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Motion Model

» A motion model describes the density function ps(- | x, u) of a new
robot state after motion for a given state x with control input u

» A motion model can be obtained using:
» Supervised learning from a dataset D = {(x;, uj, x/)} of transitions

» Model-based reinforcement learning, where it is inferred indirectly as the
robot is learning to perform a task

> Kinematics or dynamics modeling
» Differential drive model
> Ackermann drive (bicycle) model
»> Quadrotor model
> Legged locomotion model

> Odometry, i.e., using sensor data (e.g., wheel encoders, IMU, camera,
laser) to estimate ego motion in retrospect, after the robot has moved



Quadrotor Motion Model

» State x = (p, p, R,ws) with position p € R3, velocity p € R3,
orientation R € SO(3), and rotational velocity wg € R3

» Control u = (h, Mg) with thrust h € R and moment Mg € R3

» Continuous-time model with mass m € R+, gravitational acceleration
g, moment of inertial J € R3*3 and z-axis e3 € R3:
mp = —mges + hRe3
x=f(x,u) = { R = R&g
JOZJB = —wp X JLUB + MB




Differential-drive Motion Model

> State s = (p,0) € SE(2), where p = (x,y) € R? is the position and
0 € (—m, 7] is the orientation (yaw angle)

» Control u = (v,w), where v € R is the linear velocity and w € R is the
rotational velocity (yaw rate)

» Continuous-time model:
. cos
=v
s="f(s,u)= P sinf

» Discrete-time model with time discretization 7:
vesine (£47) cos (0 + <47)
St41 — f(St, Ut) =S+ T VtSinC (%) sin (Qt + %)
Wt




Continuous-time Differential-drive Model

> Let s, == (xt, y1,0:)" € SE(2) be the pose of a differential drive robot
» What is the state s after 7 seconds if we apply linear velocity v; and

angular velocity w;?

Icc (Instantaneous Center of Curvature)

Vv, —V
o=k "L
L
R:L[VL+VR]_1
2\ vy, —v, 10}
etV
2

x(@)=vcosd(1)
() =vsinO(¢)
OEL



Discrete-time Differential-drive Model

» To convert the continuous-time differential-drive model to discrete time,
we can solve the ordinary differential equations:

6(t) = 0(to) + /twds = 0(to) + w(t — to)

+v/ cosf(s

v

x(t) = vcosH(t) = X(to) + — (sin (w(t — t0)+0(t0)) — sin (o))

/() = vsin _ _ ) Sn@lt=10)/2) o w(t —
28_; MO = = x(to) + v(t = o) =y =" cos(B(to) + w(t = 10)/2)

Y () = y(to) + v/ttsine(s)ds

= y(to) — _ (cos (o) —cos (w(t — o) +0(t0)))

sin(w(t — t9)/2)
w(t —1t0)/2

» Let 7 := t — ty be the time discretization

€

= y(to) + v(t — to) sin(0(to) + w(t — t0)/2)



Encoders

>

>

A magnetic encoder consists of a rotating gear, a permanent magnet
and a sensing element

The sensor has two output channels with offset
phase to determine the direction of rotation

A microcontroller counts the number of
transitions adding or subtracting 1 (depending on
the direction of rotation) to the counter

The distance traveled by the wheel,
corresponding to one tick on the encoder is:

7 X (wheel diameter)

meters per tick = — -
ticks per revolution

The distance traveled during time 7 for a given

encoder count ¢, wheel diameter d, and 360 ENEN
ticks per revolution is Tv & %dg and can be used

to predict the position change in a

differential-drive model 7



Odometry-based Motion Model

A

» A “drifting” estimate of the robot pose W7A't = [I;t lﬂ in the world

frame {W} is provided by the motion sensors over time (e.g., by
integrating the encoder measurements through the differential drive
motion model)

» The pose trajectory is noisy due to integration errors but any individual
transformation from time t + 1 to time t is accurate:

~ A\ 1 ~
Up i= ¢t Tep1 = (WTt) w Te41 € SE(3)

» The relative transformation u; can be used to define an odometry-based
motion model to predict a new robot state x;+1 € SE(3) (specifying the
transformation from the body frame at time t + 1 to the world frame)
from the current robot state x; € SE(3):

Xt4+1 = Xt D U

where @ emphasizes that the above is a composition of SE(3) elements
8



Observation Model

>

>

An observation model describes the measurement likelihood px(z | x, m)
for a given sensor pose x and environment representation m

Position model: direct position measurements, e.g., GPS, RGBD
camera, laser scanner

Bearing model: angular measurements to points in 3-D, e.g., compass,
RGB camera

Range model: distance measurements to points in 3-D, e.g., radio
received signal strength (RSS) or time-of-flight

Inertial measurement unit: magnetometer, gyroscope, accelerometer
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Cameras

Global shutter

-

RGBD

Event-based
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Lasers

2-D Hokuyo Lidar

HDL-64E

HDL-32E

3-D Velodyne Lidar
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Observation Models

» Position sensor: state x = (p, R), position p € R3, orientation
R € SO(3), observed point m € R3, measurement z € R3:

z=h(x,m)=RT(m—p)

> Range sensor: state x = (p, R), position p € R3, orientation
R € SO(3), observed point m € R", measurement z € R:

z=h(x,m) = [R"(m = p)2 = [m— pl2

» Bearing sensor: state x = (p, ), position p € R?, orientation
6 € (—m, 7], observed point m € R?, bearing z € (—, 7]:

2 = () = avctan (2222
m — p1
» Camera sensor: state x = (p, R), position p € R3, orientation
R € SO(3), intrinsic camera matrix K € R?2*3, observed point m € R3,
pixel z € N?:
1
z=h(x,m) = Kr(RT(m - p)) projection: 7w(m):=—m

Mz 19



MEMS Strapdown IMU _—

polysilicon
mass

» MEMS: micro-electro-mechanical system ff oton
» IMU: inertial measurement unit: / e
. . tethers
> triaxial accelerometer
> triaxial gyroscope (measures angu.lar veloc?lty) ot i e
> Strapdown: the IMU and the object/vehicle
inertial frames are joined together/identical Surtace icromachined Acceleromete

» Accelerometer:

» A mass m on a spring with constant k. The spring QJG i
displacement is prop. to the system acceleration: e
F=ma=kd = d=15

» VLSI Fabrication: the displacement of a metal
plate with mass m is measured with respect to
another plate using capacitance

> Used for car airbags (if the acceleration goes

above 2g, the car is hitting something!)

Torsional vibration
i, produced by ,
angular rate

Mount —

» Gyroscope: uses Coriolis force to detect rotational velocity from the

changing mechanical resonsance of a tuning fork 3



IMU Observation Model

> Robot State (p, p, p, R,wg,ws, bg, bs) with position p € R3, velocity
p € R3, acceleration p € R3, orientation R € SO(3), rotational velocity
wp € R3 (body frame), and rotational acceleration wg € R3 (body
frame), gyroscope bias b, € R3, accelerometer bias b, € R3

» Extrinsics: IMU position gp; € R3 and orientation gR; € SO(3) in the
body frame (assumed known or obtained via calibration)

» Measurement (z,,z,) with rotational velocity measurement z, € R3
and linear acceleration measurement z, € R3

14



IMU Observation Model

» Continuous-time model: with gravitational acceleration g, gyro
measurement noise ng € R3, accelerometer measurement noise n, € R3
(assumed zero-mean white Gaussian):

Zy = BR,TwB + bg + ng

Z3 = WR/T (WPI _g) + b, + n,
d
=(RgR)" <dt2 (p+RBpi) —g> + bs + n,
=R/ (RT(P' - g)+ [&B} gp + [©B] BPI) + by + n,

» Discrete-time model: A. Mourikis and S. Roumeliotis, “A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation”

15



LIDAR Model

» Lidar: Llght Detection And Ranging

» llluminates the scene with pulsed laser light
and measures the return times and
wavelengths of the reflected pulses

» Mirrors are used to steer the laser beam in
the xy plane (and zy plane for 3D lidars)

» Example: Hokuyo URG-04LX; detectable
range: 0.02 to 4m; 240° field of view with
0.36° angular resolution (666 beams); 100
ms/scan




Laser Range-Azimuth-Elevation Model

» Consider a Lidar with position p € R and orientation R € SO(3)
observing a points m € R3 in the world frame

» The point m has coordinates m := RT(m — p) in the lidar frame

» The lidar provides a spherical coordinate measurement of m:

r COS (v COS €
RT(m—p)= | rsinacose
rsine

where r is the range, « is the azimuth, and € is the elevation
» Inverse observation model: expresses the lidar state p, R and
. . T
environment state m, in terms of the measurement z = [r «a €|

» Inverting gives the laser range-azimuth-elevation model:

r ]2
z= |a| = | arctan(my,/my) m=RT(m-p)
€ arcsin (mz/||m||2)
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Laser Beam Model

» Let z¥ be the k-th laser beam obtained from sensor pose x; in map m
> Let zt"* be the expected range measurement from x; in m and let zax

be the max laser range

» The laser sensor model assumes that the beams are independent:

Ph(ze | xe, m) = HP(Z:( | X, m)
k

Four types of measurement noise:
1. Small measurement noise:
pnit, Gaussian
2. Unexpected object:
Pshort, Exponential
3. Unexplained noise:
Prand, Uniform

4. No objects hit:
Pmax, Uniform

(a) Gaussian distribution pp;;

p(=f | 2.m)

(b) Exponential distribution pgyert

p(ar | @ m)

12
B Zmax
(¢) Uniform distribution pmax

p(F | z,m)

2" Zmax
(d) Uniform distribution prana

p(=f |2, m)

2t Zmax

2" Zn:\l‘:\B



Laser Beam Model

> Independent beam assumption: pp(z: | x¢, m) = [, p(zE | x¢, m)
» Four types of noise:

p(zF | xe. m) = a1ppie(zK | xe. M) + Q2Pshore (2K | Xe, M) + A3Prand (2K | X6, M) + aPmax(zK | ¢, m)

¢(Zf Zf*,a
fozmax ¢(5 Zk* Uz)ds

0 else

ifOSZfSZmax
Ph:t Zt |X m

7/\51’: k kx
Psh, tZ | x,m) = PR if0<z <z .
'short\ 2t A

else

Prand( zk | x, m) Zmax if0 < zt < Zmax ) ;“,c \'\,
an . | \
| ‘ else — N

1 if Zk = Z, 2} P
pmax(z,.f< | X, m) = 5(25; zmax) — { t ‘max

0 else
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Laser Correlation Model

» A model for a laser scan z obtained from sensor pose x in an occupancy
map m obtained by modeling the correlation between z and m

» Occupancy grid map: a grid with free (m; = 0) and occupied (m; = 1) cells

» Laser Correlation Model:
1. Transform the scan z to the world frame using x and find all points y in
the grid that correspond to the scan
2. Let the observation model be proportional to the similarty corr(y, m)
between the transformed scan y and the grid m

» The correlation is large if y and m agree:

corr(y, m) —Z]l{m, yi} R ’a.--.. e

» The weights can be converted to
probabilities via the softmax function:

gcorr(y,m) _' l ,L_.' ﬂ:m-

B corr(y,m) i
Z ecorr(v,m) x e ot
v

pn(z | x,m) =
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