
ECE276A: Sensing & Estimation in Robotics
Lecture 8: Motion and Observation Models

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Motion Model

I A motion model describes the density function pf (· | x , u) of a new
robot state after motion for a given state x with control input u

I A motion model can be obtained using:
I Supervised learning from a dataset D = {(xi , ui , x ′i)} of transitions

I Model-based reinforcement learning, where it is inferred indirectly as the
robot is learning to perform a task

I Kinematics or dynamics modeling
I Differential drive model
I Ackermann drive (bicycle) model
I Quadrotor model
I Legged locomotion model

I Odometry, i.e., using sensor data (e.g., wheel encoders, IMU, camera,
laser) to estimate ego motion in retrospect, after the robot has moved

2

Quadrotor Motion Model
I State x = (p, ṗ,R, ωB) with position p ∈ R3, velocity ṗ ∈ R3,

orientation R ∈ SO(3), and rotational velocity ωB ∈ R3

I Control u = (h,MB) with thrust h ∈ R and moment MB ∈ R3

I Continuous-time model with mass m ∈ R>0, gravitational acceleration
g , moment of inertial J ∈ R3×3 and z-axis e3 ∈ R3:

ẋ = f (x , u) =

mp̈ = −mge3 + hRe3

Ṙ = Rω̂B

Jω̇B = −ωB × JωB + MB

3

Differential-drive Motion Model
I State s = (p, θ) ∈ SE (2), where p = (x , y) ∈ R2 is the position and
θ ∈ (−π, π] is the orientation (yaw angle)

I Control u = (v , ω), where v ∈ R is the linear velocity and ω ∈ R is the
rotational velocity (yaw rate)

I Continuous-time model:

ṡ = f (s, u) =

ṗ = v

(
cos θ

sin θ

)
θ̇ = ω

I Discrete-time model with time discretization τ :

st+1 = f (st , ut) := st + τ

vtsinc
(
ωtτ
2

)
cos
(
θt + ωtτ

2

)
vtsinc

(
ωtτ
2

)
sin
(
θt + ωtτ

2

)
ωt

4

Continuous-time Differential-drive Model

I Let st := (xt , yt , θt)
T ∈ SE (2) be the pose of a differential drive robot

I What is the state st+τ after τ seconds if we apply linear velocity vt and
angular velocity ωt?

5

Discrete-time Differential-drive Model
I To convert the continuous-time differential-drive model to discrete time,

we can solve the ordinary differential equations:

ẋ(t) = v cos θ(t)

ẏ(t) = v sin θ(t)

θ̇(t) = ω

⇒

θ(t) = θ(t0) +

∫ t

t0

ωds = θ(t0) + ω(t − t0)

x(t) = x(t0) + v

∫ t

t0

cos θ(s)ds

= x(t0) +
v

ω
(sin (ω(t − t0)+θ(t0))− sin θ(t0))

= x(t0) + v(t − t0)
sin(ω(t − t0)/2)

ω(t − t0)/2
cos(θ(t0) + ω(t − t0)/2)

y(t) = y(t0) + v

∫ t

t0

sin θ(s)ds

= y(t0)− v

ω
(cos θ(t0)−cos (ω(t − t0) + θ(t0)))

= y(t0) + v(t − t0)
sin(ω(t − t0)/2)

ω(t − t0)/2
sin(θ(t0) + ω(t − t0)/2)

I Let τ := t − t0 be the time discretization
6

Encoders
I A magnetic encoder consists of a rotating gear, a permanent magnet

and a sensing element
I The sensor has two output channels with offset

phase to determine the direction of rotation

I A microcontroller counts the number of
transitions adding or subtracting 1 (depending on
the direction of rotation) to the counter

I The distance traveled by the wheel,
corresponding to one tick on the encoder is:

meters per tick =
π × (wheel diameter)

ticks per revolution

I The distance traveled during time τ for a given
encoder count c, wheel diameter d , and 360
ticks per revolution is τv ≈ πdc

360 and can be used
to predict the position change in a
differential-drive model 7

Odometry-based Motion Model

I A “drifting” estimate of the robot pose W T̂t :=

[
R̂t pt
0 1

]
in the world

frame {W } is provided by the motion sensors over time (e.g., by
integrating the encoder measurements through the differential drive
motion model)

I The pose trajectory is noisy due to integration errors but any individual
transformation from time t + 1 to time t is accurate:

ut := tT̂t+1 =
(
W T̂t

)−1

W T̂t+1 ∈ SE (3)

I The relative transformation ut can be used to define an odometry-based
motion model to predict a new robot state xt+1 ∈ SE (3) (specifying the
transformation from the body frame at time t + 1 to the world frame)
from the current robot state xt ∈ SE (3):

xt+1 = xt ⊕ ut

where ⊕ emphasizes that the above is a composition of SE (3) elements

8

Observation Model

I An observation model describes the measurement likelihood ph(z | x ,m)
for a given sensor pose x and environment representation m

I Position model: direct position measurements, e.g., GPS, RGBD
camera, laser scanner

I Bearing model: angular measurements to points in 3-D, e.g., compass,
RGB camera

I Range model: distance measurements to points in 3-D, e.g., radio
received signal strength (RSS) or time-of-flight

I Inertial measurement unit: magnetometer, gyroscope, accelerometer

9

Cameras

Global shutter

RGBD

Stereo (+ IMU)

Event-based

10

Lasers

Single-beam Garmin Lidar

2-D Hokuyo Lidar

3-D Velodyne Lidar

11

Observation Models
I Position sensor: state x = (p,R), position p ∈ R3, orientation

R ∈ SO(3), observed point m ∈ R3, measurement z ∈ R3:

z = h(x ,m) = RT (m − p)

I Range sensor: state x = (p,R), position p ∈ R3, orientation
R ∈ SO(3), observed point m ∈ Rn, measurement z ∈ R:

z = h(x ,m) = ‖RT (m − p)‖2 = ‖m − p‖2
I Bearing sensor: state x = (p, θ), position p ∈ R2, orientation
θ ∈ (−π, π], observed point m ∈ R2, bearing z ∈ (−π, π]:

z = h(x ,m) = arctan

(
m2 − p2
m1 − p1

)
− θ

I Camera sensor: state x = (p,R), position p ∈ R3, orientation
R ∈ SO(3), intrinsic camera matrix K ∈ R2×3, observed point m ∈ R3,
pixel z ∈ N2:

z = h(x ,m) = Kπ(RT (m − p)) projection: π(m) :=
1

mz
m

12

MEMS Strapdown IMU

I MEMS: micro-electro-mechanical system
I IMU: inertial measurement unit:

I triaxial accelerometer
I triaxial gyroscope (measures angular velocity)
I Strapdown: the IMU and the object/vehicle

inertial frames are joined together/identical

I Accelerometer:
I A mass m on a spring with constant k . The spring

displacement is prop. to the system acceleration:
F = ma = kd ⇒ d = ma

k
I VLSI Fabrication: the displacement of a metal

plate with mass m is measured with respect to
another plate using capacitance

I Used for car airbags (if the acceleration goes
above 2g , the car is hitting something!)

I Gyroscope: uses Coriolis force to detect rotational velocity from the
changing mechanical resonsance of a tuning fork

13

IMU Observation Model

I Robot State (p, ṗ, p̈,R, ωB , ω̇B , bg , ba) with position p ∈ R3, velocity
ṗ ∈ R3, acceleration p̈ ∈ R3, orientation R ∈ SO(3), rotational velocity
ωB ∈ R3 (body frame), and rotational acceleration ω̇B ∈ R3 (body
frame), gyroscope bias bg ∈ R3, accelerometer bias ba ∈ R3

I Extrinsics: IMU position BpI ∈ R3 and orientation BRI ∈ SO(3) in the
body frame (assumed known or obtained via calibration)

I Measurement (zω, za) with rotational velocity measurement zω ∈ R3

and linear acceleration measurement za ∈ R3

14

IMU Observation Model

I Continuous-time model: with gravitational acceleration g , gyro
measurement noise ng ∈ R3, accelerometer measurement noise na ∈ R3

(assumed zero-mean white Gaussian):

zω = BR
T
I ωB + bg + ng

za = WRT
I (W p̈I − g) + ba + na

= (R BRI)
T

(
d

dt2
(p + R BpI)− g

)
+ ba + na

= BR
T
I

(
RT (p̈ − g) +

[
ˆ̇ωB

]
BpI +

[
ω̂2
B

]
BpI

)
+ ba + na

I Discrete-time model: A. Mourikis and S. Roumeliotis, “A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation”

15

LIDAR Model

I Lidar: LIght Detection And Ranging

I Illuminates the scene with pulsed laser light
and measures the return times and
wavelengths of the reflected pulses

I Mirrors are used to steer the laser beam in
the xy plane (and zy plane for 3D lidars)

I Example: Hokuyo URG-04LX; detectable
range: 0.02 to 4m; 240◦ field of view with
0.36◦ angular resolution (666 beams); 100
ms/scan

16

Laser Range-Azimuth-Elevation Model
I Consider a Lidar with position p ∈ R and orientation R ∈ SO(3)

observing a points m ∈ R3 in the world frame

I The point m has coordinates m̄ := RT (m − p) in the lidar frame

I The lidar provides a spherical coordinate measurement of m:

RT (m − p) =

r cosα cos ε
r sinα cos ε

r sin ε

where r is the range, α is the azimuth, and ε is the elevation

I Inverse observation model: expresses the lidar state p, R and

environment state m, in terms of the measurement z =
[
r α ε

]T
I Inverting gives the laser range-azimuth-elevation model:

z =

rα
ε

 =

 ‖m̄‖2
arctan (m̄y/m̄x)

arcsin (m̄z/‖m̄‖2)

 m̄ = RT (m − p)

17

Laser Beam Model
I Let zkt be the k-th laser beam obtained from sensor pose xt in map m
I Let zk∗t be the expected range measurement from xt in m and let zmax

be the max laser range
I The laser sensor model assumes that the beams are independent:

ph(zt | xt ,m) =
∏
k

p(zkt | xt ,m)

Four types of measurement noise:

1. Small measurement noise:
phit , Gaussian

2. Unexpected object:
pshort , Exponential

3. Unexplained noise:
prand , Uniform

4. No objects hit:
pmax , Uniform

18

Laser Beam Model

I Independent beam assumption: ph(zt | xt ,m) =
∏

k p(zkt | xt ,m)

I Four types of noise:

p(zkt | xt ,m) = α1phit(z
k
t | xt ,m) + α2pshort(z

k
t | xt ,m) + α3prand(zkt | xt ,m) + α4pmax(zkt | xt ,m)

phit(z
k
t | x ,m) =

φ(zkt ;z

k∗
t ,σ2)∫ zmax

0 φ(s;zk∗t ,σ2)ds
if 0 ≤ zkt ≤ zmax

0 else

pshort(z
k
t | x ,m) =

 λse−λs z
k∗
t

1−e−λs z
k∗
t

if 0 ≤ zkt ≤ zk∗t

0 else

prand(zkt | x ,m) =

{
1

zmax
if 0 ≤ zkt < zmax

0 else

pmax(zkt | x ,m) = δ(zkt ; zmax) :=

{
1 if zkt = zmax

0 else

19

Laser Correlation Model
I A model for a laser scan z obtained from sensor pose x in an occupancy

map m obtained by modeling the correlation between z and m

I Occupancy grid map: a grid with free (mi = 0) and occupied (mi = 1) cells

I Laser Correlation Model:
1. Transform the scan z to the world frame using x and find all points y in

the grid that correspond to the scan
2. Let the observation model be proportional to the similarty corr(y ,m)

between the transformed scan y and the grid m

I The correlation is large if y and m agree:

corr(y ,m) :=
∑
i

1{mi = yi}

I The weights can be converted to
probabilities via the softmax function:

ph(z | x ,m) =
ecorr(y ,m)∑
v e

corr(v ,m)
∝ ecorr(y ,m)

20

	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

