
ECE276A: Sensing & Estimation in Robotics
Lecture 9: Particle Filter SLAM

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Tianyu Wang: tiw161@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu
You-Yi Jau: yjau@eng.ucsd.edu
Harshini Rajachander: hrajacha@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu
mailto:yjau@eng.ucsd.edu
mailto:hrajacha@eng.ucsd.edu

Simultaneous Localization & Mapping (SLAM)

I Chicken-and-egg problem:
I Mapping: given the robot state trajectory x0:T , build a map m of the

environment

I Localization: given a map m of the environment, localize the robot and
estimate its trajectory x0:T

I SLAM is a parameter estimation problem for the parameters x0:T and
m. Given a “dataset” of the robot inputs u0:T−1 and observations z0:T ,
maximize the data likelihood conditioned on the parameters (MLE) or
the posterior likelihood of the parameters given the data (MAP) or use
Bayesian Inference to maintain the posterior likelihood of the parameters
given the data:
I MLE: maxx0:T ,m log p(z0:T , u0:T−1 | x0:T ,m)

I MAP: maxx0:T ,m log p(x0:T ,m | z0:T , u0:T−1)

I BI: maintain p(x0:T ,m | z0:T , u0:T−1)

2

Simultaneous Localization & Mapping (SLAM)

I Solutions to the SLAM problem exploit the decomposition of the joint
pdf due to the Markov assumptions:

p(x0:T ,m, z0:T , u0:T−1) = p0|0(x0,m)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt ,m)︸ ︷︷ ︸
observation model

T∏
t=1

pf (xt | xt−1, ut−1)︸ ︷︷ ︸
motion model

I The MLE formulation becomes:

max
x0:T ,m

T∑
t=0

log ph(zt | xt ,m) +
T∑

t=1

log pf (xt | xt−1, ut−1)

I The MAP formulation is equivalent with the addition of a prior
log p0|0(x0,m) to the objective function

I The BI formulation uses Bayesian smoothing to maintain
p(x0:T ,m | z0:T , u0:t−1)

3

Simultaneous Localization & Mapping (SLAM)

I Early SLAM approaches (with worse performance) were based on
simplified versions of the MLE/MAP/BI formulations:
I Bayes filtering to maintain only p(xt ,m | z0:t , u0:t−1)

I EM treating xt is a hidden variable. Given an inital map m(0), e.g.,
obtained from the first observation, iterate:

E: Estimate the distribution of xt given m(i)

M: Update m(i+1) by maximizing (over m) the log-likelihood of the
measurements conditioned on xt and m

I The implementation of any of the SLAM approaches depends on the
particular representations of the robot states xt , map m, observations zt ,
and control inputs ut

4

Map Representations

I Landmark-based: a collection of objects,
each having a position, orientation, and
object class

I Occupancy grid: a discretization of space
into cells with a binary occupancy model

I Surfels: a collection of oriented discs
containing photometric information

I Polygonal mesh: a collection of points
and connectivity information among them,
forming polygons

5

Markov Localization in Occupancy Grid Maps
I Occupancy grid map: a grid m with free

(mi = 0) and occupied (mi = 1) cells

I Lidar-based Localization: Given an
occupancy grid map m, a sequence of
velocity inputs u0:t−1, and a sequence of
lidar scans z0:t , infer the state xt of a
differential-drive robot

I Approach:
I Use a delta-mixture to represent the pdf of the robot state at time t:

pt|t(xt) := p(xt | z0:t , u0:t−1) ≈
Nt|t∑
k=1

α
(k)
t|t δ

(
xt ;µ

(k)
t|t

)
µ
(k)
t|t ∈ SE (2)

I Use the particle filter to propagate the pdf over time

I Prediction step: use the differential-drive motion model

I Update step: use the laser correlation observation model

6

Markov Localization in Occupancy Grid Maps
I Prediction step: for every particle µ

(k)
t|t , k = 1, . . . ,Nt|t compute:

µ
(k)
t+1|t = f

(
µ
(k)
t|t , ut + εt

)
where f is the differential-drive motion model, ut = (vt , ωt) is the linear
and angular velocity input (either known or obtained from the Encoders
and IMU), and εt ∼ N (0, E) is a 2-D Gaussian motion noise

I Update step:
I Transform the scan zt+1 to the world frame using µ

(k)
t+1|t for

k = 1, . . . ,Nt|t and find all cells y
(k)
t+1 in the grid corresponding to the scan

I Update the particle weights using the laser correlation model:

ph(zt+1 | µ(k)
t+1|t ,m) ∝ exp

(
corr

(
y
(k)
t+1,m

))
I If Neff := 1∑Nt|t

k=1

(
α
(k)
t|t

)2 ≤ Nthreshold , resample the particle set{
µ
(k)
t+1|t+1, α

(k)
t+1|t+1

}
via stratified or sample importance resampling

7

Particle Filter Localization (2-D)

8

Particle Filter Localization (2-D)

9

Particle Filter Localization (2-D)

10

Particle Filter Localization (2-D)

11

Particle Filter Localization (2-D)

12

Particle Filter Localization (2-D)

13

Particle Filter Localization (2-D)

14

Particle Filter Localization (2-D)

15

Particle Filter Localization (2-D)

16

Particle Filter Localization (2-D)

17

Particle Filter Localization (2-D)

18

Particle Filter Localization (2-D)

19

Particle Filter Localization (2-D)

20

Particle Filter Localization (2-D)

21

Particle Filter Localization (2-D)

22

Particle Filter Localization (2-D)

23

Particle Filter Localization (2-D)

24

Occupancy Grid Mapping
I Lidar-based Mapping: Given the robot trajectory x0:t and a sequence

of lidar scans z0:t , build an occupancy grid map m of the environment

I Since the map is unknown and the
measurements are uncertain, we need to
maintain a pdf p(m | z0:t , x0:t) over the map

I Model the map cells mi as independent
Bernoulli random variables

I Given occupancy measurements z0:t , the
distribution of mi is:

mi | z0:t =

{
Occupied (1) with prob. γi ,t := p(mi = 1 | z0:t , x0:t)

Free (0) with prob. 1− γi .t

I To have a probabilistic map representation, we just need to keep a grid
of the occupancy probabilities γi ,t

25

Occupancy Grid Mapping
I How do we update the map distribution γi ,t over time?

I Bayes Rule:

γi ,t = p(mi = 1 | z0:t , x0:t) =
1

ηt
ph(zt | mi = 1, xt)p(mi = 1 | z0:t−1, x0:t−1)

=
1

ηt
ph(zt | mi = 1, xt)γi ,t−1

(1− γi ,t) = p(mi = 0 | z0:t , x0:t) =
1

ηt
ph(zt | mi = 0, xt)(1− γi ,t−1)

I The odds ratio of a binary random variable mi updated over time via
Bayes rule and measurements z0:t is:

o(mi | z0:t , x0:t) : =
p(mi = 1 | z0:t , x0:t)

p(mi = 0 | z0:t , x0:t)
=

γi ,t

1− γi ,t

=
ph(zt | mi = 1, xt)

ph(zt | mi = 0, xt)︸ ︷︷ ︸
gh(zt |mi ,xt)

γi ,t−1
1− γi ,t−1︸ ︷︷ ︸

o(mi |z0:t−1,x0:t−1)

26

Occupancy Grid Mapping
I Estimating the pdf of mi conditioned on z0:t is equivalent to

accumulating the log-odds ratio:

λ(mi | z0:t , x0:t) : = log o(mi | z0:t , x0:t) = log (gh(zt | mi , xt)o(mi | z0:t−1, x0:t−1))

= λ(mi | z0:t−1, x0:t−1) + log gh(zt | mi , xt)

= λ(mi) +
t∑

s=0

log gh(zs | mi , xs)

I Probabilistic occupancy grid mapping reduces to keeping track of the
cell log-odds:

λi ,t = λi ,t−1 + ∆λi ,t−1 ← Measurement “trust”

I Since the map cells are assumed independent, we can use a simpler
model (than the lidar correlation model) for ph(zt | mi , xt) by specifying
how much we trust the occupancy measurement of cell i :

gh(1 | mi , xt) =
ph(zt = 1 | mi = 1, xt)

ph(zt = 1 | mi = 0, xt)
=

80%

20%
= 4 gh(0 | mi , xt) =

1

4

27

Occupancy Grid Mapping (Summary)
I Maintain a grid of the map log-odds λi ,t

I Given a new laser scan zt+1, transform it to the
world frame using the robot pose xt+1

I Determine the cells that the lidar beams pass
through (e.g., using Bresenham’s line
rasterization algorithm)

I For each observed cell i , decrease the log-odds if it was observed free or
increase the log-odds if the cell was observed occupied:

λi ,t+1 = λi ,t + log gh(zt+1 | mi , xt+1)

I Constrain λMIN ≤ λi ,t ≤ λMAX to avoid overconfident estimation

I May introduce a decay on λi ,t to handle changing maps

I The map pdf γi ,t can be recovered from the log-odds λi ,t :

γi ,t = p(mi = 1 | z0:t , x0:t) = 1− 1

1 + exp (λi ,t) 28

Lidar-based Localization & Occupancy Grid Mapping

I Initial particle set µ
(k)
0|0 = (0, 0, 0)T ∈ SE (2) with weights α

(k)
0|0 = 1

N

I Use the first laser scan to initialize the map:

1. convert the scan to Cartesian coordinates and transform it from the body
frame to the world frame

2. convert the scan to cells (via bresenham2D or cv2.drawContours) and
update the map log-odds

I Use the differential-drive model to predict the motion of each particle

I Use the laser scan from each particle to compute map correlation (via
getMapCorrelation) and update the particle weights

I Choose the best particle, project the laser scan, and update the map
log-odds (in general, each particle should maintain its own map)

I Textured map: use the RGBD images from the best particle’s pose to
assign colors to the occupancy grid cells

29

Popular SLAM Algorithms

I Occupancy Grid Map: a grid of Bernoulli random variables
I Fast SLAM (Montemerlo et al.)

I exploits that the occupancy grid cells are independent conditioned on the
robot trajectory:

p(x0:t ,m | z0:t , u0:t−1) = p(x0:t | z0:t , u0:t−1)
∏

i

p(mi | z0:t , x0:t)

I uses a particle filter to maintain the robot trajectory pdf and log-odds
mapping to maintain a probabilistic map for every particle

I Kinect Fusion (Newcombe et al.)
I matches consecutive RGBD point clouds using the iterative closest point

(ICP)

I updates a grid discretization of the truncated signed distance function
(TSDF) representing the scene surface via weighted averaging

30

Popular SLAM Algorithms

I Landmark-based Map: a collection of Gaussian random variables
I Rao-Blackwellized Particle Filter uses particles for x0:t and Gaussian

distributions for the landmark positions

I Kalman Filter uses Gaussian distributions both for the robot and
landmark poses

I Factor graphs (State of the Art)
I Estimate the whole robot trajectory x0:t using the MAP formulation

I The log observation and motion models are proportional to the
Mahalonobis distance

I This leads to a sparse (due to the Markov assumptions), nonlinear (due
to the motion and observation models) least-squares (due to the
Mahalonobis distance) optimization problem

I The problem can be solved using the Gauss-Newton descent algorithm (an
approximation to Newton’s method that avoids computing the Hessian)

31

