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Rigid Body Motion
» Consider a moving object in a fixed world reference frame W

» Rigid object: it is sufficient to specify the motion of one point
p(t) € R3 and 3 coordinate axes (r1(t), r2(t), r3(t)) attached to that
point (body reference frame B)




Rigid Body Motion

> A rigid body is free to translate (3 degrees of freedom) and rotate (3
degrees of freedom)

» The pose g(t) of a moving rigid object at time t is determined by

1. The position p(t) €R3 of the body frame B relative to the world frame W
2. The orientation R(t) € SO(3) of B relative to W

» The body of a robot may be composed of multiple connected rigid
bodies, each having their own pose. We will assume that the robot is a
single rigid body.

» Rigid body motion is a family of transformations g(t) : R® — R3 that
describe how the coordinates of points on the object change in time



Special Euclidean Group

» Rigid body motion preserves both distances (vector norms) and
orientation (vector cross products)

» Euclidean Group E(3): a set of maps g : R® — R3 that preserve the
norm of any two vectors

» Special Euclidean Group SE(3): a set of maps g : R® — R3 that
preserve the norm and cross product of any two vectors

» The set of rigid body motions forms a group because:
> We can combine several motions to generate a new one (closure)
P> We can execute a motion that leaves the object at the same state

(identity element)
» \We can move rigid objects from one place to another and then reverse the
action (inverse element)

» The space R3 of translations/positions is familiar

» How do we describe orientation?



Special Euclidean Group

> A group is a set G with an associated operator ® (group law of G) that
satisfies:
» Closure: a® be G,Va,be G
> Identity element: 3le € G (unique) such thate®@a=a0e=a
» Inverse element: fora€ G, 3b€ G suchthata®O b=bGa=c¢e
> Associativity: (a©b)Oc=a0® (b®c), Va,b,c,e G

» SE(3) is a group of maps g : R — R3 that preserve:
1. Norm: ||g(u) — g(v)|| = ||v — ul|,Vu,v € R3
2. Cross product: g(u) x g(v) = g(u x v),Vu,v € R3

» Corollary: SE(3) elements also preserve:
L Angle: uTv =12 (lu+v|?=|lu—v[?) = u"v=g(u)"g(v), Yu,v eR?
2. Volume: Vu,v,w € R3, g(u)T(g(v) x g(w)) = uT (v x w)
(volume of parallelepiped spanned by u, v, w)



Cross product

» The cross product of two vectors w, 3 € R3 is also a vector in R3:

w233 — w3f
wx fB:= |wsf — w13
w12 — w1

» For fixed w, the cross product can be represented by a linear map
wx =0 for & € R3*3

» The hat map *: R3 — s0(3) transforms an R3 vector to a
skew-symmetric matrix:

0 —W3 w2
W= w3 0 —-w
—wy w1 0

» The vector space R3 and the space of skew-symmetric 3 x 3 matrices
s0(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.



Hat Map Properties

» Lemma: A matrix M € R3%3 is skew-symmetric iff M = & for some
w e R3.

» The inverse of the hat map is the vee operator, V : 50(3) — R3, that
extracts the components of the vector w = &V from the matrix @.

» Forany x,y € R3, A € R3%3, the hat map satisfies:

>

4
>
>

v

Xy =XXy=—-yXXx=-—yx
22 =xxT — xTx k3

)?2k+1 — (—XTX)k)?

—3tr(x9) = xTy

RA+ ATR = ((tr(A)lsxs — A)x)

> tr(%A) = Ltr(R(A— AT)) = —xT(A— AT)Y

Ax = det(A)A-TRA1



3-D Orientation

» The orientation of a body frame B is determined by the coordinates of
the three orthogonal vectors . = g(e1), n = g(e2), 3 = g(e3) relative
to the world frame W, i.e., by the 3 x 3 matrix:

R=[n n nlc R3*3
» Consider a point s € R3 with coordinates sg in {B} and sy in {W}
» Pure 2D rotation:
sw = [sg]ir + [sB]2r
» 3D translation p and rotation R:

sw = [sglir1 + [sBlar2 + [sl3rs + p
=Rsg+p




Special Orthogonal Lie Group SO(3)

» Since ry, rp, r3 form an orthonormal basis: r,-Trj = 0jj
> R is an orthogonal matrix RTR=RR" = |

> R's inverse is its transpose: R~ = RT

> det(R)=r(nxnr)=1

» R belongs to the special orthogonal group:

S0(3) :={ReR¥>3 | RTR =1/,det(R) = 1}



Special Orthogonal Lie Group SO(n)

>

>

SO(n) :={ReR™" | RTR = I, det(R) = 1}
Closed under multiplication: R R, € SO(n)
Identity: | € SO(n)

Inverse: R~ = RT € SO(n)

Associative property: (R1R2)R3 = Ri(R2R3)

Manifold structure: n? parameters with n(n + 1)/2 constraints (due to
RTR = 1) and hence n(n — 1)/2 degrees of freedom

Distances are preserved:
Ix =yl3 =lR(x=y)IE=(x~y)"RTR(x —y) = RTR=1

No reflections allowed, i.e., a right-handed coordinate system is kept:
R(x x y) = (Rx) x (Ry) = RxRy = det(R)RXRT Ry = det(R) =1
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2-D Rotation

» A 2-D rotation of point s € R?
through an angle 6 can be described
by a rotation matrix R(#) € SO(2):

sw = R(0)sp — [cos@ —sme] .

sinf cosd

» O > 0: counterclockwise rotation

» There is a one-to-one correspondence between 2-D rotation matrices
and unit-norm complex numbers:

e'([sg]1 + i[s8]2) = ([sB]1 cos @ — [sg]2sin 0) + i([sg]1 sin 6 + [sg]2 cos 0)
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Principal 3D Rotations

» A rotation by an angle ¢ around the x-axis is represented by:

1 0 0
R«(¢) := |0 cos¢p —sing
|10 sing cos¢

» A rotation by an angle 6 around the y-axis is represented by:

[ cosf 0 sinf
R():=] 0 1 0
| —sing 0 cosd

» A rotation by an angle ¥ around the z-axis is represented by:

cosy —siny O

R,(1) := |siny cosyp 0
0 0 1
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Euler Angle Parameterization

» One way to parameterize rotation is to use three angles that specify the
rotations around the principal axes

» There are 24 different ways to apply these rotations
> Extrinsic axes: the rotation axes remain fixed/global/static

» Intrinsic axes: the rotation axes move with the rotations

> Each of the two groups (intrinsic and extrinsic) can be divided into:

> Euler Angles: rotation about one axis, then a second and then the first
> Tait-Bryan Angles: rotation about all three axes

» The Euler and Tait-Bryan Angles each have 6 possible choices for each of
the extrinsic/intrinsic groups leading to 2 % 2 x 6 = 24 possible conventions
to specify a rotation sequence with three given angles

» For simplicity we will refer to all these 24 conventions as Euler Angles
and will explicitly specify:

» r (rotating = intrinsic) or s (static = extrinic)

> xyz or zyx or zxz, etc. (axes about which to perform the rotation in the
specified order)
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Euler Angle Convention

» Spin (), nutation (), precession (1) sequence:
> A rotation v about the original z-axis
> A rotation y about the intermediate x-axis
> A rotation 6 about the transformed z-axis

Yaw
> Roll (¢), pitch (6), yaw ():
> A rotation ¢ about the original x-axis Roll
» A rotation 6 about the intermediate y-axis
» A rotation 1 about the transformed z-axis X PitchY

» We will call Euler Angles the roll (¢), pitch (6), yaw (¢)) angles
specifying an XYZ extrinsic rotation or equivalently a ZYX intrinsic

rotation:
R = R:(4)Ry (0)Rx(9)
cosyp —siny O cos@ 0 sinf| |1 0 0
= |sinyy cosy O 0 1 0 0 cos¢p —sing

0 0 1| |—sinf 0 cosf| [0 sing cos¢
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Gimbal Lock

> Angle parameterizations have singularities (not one-to-one), which can
result in gimbal lock, e.g., if 8 = 90° the roll and yaw become
associated with the same degree of freedom and cannot be uniquely
determined.

» The gimbal lock is a problem only if we want to recover the rotation
angles from a rotation matrix
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Axis-Angle Parameterization
» Every rotation can be represented by a
rotation vector w € R? as a rotation about
an axis £ := m through angle 0 := ||w||2
» Consider a point s rotating about an axis &
at constant unit velocity (|lw]]2 = 1):

$(t) = € x s(t) = Es(t),  s(0) = s

= s(t) = eftsy = R(t)so A

> Rotation kinematics: if w € R3 is constant (world frame) angular
velocity of a body {B}, then the body orientation changes as follows:

R(t) =®R(t) = R(t) = exp(&t)R(to)

» Axis-angle representation: a rotation around the axis £ := \o:dllz
through an angle 6 := ||w||2 can thus be represented as:
R = exp(®)

» The matrix exponential defines a map from so(3) to SO(3). 16



Quaternions (Hamilton Convention)

» Quaternions: H = C + C;j generalize complex numbers C = R + Ri/

9=qs+quitqi+ak=I[g q] ij=—ji=k ?=72=k=-1

» Just as in 2-D, 3-D rotations can be represented using “complex
numbers”, i.e., unit-norm quaternions {g € H | ¢ + q/q, = 1}

» To represent rotations, the quaternion space embeds a 3-D space into a
4-D space (no singularities) and introduces a unit norm constraint.
The space of quaternions is a double covering of SO(3) because two
unit quaternions correspond to the same rotation: R(q) = R(—q).

> A rotation matrix R € SO(3) can be obtained from a unit quaternion g:

R(q) = E(q)G(q)T E(q)=[-av, gs/ +a,] G(q) =[—av, gs/ — @]
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Quaternion Conversions

» A rotation around a unit axis £ := m € R3 by angle 0 := ||w|| can be
represented by a unit quaternion:

o). (9

> A rotation around a unit axis & € R3 by angle 6 can be recovered from a
unit quaternion gq:

1 _q,, ifO+£0
0 = 2 arccos _ s v !
() ¢ {o, if 0 =0

» The inverse transformation above has a singularity at # = 0 because
there are infinitely many rotation axes that can be used or equivalently
the transformation from an axis-angle representation to a quaternion
representation is many-to-one
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Quaternion Properties

Addition
Multiplication
Conjugate
Norm

Inverse
Rotation

Rot. Velocity
Exp

Log

q+p:[q5+p57 qv+pv]
qop= [qus - CIVTPV, qspv + psqQy + gy X pv]

g =[gs, —a.]

lql ==V +ala, |qop|=]q|lp|
-1_ g

9 =1

[0, xX]=go[0, x]o g™ = [0, R(q)x]

g =3[0, wlog=3E(q)"w=73q0[0, wg] = 3G6(q)w
exp(q) = e [cos|la |, 12 sin la ]

log(q) := [Iog lal, o Tq.T 2rccos |q‘]

» Exp: constructs g from rotation vector w € R3: g = exp ([0, %])

» Log: recovers a rotation vector w € R3 from g: [0, w] = 2log(q)
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Rigid Body Pose

>

>

Let B be a body frame whose position and orientation with respect to
the world frame W are p € R3 and R € SO(3), respectively.

The coordinates of a point sg € R3 in the body frame B can be
converted to the world frame by first rotating the point and then
translating it to the world frame: sy = Rsg + p.

Homogeneous coordinates: the rigid-body transformation is not linear
but affine. It can be converted to linear by appending 1 to the
coordinates of a point s:

7=l AL

Each entry of a homogeneous point representations can be multiplied by
a scale factor A\ which allows representing points arbitrarily far away
ASB}

from the origin as A — 0: [ I\

To recover the original coordinates, divide the first three entries by A
20



Special Euclidean Group SE(3)

» The pose of a rigid body can thus be described by a matrix:

SE(3) := {T = [g ’1)] ‘ R € SO(3),p € R3} C R4*4

» Using homogeneous coordinates, it can be verified that SE(3) satisfies
all requirements of a group:

Ri pi| [R2 p2 RiRy Rip2+ p1
> p— pu—
LEXE {0 1H0 1} [ 0 1 | €5EG)

> [’ 0} € SE(3)

01
1
R p _ RT —RTp
g {o 1] _[o 1 | €5EG)

> (TiT2)Ts = Ti(ToTs) for all Ty, T, T3 € SE(3)
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Composing Transformations

>

>

Let the pose of a rigid body be 1) Typy := {{W}(';?{B} {W}f{B}}

The subscripts indicate that the pose a rigid body in the world frame
specifies a transformation from the body to the world frame

Given a robot with pose T, a point sg in the robot body frame has
world frame coordinates:

sw = Rsg + p equivalent to [S;V} =T [Sﬂ

Give a robot with pose (/) Ty1) at time t; and [y T2} at time tp, the
relative transformation from the inertial frame {2} at time t, to the
inertial frame {1} at time t; is:
-1
w7 = Tw x wmTe = (wmTgy) X w T

_ [wmRYy —{W}Rﬂ}X{W}P{l}] [{W}R{z} {W}P{z}]
0 1 0 1
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Summary

Rotation SO(3) Pose SE(3)
RTR=1 R
Representation | R : T = P
det(R) =1 0 1
Transformation | sy = Rsg sw=Rsg+p
_RT s _
Inverse R1=RT T-1= P
0 1

Composition

k—1

WRtk - WRto H ti Rti+1
i=0

k—1

w Ttk =W Tto H ti Tti+1
i=0
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