(x) is a mixture pdf, we can approximate it with particles by

drawing samples directly from it
I Let Nt+1|t be the number of particles in the approximation (usually,

Nt+1|t = Nt|t)
I Bootstrap approximation: repeat Nt+1|t times and normalize the

weights at the end:
I Draw j ∈ {1, . . . ,Nt|t} with probability α

(j)
t|t

I Draw µ
(j)
t+1|t ∼ pf

(
· | µ(j)

t|t , ut

)
I Add the weighted sample

(
µ
(j)
t+1|t , pt+1|t

(
µ
(j)
t+1|t

))
to the new particle set
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Particle Filter Update

I Update step: evaluates Bayes rule with the delta mixture pdf

pt+1|t+1(x) =
ph (zt+1 | x)

∑Nt+1|t
k=1 α

(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
∫
ph (zt+1 | s)

∑Nt+1|t
j=1 α

(j)
t+1|tδ

(
s;µ

(j)
t+1|t

)
ds

=

Nt+1|t∑
k=1

 α
(k)
t+1|tph

(
zt+1 | µ(k)t+1|t

)
∑Nt+1|t

j=1 α
(j)
t+1|tph

(
zt+1 | µ(j)t+1|t

)
 δ (x ;µ

(k)
t+1|t

)
I The resulting pdf turns out to be a delta mixture so no approximation is

necessary

I The update step does not update the particle positions but only their
weights
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Particle Filter Resampling
I How do we avoid particle depletion - a situation in which most of the

updated particle weights become close to zero because the finite set of
particles are not accurate hypotheses, i.e., the observation likelihoods

ph

(
zt+1 | µ(k)t+1|t

)
are small at all k = 1, . . . ,Nt+1|t?

I The particle filter uses a procedure called resampling to avoid particle
depletion during the update step

I Given a weighted set of particles, resampling creates a new particles set
with equal weights by adding many particles to the locations that had
high weight and few particles to the locations that had low weights

I Resampling focuses the representation power of the particles to likely
regions, while leaving unlikely regions with only few particles

I Resampling is applied at time t if the effective number of particles:

Neff :=
1∑Nt|t

k=1

(
α
(k)
t|t

)2 is less than a threshold
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Particle Filter Resampling
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Particle Filter Localization (1-D)

Prior:
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Particle Filter Localization (1-D)

Prior:

Update:
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Resample:

21



Particle Filter Localization (1-D)

Prior:
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Particle Filter Localization (1-D)

Prior:

Update:
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Resample:
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Inverse Transform Sampling

I Target distribution: How do we sample from a distribution with pdf
p(x) and CDF F (x) =

∫ x
−∞ p(s)ds?

I Inverse Transform Sampling:

1. Draw u ∼ U(0, 1)

2. Return inverse CDF value:
µ = F−1(u)

3. The CDF of F−1(u) is:

P(F−1(u) ≤ x) = P(u ≤ F (x))

= F (x)
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Rejection Sampling
I Target distribution: How do we sample from a complicated pdf p(x)?

I Proposal distribution: use another pdf q(x) that is easy to sample
from (e.g., Uniform, Gaussian) and: λp(x) ≤ q(x) with λ ∈ (0, 1)

I Rejection Sampling:
1. Draw u ∼ U(0, 1) and µ ∼ q(·)
2. Return µ only if u ≤ λp(µ)

q(µ) . If λ is small, many rejections are necessary

I Good q(x) and λ are hard to choose in practice

24



Sample Importance Resampling (SIR)

I How about rejection sampling without λ?

I Sample Importance Resampling for a target distribution p(·) with
proposal distribution q(·)

1. Draw µ(1), . . . , µ(N) ∼ q(·)

2. Compute importance weights α(k) = p(µ(k))
q(µ(k))

and normalize: α(k) = α(k)∑
j α

(j)

3. Draw µ(k) independently with replacement from
{
µ(1), . . . , µ(N)

}
with

probability α(k) and add to the final sample set with weight 1
N

I If q(·) is a poor approximation of p(·), then the best samples from q are
not necessarily good samples for resampling

I SIR applied to the particle filter:
I draw µ(k) independently with replacement from

{
µ(1), . . . , µ(N)

}
with

probability α(k) and add to the final sample set with weight 1
N
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Markov Chain Monte Carlo Resampling

I The main drawback of rejection sampling and SIR is that choosing a
good proposal distribution q(·) is hard

I Idea: let the proposed samples µ depend on the last accepted sample
µ′, i.e., obtain correlated samples from a conditional proposal
distribution µ(k) ∼ q

(
· | µ(k−1)

)
I Under certain conditions, the samples generated from q(· | µ′) form an

ergodic Markov chain with p(·) as its stationary distribution

I MCMC methods include Metropolis-Hastings and Gibbs sampling
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Stratified Resampling

I In the last step of SIR, the weighted sample set {µ(k), α(k)} is resampled
independently with replacement

I This might result in high variance resampling, i.e., sometimes some
samples with large weights might not be selected or samples with very
small weights may be selected multiple times

I Stratified resampling: guarantees that samples with large weights
appear at least once and those with small weights – at most once.
Stratified resampling is optimal in terms of variance (Thrun et al.
2005)

I Instead of selecting samples independently, use a sequential process:
I Add the weights along the circumference of a circle
I Divide the circle into N equal pieces and sample a uniform on each piece
I Samples with large weights are chosen at least once and those with small

weights – at most once
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Stratified and Systematic Resampling

Stratified (low variance) resampling

1: Input: particle set
{
µ(k), α(k)

}N

k=1
2: Output: resampled particle set
3: j ← 1, c ← α(1)

4: for k = 1, . . . ,N do
5: u ∼ U

(
0, 1

N

)
6: β = u + k−1

N
7: while β > c do
8: j = j + 1, c = c + α(j)

9: add
(
µ(j), 1

N

)
to the new set

I Systematic resampling: the same as stratified resampling except that
the same uniform is used for each piece, i.e., u ∼ U

(
0, 1

N

)
is sampled

only once before the for loop above.
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Particle Filter Summary

I Prior: xt | z0:t , u0:t−1 ∼ pt|t(xx ) :=
∑Nt|t

k=1 α
(k)
t|t δ

(
xt ;µ

(k)
t|t

)
I Prediction: approximate the mixture by sampling:

pt+1|t(x) =

Nt|t∑
k=1

α
(k)
t|t pf (x | µ(k)t|t , ut) ≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
I Update: rescale the particles based on the observation likelihood:

pt+1|t+1(x) =

Nt+1|t∑
k=1

 α
(k)
t+1|tph

(
zt+1 | µ(k)t+1|t

)
∑Nt+1|t

j=1 α
(j)
t+1|tph

(
zt+1 | µ(j)t+1|t

)
 δ (x ;µ

(k)
t+1|t

)
I If Neff := 1∑Nt|t

k=1

(
α
(k)
t|t

)2 ≤ Nthreshold , resample the particle set{
µ
(k)
t+1|t+1, α

(k)
t+1|t+1

}
via stratified or sample importance resampling
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