ECE276A: Sensing \& Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Thai Duong: tduong@eng.ucsd.edu
Yiran Xu: y5xu@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Visual-Inertial Localization and Mapping

- Input:
$-I M U$ data: linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ and rotational velocity $\boldsymbol{\omega}_{t} \in \mathbb{R}^{3}$
- Camera data: visual features $\mathbf{z}_{t} \in \mathbb{R}^{4 \times} N_{t}$ (left and right image pixels)

- Assumption: The transformation $o T_{I} \in S E(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix M (intrinsic parameters) are known.

$$
\left.M:=\left[\begin{array}{cccc}
f s_{u} & 0 & c_{U} & 0 \\
0 & f_{S_{V}} & c_{V} & 0 \\
f s_{u} & 0 & c_{U} & -f_{S_{u}} b \\
0 & f_{s_{V}} & c_{V} & 0
\end{array}\right] \quad \begin{array}{c}
f=\text { focal length }[\mathrm{m}] \\
s_{u}, s_{V}
\end{array}=\text { pixel scaling [pixels } / \mathrm{m}\right] ~ c_{u}, c_{V}=\text { principal point [pixels] }
$$

Visual-Inertial Localization and Mapping

- Output:
- IMU pose ${ }_{w} T_{l} \in S E(3)$ in the world frame over time (green)
- World-frame coordinates of the point landmarks $\mathbf{m} \in \mathbb{R}^{3 \times M}$ that generated the visual features \mathbf{z}_{t} (black)

Visual Mapping

- Consider the mapping-only problem first
- Assumption: the inverse IMU pose $U_{t}:={ }_{w} T_{l, t}^{-1} \in S E(3)$ is known
- Objective: given the visual feature observations $\mathbf{z}_{0: T}$, estimate the homogeneous coordinates $\underline{\mathbf{m}} \in \mathbb{R}^{4 \times M}$ in the world frame of the landmarks that generated the visual observations
- Homogeneous coordinates: $\underline{\mathbf{m}}:=\left[\begin{array}{c}\mathbf{m} \\ 1\end{array}\right]$
- Assumption: the data association $\pi_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating which landmarks were observed at each time t is known or provided by an external algorithm
- Assumption: the landmarks are static, ie., it is not necessary to consider a motion model or a prediction step

Visual Mapping via the EKF

- Prior: $\mathbf{m} \mid \mathbf{z}_{0: t} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$ with $\boldsymbol{\mu}_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- Observation Model: with measurement noise $\mathbf{v}_{t, i} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t, i}=h\left(U_{t}, \mathbf{m}_{j}\right)+\mathbf{v}_{t, i}:=M \pi\left(o T_{l} U_{t} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t, i}
$$

- Projection function and its derivative:

$$
\pi(\mathbf{q}):=\frac{1}{q_{3}} \mathbf{q} \in \mathbb{R}^{4} \quad \frac{d \pi}{d \mathbf{q}}(\mathbf{q})=\frac{1}{q_{3}}\left[\begin{array}{cccc}
1 & 0 & -\frac{q_{1}}{q_{3}} & 0 \\
0 & 1 & -\frac{q_{2}}{q_{3}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{q_{4}}{q_{3}} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

- All observations (stacked as a $4 N_{t}$ vector) at time t with notation abuse:

$$
\mathbf{z}_{t}=M \pi\left(o T_{l} U_{t} \underline{\mathbf{m}}\right)+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, I \otimes V) \quad I \otimes V:=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

Visual Mapping via the EKF

- EKF Update:

$$
\begin{aligned}
K_{t} & =\Sigma_{t} H_{t}^{\top}\left(H_{t} \Sigma_{t} H_{t}^{\top}+I \otimes V\right)^{-1} \\
\mu_{t+1} & =\boldsymbol{\mu}_{t}+K_{t}(\mathbf{z}_{t}-\underbrace{M \pi\left(o T_{I} U_{t} \underline{\boldsymbol{\mu}}_{t}\right)}_{\tilde{\mathbf{z}}_{t}}) \\
\Sigma_{t+1} & =\left(I-K_{t} H_{t}\right) \Sigma_{t}
\end{aligned}
$$

- $\tilde{\mathbf{z}}_{t}$ is the predicted observation based on the landmark position estimates $\boldsymbol{\mu}_{t}$ at time t
- We need the observation model Jacobian $H_{t} \in \mathbb{R}^{4 N_{t} \times 3 M}$ evaluated at μ_{t}
- Let the elements of $H_{t} \in \mathbb{R}^{4 N_{t} \times 3 M}$ corresponding to different observations i and different landmarks j be $H_{t, i, j} \in \mathbb{R}^{4 \times 3}$

Stereo Camera Jacobian

- Consider a perturbation $\delta \boldsymbol{\mu}_{t, j}$ for the position of landmark j :

$$
\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}
$$

- Projection Matrix: $P=\left[\begin{array}{ll}I & 0\end{array}\right]$
- The first-order Taylor series approximation to observation i at time t using the perturbation $\delta \boldsymbol{\mu}_{t, j}$ is:

$$
\begin{aligned}
\mathbf{z}_{t, i} & =M \pi\left(o T_{l} U_{t}\left(\underline{\boldsymbol{\mu}_{t, j}}+\delta \boldsymbol{\mu}_{t, j}\right)\right. \\
& =M \pi\left(o T _ { l } U _ { t } \left(\underline{\boldsymbol{\mu}}_{t, j}+{\left.\left.\mathbf{v}_{t, i} \delta \boldsymbol{\mu}_{t, j}\right)\right)+\mathbf{v}_{t, i}}_{M}\right.\right. \\
& \approx \underbrace{M \pi\left(o T_{l} U_{t} \underline{\boldsymbol{\mu}}_{t, j}\right)}_{\tilde{\mathbf{z}}_{t, i}}+\underbrace{M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} U_{t} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} U_{t} P^{\top}}_{H_{t, i, j}} \delta \boldsymbol{\mu}_{t, j}+\mathbf{v}_{t, i}
\end{aligned}
$$

Visual Mapping via the EKF (Summary)

- Prior: $\mu_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- Known: calibration matrix M, extrinsics $o T_{l} \in S E(3)$, inverse IMU pose $U_{t} \in S E(3)$, projection matrix P, new observation $\mathbf{z}_{t} \in \mathbb{R}^{4 \times N_{t}}$
- Predicted observations based on $\boldsymbol{\mu}_{t}$ and known correspondences π_{t} :

$$
\tilde{\mathbf{z}}_{t, i}:=M \pi\left(o T_{l} U_{t} \underline{\boldsymbol{\mu}}_{t, j}\right) \in \mathbb{R}^{4} \quad \text { for } i=1, \ldots, N_{t}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t, i}$ with respect to \mathbf{m}_{j} evaluated at $\boldsymbol{\mu}_{t, j}$:

$$
H_{t, i, j}= \begin{cases}M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} U_{t} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} U_{t} P^{\top} & \text { if observation } i \text { corresponds to } \\ 0 \in \mathbb{R}^{4 \times 3} & \text { landmark } j \text { at time } t \\ \text { otherwise }\end{cases}
$$

- Perform the EKF update:

$$
\begin{align*}
K_{t} & =\Sigma_{t} H_{t}^{\top}\left(H_{t} \Sigma_{t} H_{t}^{\top}+I \otimes V\right)^{-1} \tag{array}\\
\boldsymbol{\mu}_{t+1} & =\boldsymbol{\mu}_{t}+K_{t}\left(\mathbf{z}_{t}-\tilde{\mathbf{z}}_{t}\right) \\
\Sigma_{t+1} & =\left(I-K_{t} H_{t}\right) \Sigma_{t}
\end{align*}
$$

Lie Group Probability and Statistics

- The elements of matrix Lie groups do not satisfy some basic operations that we normally take for granted
- We need a different way to define random variables because matrix Lie groups are not closed under the usual addition operation:

$$
\mathbf{x}=\boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

- Idea: define random variables over the Lie algebra, exploiting its vector space characteristics:
perturbation

$S O(3)$	$R=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}$	$\boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)$
$\mathfrak{s o}(3)$	$\boldsymbol{\theta} \approx \log (\boldsymbol{\mu})^{\vee}+J_{L}^{-1}\left(\log (\boldsymbol{\mu})^{\vee}\right) \boldsymbol{\epsilon}$	$R=\exp (\hat{\boldsymbol{\theta}})$
$S E(3)$	$T=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}$	$\boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)$
$\mathfrak{s e}(3)$	$\boldsymbol{\theta} \approx \log (\boldsymbol{\mu})^{\vee}+J_{L}^{-1}\left(\log (\boldsymbol{\mu})^{\vee}\right) \boldsymbol{\epsilon}$	$T=\exp (\hat{\boldsymbol{\theta}})$

Lie Group Probability and Statistics

- $S O(3)$ and $S E(3)$ Random Variables:

$$
R=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu} \quad T=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}
$$

where $\boldsymbol{\mu}$ is a 'large' noise-free nominal rotation/pose and $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)$ is a 'small' noisy component in \mathbb{R}^{3} or \mathbb{R}^{6}

- Note that $\boldsymbol{\epsilon}=\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}$ and $\boldsymbol{\epsilon}=\log \left(T \boldsymbol{\mu}^{-1}\right)^{\vee}$
- Assuming ϵ has most of its mass on $\|\epsilon\|<\pi$, the pdf of R can be obtained using Change of Density with $d R=\left|\operatorname{det}\left(J_{L}(\epsilon)\right)\right| d \epsilon$:

$$
p(R)=\frac{1}{\sqrt{(2 \pi)^{3} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}\left(\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right)^{\top} \Sigma^{-1} \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right) \frac{1}{\left|\operatorname{det}\left(J_{L}(\epsilon)\right)\right|}
$$

- The choice of $\boldsymbol{\mu}$ and Σ as the mean and variance of R are justified:

$$
\begin{aligned}
& \int \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee} p(R) d R=0 \\
& \int \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\left(\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right)^{\top} p(R) d R=\mathbb{E}\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right]=\Sigma
\end{aligned}
$$

Example: Rotation of a Random Rotation Variable

- Let $Q \in S O(3)$ and $\boldsymbol{\theta} \in \mathbb{R}^{3}$. Then:

$$
Q \exp (\hat{\boldsymbol{\theta}}) Q^{\top}=\exp \left(Q \hat{\boldsymbol{\theta}} Q^{\top}\right)=\exp \left((Q \boldsymbol{\theta})^{\wedge}\right)
$$

- Let $R \in S O$ (3) be a random rotation with mean $\mu \in S O$ (3) and covariance $\Sigma \in \mathbb{R}^{3 \times 3}$.
- The random variable $Y=Q R \in S O(3)$ satisfies:

$$
\begin{aligned}
Y & =Q R=Q \exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}=\exp \left((Q \boldsymbol{\epsilon})^{\wedge}\right) Q \boldsymbol{\mu} \\
\mathbb{E}[Y] & =Q \boldsymbol{\mu} \\
\operatorname{Var}[Y] & =\operatorname{Var}[Q \boldsymbol{\epsilon}]=Q \Sigma Q^{\top}
\end{aligned}
$$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: the world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 \times M}$ are known
- Assumption: the data association $\pi_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating which landmarks were observed at each time t is known or provided by an external algorithm
- Objective: given the IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top}$ and the visual feature observations $\mathbf{z}_{0: T}$, estimate the inverse IMU pose $U_{t}:=w T_{l, t}^{-1} \in S E(3)$ over time

Visual-Inertial Odometry via the EKF

- Prior: $U_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t \mid t}, \Sigma_{t \mid t}\right)$ with $\boldsymbol{\mu}_{t \mid t} \in S E(3)$ and $\Sigma_{t \mid t} \in \mathbb{R}^{6 \times 6}$
- The covariance is 6×6 because only the six degrees of freedom of $U_{t} \in S E(3)$ are changing
- Motion Model: with time discretization τ and noise $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$

$$
U_{t+1}=\exp \left(-\tau\left(\left(\mathbf{u}_{t}+\mathbf{w}_{t}\right)\right)^{\wedge}\right) U_{t} \quad \mathbf{u}_{t}:=\left[\begin{array}{c}
\mathbf{v}_{t} \\
\boldsymbol{\omega}_{t}
\end{array}\right] \in \mathbb{R}^{6}
$$

- Note that $\mathbf{u}_{t}+\mathbf{w}_{t}$ is negative above since U_{t} is the inverse IMU pose
- Let the IMU pose in continuous time be $w T_{l}(t)=T(t)=U^{-1}(t)$:

$$
\begin{aligned}
\dot{T} & =T \hat{\mathbf{u}} \quad T U=I \quad \dot{T} U+T \dot{U}=0 \\
\dot{U} & =-U \dot{T} U=-U(T \hat{\mathbf{u}}) U=-\hat{\mathbf{u}} U \\
U_{t+1} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) U_{t}
\end{aligned}
$$

Pose Kinematics with Perturbation

- Consider what happens with the pose kinematics

$$
\dot{T}=-(\hat{\mathbf{u}}+\hat{\mathbf{w}}) T
$$

if the pose is expressed as a nominal pose $\boldsymbol{\mu} \in S E(3)$ and small perturbation $\hat{\delta \boldsymbol{\mu}} \in \mathfrak{s e}(3)$:

$$
T=\exp (\hat{\delta \boldsymbol{\mu}}) \boldsymbol{\mu} \approx(I+\hat{\delta \boldsymbol{\mu}}) \boldsymbol{\mu}
$$

- Substituting the nominal + perturbed pose in the kinematic equations:

$$
\begin{gathered}
(\hat{\delta \dot{\boldsymbol{\mu}}}) \boldsymbol{\mu}+(I+\hat{\delta \mu}) \dot{\boldsymbol{\mu}}=-(\hat{\mathbf{u}}+\hat{\mathbf{w}})(I+\hat{\delta \boldsymbol{\mu}}) \boldsymbol{\mu} \\
(\hat{\dot{\delta}} \boldsymbol{\mu}) \boldsymbol{\mu}+\hat{\delta} \hat{\boldsymbol{\mu}} \dot{\boldsymbol{\mu}}+\dot{\boldsymbol{\mu}}=-\hat{\mathbf{u}} \boldsymbol{\mu}-\hat{\mathbf{w}} \boldsymbol{\mu}-\hat{\mathbf{u}} \hat{\boldsymbol{\mu}} \boldsymbol{\mu} \boldsymbol{\mu}-\hat{\mathbf{w}} \hat{\delta \boldsymbol{\mu} \boldsymbol{\mu}} \\
\dot{\boldsymbol{\mu}}=-\hat{\mathbf{u}} \boldsymbol{\mu} \quad(\hat{\dot{\delta} \boldsymbol{\mu}}) \boldsymbol{\mu}-\hat{\delta \boldsymbol{\mu}} \hat{\mathbf{u}} \boldsymbol{\mu}=-\hat{\mathbf{w}} \boldsymbol{\mu}-\hat{\mathbf{u}} \hat{\delta} \boldsymbol{\mu} \boldsymbol{\mu} \\
\dot{\boldsymbol{\mu}}=-\hat{\mathbf{u}} \boldsymbol{\mu} \quad \hat{\delta} \boldsymbol{\delta} \boldsymbol{\mu}=\hat{\delta} \hat{\boldsymbol{\mu}} \hat{\mathbf{u}}-\hat{\mathbf{u}} \hat{\delta \boldsymbol{\mu}}-\hat{\mathbf{w}}=(-\hat{\mathbf{u}} \delta \boldsymbol{\mu})^{\wedge}-\hat{\mathbf{w}}
\end{gathered}
$$

Pose Kinematics with Perturbation

- Using $T \approx(I+\hat{\delta} \boldsymbol{\mu}) \boldsymbol{\mu}$, the pose kinematics $\dot{T}=-(\hat{\mathbf{u}}+\hat{\mathbf{w}}) T$ can be split into nominal and perturbation kinematics:

$$
\begin{array}{rlrl}
\text { nominal : } & \dot{\mu} & =-\hat{\mathbf{u}} \boldsymbol{\mu} & \hat{\mathbf{u}}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}} & \hat{\mathbf{v}} \\
0 & \hat{\omega}
\end{array}\right] \in \mathbb{R}^{6 \times 6} . \\
\text { perturbation: } & \dot{\delta} \boldsymbol{\mu}=-\hat{\mathbf{u}} \delta \boldsymbol{\mu}+\mathbf{w}
\end{array}
$$

- In discrete-time with discretization τ, the above becomes:

$$
\begin{aligned}
\text { nominal : } & \boldsymbol{\mu}_{t+1} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \boldsymbol{\mu}_{t} \\
\text { perturbation : } & \delta \boldsymbol{\mu}_{t+1} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t}+\mathbf{w}_{t}
\end{aligned}
$$

- This is useful to separate the effect of the noise \mathbf{w}_{t} from the motion of the deterministic part of T_{t}. See Barfoot Ch. 7.2 for details.

EKF Prediction Step

- Using the perturbation idea from the previous slide, converted to discrete time, we can re-write the motion model in terms of nominal kinematics of the mean of T_{t} and zero-mean perturbation kinematics:

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \boldsymbol{\mu}_{t \mid t} \\
\delta \boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t \mid t}+\mathbf{w}_{t}
\end{aligned}
$$

- EKF Prediction Step with $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$:

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \boldsymbol{\mu}_{t \mid t} \\
\Sigma_{t+1 \mid t} & =\mathbb{E}\left[\delta \boldsymbol{\mu}_{t+1 \mid t} \delta \boldsymbol{\mu}_{t+1 \mid t}^{\top}\right]=\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t \mid t} \exp \left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top}+W
\end{aligned}
$$

where

$$
\mathbf{u}_{t}:=\left[\begin{array}{l}
\mathbf{v}_{t} \\
\boldsymbol{\omega}_{t}
\end{array}\right] \in \mathbb{R}^{6} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\omega}_{t} & \mathbf{v}_{t} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\omega}_{t} & \hat{\mathbf{v}}_{t} \\
0 & \hat{\boldsymbol{\omega}}_{t}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

EKF Update Step

- Prior: $U_{t+1} \mid z_{0: t}, u_{0: t} \sim \mathcal{N}\left(\mu_{t+1 \mid t}, \Sigma_{t+1 \mid t}\right)$ with $\mu_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Observation Model: with measurement noise $\mathbf{v}_{t} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t+1, i}=h\left(U_{t+1}, \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}:=M \pi\left(o T_{l} U_{t+1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i}
$$

- The observation model is the same as in the visual mapping problem but this time the variable of interest is the inverse IMU pose $U_{t+1} \in S E(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3 \times M}$
- We need the observation model Jacobian $H_{t+1 \mid t} \in \mathbb{R}^{4 N_{t} \times 6}$ with respect to the inverse IMU pose U_{t}, evaluated at $\mu_{t+1 \mid t}$

EKF Update Step

- Let the elements of $H_{t+1 \mid t} \in \mathbb{R}^{4 N_{t} \times 6}$ corresponding to different observations i be $H_{i, t+1 \mid t} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time $t+1$ using an inverse IMU pose perturbation $\delta \boldsymbol{\mu}_{t+1 \mid t+1}$ is:

$$
\begin{aligned}
\mathbf{z}_{t+1, i} & =M \pi\left(o T_{l} \exp \left(\delta \hat{\boldsymbol{\mu}}_{t+1 \mid t+1}\right) \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i} \\
& \approx M \pi\left(o T_{l}\left(I+\delta \hat{\boldsymbol{\mu}}_{t+1 \mid t+1}\right) \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i} \\
& =M \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}+o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)^{\odot} \delta \boldsymbol{\mu}_{t+1 \mid t+1}\right)+\mathbf{v}_{t+1, i} \\
& \approx \underbrace{M \pi\left(o T_{I} \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)}_{\tilde{\mathbf{z}}_{t+1, i}}+\underbrace{M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)^{\odot}}_{H_{i, t+1 \mid t}} \delta \boldsymbol{\mu}_{t+1 \mid t+1}+\mathbf{v}_{t+1, i}
\end{aligned}
$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^{4}$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$:

$$
\hat{\boldsymbol{\xi}} \underline{\mathbf{s}}=\underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \quad\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right]^{\odot}:=\left[\begin{array}{cc}
I & -\hat{\mathbf{s}} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 6}
$$

EKF Update Step

- Prior: $\mu_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Known: calibration matrix M, extrinsics $o T_{l} \in S E(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3 \times M}$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 \times N_{t}}$
- Predicted observation based on $\mu_{t+1 \mid t}$ and known correspondences π_{t} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=M \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right) \quad \text { for } i=1, \ldots, N_{t}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to U_{t+1} evaluated at $\boldsymbol{\mu}_{t+1 \mid t}$

$$
H_{i, t+1 \mid t}=M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t} \mathbf{m}_{j}\right)^{\odot} \in \mathbb{R}^{4 \times 6}
$$

- Perform the EKF update:

$$
\begin{aligned}
K_{t+1 \mid t} & =\Sigma_{t+1 \mid t} H_{t+1 \mid t}^{\top}\left(H_{t+1 \mid t} \Sigma_{t+1 \mid t} H_{t+1 \mid t}^{\top}+I \otimes V\right)^{-1} \\
\mu_{t+1 \mid t+1} & =\exp \left(\left(K_{t+1 \mid t}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right)\right)^{\wedge}\right) \mu_{t+1 \mid t} \\
\Sigma_{t+1 \mid t+1} & =\left(I-K_{t+1 \mid t} H_{t+1 \mid t} \Sigma_{t+1 \mid t}\right.
\end{aligned} \quad H_{t+1 \mid t}=\left[\begin{array}{c}
H_{1, t+1 \mid t} \\
\vdots \\
H_{N_{t+1}, t+1 \mid t}
\end{array}\right]
$$

