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Expectation Maximization (EM) [4, 3, 6] is a numerical algorithm for the maximization of functions of several
variables. There are several tutorial introductions to EM, including [8, 5, 2, 7]. These are excellent references for
greater generality about EM, several good intuitions, and useful explanations. The purpose of this document is to ex-
plain in a more self-contained way how EM can solve a special but important problem, the estimation of the parameters
of a mixture of Gaussians from a set of data points. Here is the outline of what follows:

1. A comparison of EM with Newton’s method

2. The density estimation problem

3. Membership probabilities

4. Characterization of the local maxima of the likelihood

5. Jensen’s inequality

6. The EM algorithm

1 A Comparison of EM with Newton’s Method

The abstract idea of EM can be understood by comparison with Newton’s method for maximizing a scalar function
f(θ) of a vectorθ of variables. Newton’s method starts at a given pointθ(0), approximatesf in a neighborhood ofθ(0)

with a paraboloidb0(θ), and finds the maximum of the paraboloid by solving a system of linear equations to obtain a
new pointθ(1). This procedure is repeated forθ = θ(1), θ(2), . . . until the change fromθ(i−1) to θ(i) is small enough,
thereby signaling convergence to a point that we callθ∗, a local maximum off .

EM works in a similar fashion, but instead of approximatingf with a paraboloid atθ(i) it finds a new function
bi(θ) with the following properties:

• bi is a lower bound forf , that isbi(θ) ≤ f(θ) everywhere in a neighborhood of the current pointθ(i).

• The functionsbi andf touch atθ(i), that is,f(θ(i)) = bi(θ(i)).

Both EM and Newton’s method satisfy the second property,f(θ(i)) = bi(θ(i)). However, for EMbi need not be a
paraboloid. On the other hand, Newton’s paraboloid is not required to be a lower bound forf , while EM’s bi function
is. So neither method is an extension of the other.

In general, it is not clear which of the two methods would give better results: it really depends on the functionf
and, for EM, on the shape of the lower boundsbi. However, for both methods there are convergence guarantees. For
Newton’s method, the idea is that every function looks like a paraboloid in a small enough neighborhood of any point
θ, so maximizingbi becomes increasingly closer to maximizingf . Onceθ(i) is close to the maximumθ∗, one can
actually give bounds on the number of iterations that it takes to reach the maximum itself.

For the EM method, it is obvious that at the point of maximumθ(i+1) of bi we must havef(θ(i+1)) ≥ f(θ(i)).
This is becausebi(θ(i)) cannot be smaller thanf(θ(i)) (the two functions are required to be equal there), the maximum
bi(θ(i+1)) of bi cannot be smaller thanbi(θ(i)) (or else it would not be a maximum), andf(θ(i+1)) ≥ b(θ

(i+1))
(becausebi is a lower bound forf ). In summary,f(θ(i+1)) ≥ bi(θ(i+1)) ≥ bi(θ(i)) = f(θ(i)), so thatf(θ(i+1)) ≥
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Figure 1: Three-hundred points on the plane.

f(θ(i)), as promised. This by itself is no guarantee of progress, since it could still be thatf(θ(i+1)) = f(θ(i)), but at
least EM does not go downhill.

The name of the game, then, is to be clever enough with the waybi is built to be able to show that the progress
made at every iteration is finite and bounded from below. If at every step we go uphill by at leastε and if the function
f has a maximum, then at some point we are bound to reach the top. If in addition we find bound functionsbi that are
very similar tof , then it is possible that EM works even better than Newton’s method.

For some functionsf this game is hard to play. Other functions seem to be designed so that everything works
out just fine. One version of the all-importantdensity estimationproblem makes the EM idea work very well. In the
following section, density estimation is defined for mixtures of Gaussian functions. The sections thereafter show how
to use EM to solve the problem.

2 The Density Estimation Problem

Suppose that you are given a set of points as in Figure 1. These points are on the plane, but nothing about the current
theory is limited to two dimensions.

The points in the figure seem to be grouped in clusters. One cluster, on the right, is nicely separated from the
others. Two more clusters, on the left, are closer to each other, and it is not clear if a meaningful dividing line can be
drawn between them.

The density estimationproblem can be loosely defined as follows: given a set ofN points in D dimensions,
x1, . . . ,xN ∈ RD, and a familyF of probability density functions onRD, find the probability densityf(x) ∈ F that
is most likely to have generated the given points.

One way to define the familyF is to give each of its members the same mathematical form, and to distinguish
different members by different values of a set of parametersθ. For instance, the functions inF could bemixtures of
Gaussian functions:

f(x; θ) =
K∑

k=1

pk g(x; mk, σk) (1)

where

g(x; mk, σk) =
1

(
√

2πσk)D
e
− 1

2

( ‖x−mk‖
σk

)2
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is a D-dimensional isotropic1 Gaussian function andθ = (θ1, . . . , θK) = ((p1,m1, σ1), . . . , (pK ,mK , σK)) is a
K(D+2)-dimensional vector containing themixing probabilitiespk as well as the meansmk and standard deviations
σk of theK Gaussian functions in the mixture.2

Each Gaussian function integrates to one:
∫

RD

g(x; mk, σk) dx = 1 .

Sincef is a density function, it must be nonnegative and integrate to one as well. We have

1 =
∫

RD

f(x; θ) dx =
∫

RD

K∑

k=1

pk g(x; mk, σk) dx =
K∑

k=1

pk

∫

RD

g(x; mk, σk) dx =
K∑

k=1

pk

so that the numberspk, which must be nonnegative lestf(x) takes on negative values, must add up to one:

pk ≥ 0 and
K∑

k=1

pk = 1 .

This is why the numberspk are called mixingprobabilities.
Mixtures of Gaussian functions are obviously well-suited to modelling clusters of points: each cluster is assigned a

Gaussian, with its mean somewhere in the middle of the cluster, and with a standard deviation that somehow measures
the spread of that cluster.3 Another way to view this modelling problem is to note that the cloud of points in Figure 1
could have been generated by repeating the following procedureN times, once for each pointxn:

• Draw a random integer between 1 andK with probabilitypk of drawingk. This selects the cluster from which
to draw pointxn.

• Draw a randomD-dimensional real vectorxn ∈ RD from thek-th Gaussian densityg(x; mk, σk).

This is called agenerative modelfor the given set of points.4

Since the family of mixtures of Gaussian functions is parametric, the density estimation problem can be defined
more specifically as the problem of finding the vectorθ of parameters that specifies the model from which the points
are most likely to be drawn.

What remains to be determined is the meaning of “most likely.” We want a functionΛ(X; θ) that measures the
likelihood of a particular model given the set of points: the setX is fixed, because the pointsxn are given, andΛ is
required to be large for those vectorsθ of parameters such that the mixture of Gaussian functionsf(x; θ) is likely to
generate sets of points like the given one.

Bayesians will deriveΛ from Bayes’s theorem, but at the cost of having to specify a prior distribution forθ itself.
We take the more straightforward Maximum Likelihood approach: the probability of drawing a value in a small volume
of sizedx aroundx is f(x; θ) dx. If the random draws in the generative model are independent of each other, the
probability of drawing a sample ofN points where each point is in a volume of sizedx around one of the givenxn is
the productf(x1; θ) dx · · · f(xN ; θ) dx. Since the volumedx is constant, it can be ignored when looking for theθ
that yields the highest probability, and the likelihood function can be defined as follows:

Λ(X; θ) =
N∏

n=1

f(xn; θ) .

1The restriction to isotropic Gaussian functions is conceptually minor but technically useful. For now, the most important implication of this
restriction is that the spread of each Gaussian function is measured by a scalar, rather than by a covariance matrix.

2The numberK of Gaussian functions could itself be a parameter subject to estimation. In this document, we consider it to be known.
3Here the assumption of isotropic Gaussian functions is a rather serious limitation, since elongated clusters cannot be modelled well.
4As you may have guessed, the points in Figure 1 were indeed generated in this way.
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For mixtures of Gaussian functions, in particular, we have

Λ(X; θ) =
N∏

n=1

K∑

k=1

pk g(xn; mk, σk) . (2)

In summary, the parametric density estimation problem can be defined more precisely as follows:

θ̂ = arg max
θ

Λ(X; θ) .

In principle, any maximization algorithm could be used to findθ̂, the maximum likelihood estimate of the parameter
vectorθ. In practice, as we will see in section 4, EM works particularly well for this problem.

3 Membership Probabilities

In view of further manipulation, it is useful to understand the meaning of the terms

q(k, n) = pk g(xn; mk, σk) (3)

that appear in the definition (1) of a mixture density. When defining the likelihood functionΛ we have assumed that
the event of drawing componentk of the generative model is independent of the event of drawing a particular data
pointxn out of a particular component. It then follows thatq(k, n) dx is the joint probability of drawing component
k and drawing a data point in a volumedx aroundxn. The definition of conditional probability,

P (A |B) =
P (A ∩B)

P (B)
,

then tells us that the conditional probability of having selected componentk given that data pointxn was observed is

p(k |n) =
q(k, n)∑K

m=1 q(m,n)
. (4)

Note that the volumedx cancels in the ratio that definesp(k |n), so that this result holds even whendx vanishes to
zero. Also, it is obvious from the expression ofp(k |n) that

K∑

k=1

p(k |n) = 1 ,

in keeping with the fact that it is certain that some componentk has generated data pointxn. Let us call the prob-
abilities p(k |n) the membership probabilities, because they express the probability that pointn was generated by
componentk.

4 Characterization of the Local Maxima of Λ

The logarithm of the likelihood functionΛ(X; θ) defined in equation (2) is

λ(X; θ) =
N∑

n=1

log
K∑

k=1

pk g(xn; mk, σk) .

To find expressions that are valid at local maxima ofλ (or equivalentlyΛ) we follow [1], and compute the derivatives
of λ with respect tomk, σk, pk. Since

∂g(xn; mk, σk)
∂mk

= g(xn; mk, σk)
∂

∂mk

[
−1

2

(‖xn −mk‖
σk

)2
]
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and
∂

∂mk
‖xn −mk‖2 =

∂

∂mk

(
xT

nxn + mT
k mk − 2xT

nmk

)
= 2(xn −mk) ,

we can write
∂λ

∂mk
=

N∑
n=1

1
σ2

k

pk g(xn; mk, σk)∑K
m=1 pm g(xn; θm)

(mk − xn) =
N∑

n=1

p(k |n)
σ2

k

(mk − xn)

where we have used equations (3) and (4).
A similar procedure as formk yields

∂λ

∂σk
=

N∑
n=1

p(k |n)
(
−D

σk
+
‖xn −mk‖2

σ3
k

)

(recall thatD is the dimension of the space of the data points).
The derivative ofλ with respect to the mixing probabilitiespk requires a little more work, because the values of

pk are constrained to being positive and adding up to one. After [1], this constraint can be handled by writing the
variablespk in turn as functions of unconstrained variablesγk as follows:

pk =
eγk

∑K
k=1 eγk

.

This trick to expresspk through what is usually called asoftmaxfunction, enforces both constraints automatically. We
then have

∂pk

∂γj
=

{
pk − p2

k if j = k
−pjpk otherwise .

From the chain rule for differentiation, we obtain

∂λ

∂γk
=

N∑
n=1

(p(k |n)− pk) .

Setting the derivatives we just found to zero, we obtain three groups of equations for the means, standard deviations,
and mixing probabilities:

mk =
∑N

n=1 p(k |n)xn∑N
n=1 p(k |n)

(5)

σk =

√√√√ 1
D

∑N
n=1 p(k |n)‖xn −mk‖2∑N

n=1 p(k |n)
(6)

pk =
1
N

N∑
n=1

p(k |n) . (7)

The first two expressions make immediate intuitive sense, becausemk andσk are the sample mean and standard
deviation of the sample data, weighted by the conditional probability that data pointn was generated by modelk.
The third equation, for the mixing probabilities, is not immediately obvious, but it is not too surprising either, since it
viewspk as the sample mean of the conditional probabilitiesp(k |n) assuming a uniform distribution over all the data
points.

These equations are intimately coupled with one another, because the termsp(k |n) in the right-hand sides depend
in turn on all the terms on the left-hand sides through equations (3) and (4). Because of this the equations above
are hard to solve directly. However, the lower bound idea discussed in section 1 provides an iterative solution. As a
preview, this solution involves starting with a guess forθ, the vector of all parameterspk, mk, σk, and then iteratively
cycling through equations (3), (4) (the “E step”), and then equations (5), (6), (7).

The next section shows an important technical result that is used to compute a bound for the logarithm of the
likelihood function. The EM algorithm is then derived in section 6, after the principle discussed in section 1.
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5 Jensen’s Inequality

Jensen’s inequality is often used to bound the logarithm of a sum of terms, just like the one in the expression of
λ: GivenK nonnegative numbersπ1, . . . , πK that add up to one (that is, a discrete probability distribution) andK
arbitrary numbersa1, . . . , aK , it follows from the convexity of the logarithm that

log
K∑

k=1

πkak ≥
K∑

k=1

πk log ak

(see for instance exercise 2.13 in [1] for a proof outline).
From this inequality we can also derive the following useful expression, whereπk is still an element of a discrete

probability distribution andck are arbitrary numbers:

log
K∑

k=1

ck = log
K∑

k=1

ck
πk

πk
≥

K∑

k=1

πk log
ck

πk
(8)

obtained from Jensen’s inequality withak = ck/πk. The inequality (8) is generally useful in probabilistic manipulation
because it bounds the logarithm of a sum with the expected value of a logarithm.

6 The EM Algorithm

Assume that approximate (possibly very bad) estimatesp
(i)
k , m(i)

k , σ
(i)
k are available for the parameters of the like-

lihood functionΛ(X; θ) or its logarithmλ(X; θ). Then, better estimatesp(i+1)
k , m(i+1)

k , σ
(i+1)
k can be computed

by first using the old estimates to construct a lower boundbi(θ) for the likelihood function, and then maximizing the
bound with respect topk, mk, σk.

Expectation Maximization (EM) starts with initial valuesp
(0)
k , m(0)

k , σ
(0)
k for the parameters, and iteratively per-

forms these two steps until convergence. Construction of the boundbi(θ) is called the “E step,” because the bound
is the expectation of a logarithm, derived from use of inequality (8). The maximization ofbi(θ) that yields the new
estimatesp(i+1)

k , m(i+1)
k , σ

(i+1)
k is called the “M step.” This section derives expressions for these two steps.

Given the old parameter estimatesp
(i)
k , m(i)

k , σ
(i)
k , we can compute estimatespi(k |n) for the membership proba-

bilities from equation (3) and (4):

p(i)(k |n) =
p
(i)
k g(xn; m(i)

k , σ
(i)
k )

∑K
m=1 p

(i)
k g(xn; m(i)

k , σ
(i)
k )

. (9)

This is the actual computation performed in the E step. The rest of the “construction” of the boundbi(θ) is theoretical,
and uses form (8) of Jensen’s inequality to bound the logarithmλ(X; θ) of the likelihood function as follows.

The membership probabilitiesp(k |n) add up to one, and their estimatesp(i)(k |n) do so as well, because they are
computed from equation (9), which includes explicit normalization. Thus, we can letπk = p(i)(k |n) andck = q(k, n)
in the inequality (8) to obtain

λ(X; θ) =
N∑

n=1

log
K∑

k=1

q(k, n) ≥
N∑

n=1

K∑

k=1

p(i)(k |n) log
q(k, n)

p(i)(k |n)
= bi(θ) .

The boundbi(θ) thus obtained can be rewritten as follows:

bi(θ) =
N∑

n=1

K∑

k=1

p(i)(k |n) log q(k, n)−
N∑

n=1

K∑

k=1

p(i)(k |n) log p(i)(k |n) .

6



Since the old membership probabilitiesp(i)(k |n) are known, minimizingbi(θ) is the same as minimizing the first of
the two summations, that is, the function

βi(θ) =
N∑

n=1

K∑

k=1

p(i)(k |n) log q(k, n) .

Prima facie, the expression forβi(θ) would seem to be even more complicated than that forλ. This is not so,
however: rather than the logarithm of a sum,βi(θ) contains a linear combination ofK logarithms, and this breaks the
coupling of the equations obtained by setting the derivatives ofβi(θ) with respect to the parameters to zero.

The derivative ofβi(θ) with respect tomk is easily found to be

∂βi

∂mk
=

N∑
n=1

p(i)(k |n)
mk − xn

σ2
k

.

Upon setting this expression to zero, the varianceσk can be cancelled, and the remaining equation contains onlymk

as the unknown:

mk

N∑
n=1

p(i)(k |n) =
N∑

n=1

p(i)(k |n)xn .

This equation can be solved immediately to yield the new estimate of the mean:

m(i+1)
k =

∑N
n=1 p(i)(k |n)xn∑N

n=1 p(i)(k |n)
,

which is only a function of old values (with superscripti).
The resulting valuem(i+1)

k can now be replaced into the expression forβi(θ), which can now be differentiated
with respect toσk through a very similar manipulation to yield

σ
(i+1)
k =

√√√√ 1
D

∑N
n=1 p(i)(k |n) ‖xn −m(i+1)

k ‖2∑N
n=1 p(i)(k |n)

.

The derivative ofβi(θ) with respect topk, subject to the constraint that thepk add up to one, can be handled again
through the softmax function just as we did in section 4. This yields the new estimate for the mixing probabilities as a
function of the old membership probabilities:

p
(i+1)
k =

1
N

N∑
n=1

p(i)(k |n) .

In summary, given an initial estimatep(0)
k , m(0)

k , σ
(0)
k , EM iterates the following computations until convergence

to a local maximum of the likelihood function:

• E Step:

p(i)(k |n) =
p
(i)
k g(xn; m(i)

k , σ
(i)
k )

∑K
m=1 p

(i)
k g(xn; m(i)

k , σ
(i)
k )

• M Step:

m(i+1)
k =

∑N
n=1 p(i)(k |n)xn∑N

n=1 p(i)(k |n)

σ
(i+1)
k =

√√√√ 1
D

∑N
n=1 p(i)(k |n) ‖xn −m(i+1)

k ‖2∑N
n=1 p(i)(k |n)

p
(i+1)
k =

1
N

N∑
n=1

p(i)(k |n) .
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