
ECE276A: Sensing & Estimation in Robotics
Lecture 7: Rotations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Rigid Body Motion
I Consider a moving object in a fixed world reference frame W

I Rigid object: it is sufficient to specify the motion of one point
p(t) ∈ R3 and 3 coordinate axes (r1(t), r2(t), r3(t)) attached to that
point (body reference frame B)

2

Rigid Body Motion

I A rigid body is free to translate (3 degrees of freedom) and rotate (3
degrees of freedom)

I The pose g(t) of a moving rigid object at time t is determined by

1. The position p(t)∈R3 of the body frame B relative to the world frame W
2. The orientation R(t)∈SO(3) of B relative to W

I The body of a robot may be composed of multiple connected rigid
bodies, each having their own pose. We will assume that the robot is a
single rigid body.

I Rigid body motion is a family of transformations g(t) : R3 → R3 that
describe how the coordinates of points on the object change in time

3

Special Euclidean Group

I Rigid body motion preserves both distances (vector norms) and
orientation (vector cross products)

I Euclidean Group E (3): a set of maps g : R3 → R3 that preserve the
norm of any two vectors

I Special Euclidean Group SE (3): a set of maps g : R3 → R3 that
preserve the norm and cross product of any two vectors

I The set of rigid body motions forms a group because:
I We can combine several motions to generate a new one (closure)
I We can execute a motion that leaves the object at the same state

(identity element)
I We can move rigid objects from one place to another and then reverse the

action (inverse element)

I The space R3 of translations/positions is familiar

I How do we describe orientation?

4

Special Euclidean Group

I A group is a set G with an associated operator � (group law of G) that
satisfies:
I Closure: a� b ∈ G , ∀a, b ∈ G
I Identity element: ∃!e ∈ G (unique) such that e � a = a� e = a
I Inverse element: for a ∈ G , ∃b ∈ G such that a� b = b � a = e
I Associativity: (a� b)� c = a� (b � c), ∀a, b, c ,∈ G

I SE (3) is a group of maps g : R3 → R3 that preserve:

1. Norm: ‖g(u)− g(v)‖ = ‖v − u‖,∀u, v ∈ R3

2. Cross product: g(u)× g(v) = g(u × v),∀u, v ∈ R3

I Corollary: SE (3) elements also preserve:

1. Angle: uT v = 1
4

(
‖u + v‖2 − ‖u − v‖2

)
⇒ uT v = g(u)Tg(v), ∀u, v ∈ R3

2. Volume: ∀u, v ,w ∈ R3, g(u)T (g(v)× g(w)) = uT (v × w)
(volume of parallelepiped spanned by u, v ,w)

5

Cross product
I The cross product of two vectors ω, β ∈ R3 is also a vector in R3:

ω × β :=

ω2β3 − ω3β2

ω3β1 − ω1β3

ω1β2 − ω2β1


I For fixed ω, the cross product can be represented by a linear map
ω × β = ω̂β for ω̂ ∈ R3×3

I The hat map ·̂ : R3 → so(3) transforms an R3 vector to a
skew-symmetric matrix:

ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


I The vector space R3 and the space of skew-symmetric 3× 3 matrices

so(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.

6

Hat Map Properties

I Lemma: A matrix M ∈ R3×3 is skew-symmetric iff M = ω̂ for some
ω ∈ R3.

I The inverse of the hat map is the vee operator, ∨ : so(3)→ R3, that
extracts the components of the vector ω = ω̂∨ from the matrix ω̂.

I For any x , y ∈ R3, A ∈ R3×3, the hat map satisfies:
I x̂y = x × y = −y × x = −ŷ x
I x̂2 = xxT − xT x I3×3

I x̂2k+1 = (−xT x)k x̂

I − 1
2 tr(x̂ ŷ) = xT y

I x̂A + AT x̂ = ((tr(A)I3×3 − A)x)̂

I tr(x̂A) = 1
2 tr(x̂(A− AT)) = −xT (A− AT)∨

I Âx = det(A)A−T x̂A−1

7

3-D Orientation

I The orientation of a body frame B is determined by the coordinates of
the three orthogonal vectors r1 = g(e1), r2 = g(e2), r3 = g(e3) relative
to the world frame W , i.e., by the 3× 3 matrix:

R =
[
r1 r2 r3

]
∈ R3×3

I Consider a point s ∈ R3 with coordinates sB in {B} and sW in {W }

I Pure 2D rotation:

sW = [sB]1r1 + [sB]2r2

I 3D translation p and rotation R:

sW = [sB]1r1 + [sB]2r2 + [sB]3r3 + p

= RsB + p

8

Special Orthogonal Lie Group SO(3)

I Since r1, r2, r3 form an orthonormal basis: rTi rj = δij

I R is an orthogonal matrix RTR = RRT = I

I R’s inverse is its transpose: R−1 = RT

I det(R) = rT1 (r2 × r3) = 1

I R belongs to the special orthogonal group:

SO(3) := {R ∈ R3×3 | RTR = I , det(R) = 1}

9

Special Orthogonal Lie Group SO(n)

I SO(n) := {R ∈ Rn×n | RTR = I , det(R) = 1}

I Closed under multiplication: R1R2 ∈ SO(n)

I Identity: I ∈ SO(n)

I Inverse: R−1 = RT ∈ SO(n)

I Associative property: (R1R2)R3 = R1(R2R3)

I Manifold structure: n2 parameters with n(n + 1)/2 constraints (due to
RTR = I) and hence n(n − 1)/2 degrees of freedom

I Distances are preserved:
‖x − y‖2

2 = ‖R(x − y)‖2
2 = (x − y)TRTR(x − y) ⇒ RTR = I

I No reflections allowed, i.e., a right-handed coordinate system is kept:
R(x × y) = (Rx)× (Ry) = R̂xRy = det(R)Rx̂RTRy ⇒ det(R) = 1

10

2-D Rotation

I A 2-D rotation of point s ∈ R2

through an angle θ can be described
by a rotation matrix R(θ) ∈ SO(2):

sW = R(θ)sB :=

[
cos θ − sin θ
sin θ cos θ

]
sB

I θ > 0: counterclockwise rotation

I There is a one-to-one correspondence between 2-D rotation matrices
and unit-norm complex numbers:

e iθ([sB]1 + i [sB]2) = ([sB]1 cos θ− [sB]2 sin θ) + i([sB]1 sin θ+ [sB]2 cos θ)

11

Principal 3D Rotations

I A rotation by an angle φ around the x-axis is represented by:

Rx(φ) :=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


I A rotation by an angle θ around the y -axis is represented by:

Ry (θ) :=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


I A rotation by an angle ψ around the z-axis is represented by:

Rz(ψ) :=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


12

Euler Angle Parameterization
I One way to parameterize rotation is to use three angles that specify the

rotations around the principal axes

I There are 24 different ways to apply these rotations
I Extrinsic axes: the rotation axes remain fixed/global/static

I Intrinsic axes: the rotation axes move with the rotations

I Each of the two groups (intrinsic and extrinsic) can be divided into:
I Euler Angles: rotation about one axis, then a second and then the first
I Tait-Bryan Angles: rotation about all three axes

I The Euler and Tait-Bryan Angles each have 6 possible choices for each of
the extrinsic/intrinsic groups leading to 2 ∗ 2 ∗ 6 = 24 possible conventions
to specify a rotation sequence with three given angles

I For simplicity we will refer to all these 24 conventions as Euler Angles
and will explicitly specify:
I r (rotating = intrinsic) or s (static = extrinic)
I xyz or zyx or zxz , etc. (axes about which to perform the rotation in the

specified order)

13

Euler Angle Convention
I Spin (θ), nutation (γ), precession (ψ) sequence:

I A rotation ψ about the original z-axis
I A rotation γ about the intermediate x-axis
I A rotation θ about the transformed z-axis

I Roll (φ), pitch (θ), yaw (ψ):
I A rotation φ about the original x-axis
I A rotation θ about the intermediate y -axis
I A rotation ψ about the transformed z-axis

I We will call Euler Angles the roll (φ), pitch (θ), yaw (ψ) angles
specifying an XYZ extrinsic rotation or equivalently a ZYX intrinsic
rotation:

R = Rz(ψ)Ry (θ)Rx(φ)

=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


14

Gimbal Lock

I Angle parameterizations have singularities (not one-to-one), which can
result in gimbal lock, e.g., if θ = 90◦, the roll and yaw become
associated with the same degree of freedom and cannot be uniquely
determined.

I The gimbal lock is a problem only if we want to recover the rotation
angles from a rotation matrix

15

Axis-Angle Parameterization
I Every rotation can be represented by a

rotation vector ω ∈ R3 as a rotation about
an axis ξ := ω

‖ω‖2
through angle θ := ‖ω‖2

I Consider a point s rotating about an axis ξ
at constant unit velocity (‖ω‖2 = 1):

ṡ(t) = ξ × s(t) = ξ̂s(t), s(0) = s0

⇒ s(t) = e ξ̂ts0 = R(t)s0

I Rotation kinematics: if ω ∈ R3 is constant (world frame) angular
velocity of a body {B}, then the body orientation changes as follows:

Ṙ(t) = ω̂R(t) ⇒ R(t) = exp(ω̂t)R(t0)

I Axis-angle representation: a rotation around the axis ξ := ω
‖ω‖2

through an angle θ := ‖ω‖2 can thus be represented as:

R = exp(ω̂)

I The matrix exponential defines a map from so(3) to SO(3).
16

Quaternions (Hamilton Convention)

I Quaternions: H = C + Cj generalize complex numbers C = R + Ri

q = qs +q1i +q2j +q3k = [qs , qv] ij = −ji = k , i2 = j2 = k2 = −1

I Just as in 2-D, 3-D rotations can be represented using “complex
numbers”, i.e., unit-norm quaternions {q ∈ H | q2

s + qT
v qv = 1}

I To represent rotations, the quaternion space embeds a 3-D space into a
4-D space (no singularities) and introduces a unit norm constraint.
The space of quaternions is a double covering of SO(3) because two
unit quaternions correspond to the same rotation: R(q) = R(−q).

I A rotation matrix R ∈ SO(3) can be obtained from a unit quaternion q:

R(q) = E (q)G (q)T E (q) = [−qv , qs I + q̂v] G (q) = [−qv , qs I − q̂v]

17

Quaternion Conversions

I A rotation around a unit axis ξ := ω
‖ω‖ ∈ R3 by angle θ := ‖ω‖ can be

represented by a unit quaternion:

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
ξ

]
I A rotation around a unit axis ξ ∈ R3 by angle θ can be recovered from a

unit quaternion q:

θ = 2 arccos(qs) ξ =

{
1

sin(θ/2)qv , if θ 6= 0

0, if θ = 0

I The inverse transformation above has a singularity at θ = 0 because
there are infinitely many rotation axes that can be used or equivalently
the transformation from an axis-angle representation to a quaternion
representation is many-to-one

18

Quaternion Properties
Addition q + p = [qs + ps , qv + pv]

Multiplication q ◦ p =
[
qsps − qT

v pv , qspv + psqv + qv × pv

]
Conjugate q̄ = [qs , −qv]

Norm |q| :=
√
q2
s + qT

v qv |q ◦ p| = |q||p|

Inverse q−1 = q̄
|q|2

Rotation [0, x′] = q ◦ [0, x] ◦ q−1 = [0, R(q)x]

Rot. Velocity q̇ = 1
2 [0, ω] ◦ q = 1

2E (q)Tω = 1
2q ◦ [0, ωB] = 1

2G (q)TωB

Exp exp(q) := eqs
[
cos ‖qv‖, qv

‖qv‖ sin ‖qv‖
]

Log log(q) :=
[
log |q|, qv

‖qv‖ arccos qs
|q|

]
I Exp: constructs q from rotation vector ω ∈ R3: q = exp

([
0, ω

2

])
I Log: recovers a rotation vector ω ∈ R3 from q: [0, ω] = 2 log(q)

19

Rigid Body Pose
I Let B be a body frame whose position and orientation with respect to

the world frame W are p ∈ R3 and R ∈ SO(3), respectively.

I The coordinates of a point sB ∈ R3 in the body frame B can be
converted to the world frame by first rotating the point and then
translating it to the world frame: sW = RsB + p.

I Homogeneous coordinates: the rigid-body transformation is not linear
but affine. It can be converted to linear by appending 1 to the
coordinates of a point s: [

sW
1

]
=

[
R p
0 1

] [
sB
1

]
I Each entry of a homogeneous point representations can be multiplied by

a scale factor λ which allows representing points arbitrarily far away

from the origin as λ→ 0:

[
λsB
λ

]
I To recover the original coordinates, divide the first three entries by λ

20

Special Euclidean Group SE (3)

I The pose of a rigid body can thus be described by a matrix:

SE (3) :=

{
T :=

[
R p
0 1

] ∣∣∣∣ R ∈ SO(3), p ∈ R3

}
⊂ R4×4

I Using homogeneous coordinates, it can be verified that SE (3) satisfies
all requirements of a group:

I T1T2 =

[
R1 p1

0 1

] [
R2 p2

0 1

]
=

[
R1R2 R1p2 + p1

0 1

]
∈ SE (3)

I
[
I 0
0 1

]
∈ SE (3)

I
[
R p
0 1

]−1

=

[
RT −RTp
0 1

]
∈ SE (3)

I (T1T2)T3 = T1(T2T3) for all T1,T2,T3 ∈ SE (3)

21

Composing Transformations

I Let the pose of a rigid body be {W }T{B} :=

[
{W }R{B} {W }p{B}

0 1

]
I The subscripts indicate that the pose a rigid body in the world frame

specifies a transformation from the body to the world frame

I Given a robot with pose T , a point sB in the robot body frame has
world frame coordinates:

sW = RsB + p equivalent to

[
sW
1

]
= T

[
sB
1

]
I Give a robot with pose {W }T{1} at time t1 and {W }T{2} at time t2, the

relative transformation from the inertial frame {2} at time t2 to the
inertial frame {1} at time t1 is:

{1}T{2} = {1}T{W } × {W }T{2} =
(
{W }T{1}

)−1 × {W }T{2}

=

[
{W }R

T
{1} −{W }R

T
{1} × {W }p{1}

0 1

] [
{W }R{2} {W }p{2}

0 1

]
22

Summary

Rotation SO(3) Pose SE (3)

Representation R :

{
RTR = I

det(R) = 1
T =

R p

0 1


Transformation sW = RsB sW = RsB + p

Inverse R−1 = RT T−1 =

RT −RTp

0 1


Composition WRtk = WRt0

k−1∏
i=0

tiRti+1 WTtk = WTt0

k−1∏
i=0

tiTti+1

23

