ECE276A: Sensing & Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Qiaojun Feng: qif007@eng.ucsd.edu Arash Asgharivaskasi: aasghari@eng.ucsd.edu Thai Duong: tduong@eng.ucsd.edu Yiran Xu: y5xu@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Visual-Inertial Localization and Mapping

Input:

- ▶ IMU data: linear accleration $\mathbf{a}_t \in \mathbb{R}^3$ and rotational velocity $\boldsymbol{\omega}_t \in \mathbb{R}^3$
- ▶ Camera data: visual features $\mathbf{z}_t \in \mathbb{R}^{4 \times N_t}$ (left and right image pixels)

Assumption: The transformation $_O T_I \in SE(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix M (intrinsic parameters) are known.

$$M := \begin{bmatrix} fs_u & 0 & c_u & 0 \\ 0 & fs_v & c_v & 0 \\ fs_u & 0 & c_u & -fs_u b \\ 0 & fs_v & c_v & 0 \end{bmatrix}$$

f = focal length [m] $s_u, s_v = \text{pixel scaling } [pixels/m]$ $c_u, c_v = \text{principal point } [pixels]$ b = stereo baseline [m]

2

Visual-Inertial Localization and Mapping

Output:

- ▶ IMU pose $_W T_I \in SE(3)$ in the world frame over time (green)
- ▶ World-frame coordinates of the point landmarks $\mathbf{m} \in \mathbb{R}^{3 \times M}$ that generated the visual features \mathbf{z}_t (black)

Visual Mapping

- Consider the mapping-only problem first
- Assumption: the inverse IMU pose $U_t := {}_W T_{I,t}^{-1} \in SE(3)$ is known
- ► Objective: given the visual feature observations z_{0:T}, estimate the homogeneous coordinates <u>m</u> ∈ ℝ^{4×M} in the world frame of the landmarks that generated the visual observations
- Homogeneous coordinates: $\underline{\mathbf{m}} := \begin{bmatrix} \mathbf{m} \\ 1 \end{bmatrix}$
- ► Assumption: the data association π_t : {1,..., M} → {1,..., N_t} stipulating which landmarks were observed at each time t is known or provided by an external algorithm
- Assumption: the landmarks are static, i.e., it is not necessary to consider a motion model or a prediction step

Visual Mapping via the EKF

▶ Prior: m | $z_{0:t} \sim \mathcal{N}(\mu_t, \Sigma_t)$ with $\mu_t \in \mathbb{R}^{3M}$ and $\Sigma_t \in \mathbb{R}^{3M \times 3M}$

• **Observation Model**: with measurement noise $\mathbf{v}_{t,i} \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t,i} = h(U_t, \mathbf{m}_j) + \mathbf{v}_{t,i} := M\pi \left({}_O T_I U_t \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t,i}$$

Projection function and its derivative:

$$\pi(\mathbf{q}) := rac{1}{q_3} \mathbf{q} \in \mathbb{R}^4 \qquad \quad rac{d\pi}{d\mathbf{q}}(\mathbf{q}) = rac{1}{q_3} \begin{bmatrix} 1 & 0 & -rac{q_1}{q_3} & 0 \ 0 & 1 & -rac{q_2}{q_3} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{q_4}{q_3} & 1 \end{bmatrix} \in \mathbb{R}^{4 imes 4}$$

All observations (stacked as a $4N_t$ vector) at time t with notation abuse:

$$\mathbf{z}_{t} = M\pi \left({}_{O}T_{I}U_{t}\underline{\mathbf{m}} \right) + \mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N} \left(\mathbf{0}, I \otimes V \right) \quad I \otimes V := \begin{bmatrix} V & & \\ & \ddots & \\ & & V \end{bmatrix}$$

Visual Mapping via the EKF

EKF Update:

$$K_{t} = \Sigma_{t} H_{t}^{\top} \left(H_{t} \Sigma_{t} H_{t}^{\top} + I \otimes V \right)^{-1}$$
$$\mu_{t+1} = \mu_{t} + K_{t} \left(\mathbf{z}_{t} - \underbrace{M\pi \left(O T_{I} U_{t} \underline{\mu}_{t} \right)}_{\tilde{\mathbf{z}}_{t}} \right)$$
$$\Sigma_{t+1} = (I - K_{t} H_{t}) \Sigma_{t}$$

- ž_t is the predicted observation based on the landmark position estimates
 µ_t at time t
- ▶ We need the observation model Jacobian $H_t \in \mathbb{R}^{4N_t \times 3M}$ evaluated at μ_t
- ▶ Let the elements of $H_t \in \mathbb{R}^{4N_t \times 3M}$ corresponding to different observations *i* and different landmarks *j* be $H_{t,i,j} \in \mathbb{R}^{4 \times 3}$

Stereo Camera Jacobian

• Consider a perturbation $\delta \mu_{t,i}$ for the position of landmark *j*:

$$\mathbf{m}_j = \boldsymbol{\mu}_{t,j} + \delta \boldsymbol{\mu}_{t,j}$$

- Projection Matrix: $P = \begin{bmatrix} I & 0 \end{bmatrix}$
- The first-order Taylor series approximation to observation *i* at time *t* using the perturbation δμ_{t,j} is:

$$\mathbf{z}_{t,i} = M\pi \left({}_{O}T_{I}U_{t} \underbrace{\left(\boldsymbol{\mu}_{t,j} + \delta \boldsymbol{\mu}_{t,j} \right)}_{\mathbf{z}_{t,i}} \right) + \mathbf{v}_{t,i}$$

$$= M\pi \left({}_{O}T_{I}U_{t} \underbrace{\left(\boldsymbol{\mu}_{t,j} + P^{\top}\delta \boldsymbol{\mu}_{t,j} \right)}_{\mathbf{z}_{t,i}} \right) + \mathbf{v}_{t,i}$$

$$\approx \underbrace{M\pi \left({}_{O}T_{I}U_{t} \underline{\boldsymbol{\mu}}_{t,j} \right)}_{\mathbf{z}_{t,i}} + \underbrace{M \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I}U_{t} \underline{\boldsymbol{\mu}}_{t,j} \right) {}_{O}T_{I}U_{t}P^{\top}}_{H_{t,i,j}} \delta \boldsymbol{\mu}_{t,j} + \mathbf{v}_{t,i}$$

Visual Mapping via the EKF (Summary)

• Prior:
$$\boldsymbol{\mu}_t \in \mathbb{R}^{3M}$$
 and $\boldsymbol{\Sigma}_t \in \mathbb{R}^{3M imes 3M}$

- Known: calibration matrix M, extrinsics _O T_I ∈ SE(3), inverse IMU pose U_t ∈ SE(3), projection matrix P, new observation z_t ∈ ℝ^{4×Nt}
- Predicted observations based on μ_t and known correspondences π_t :

$$\widetilde{\mathsf{z}}_{t,i} := M\pi\left({}_{O}\mathsf{T}_{I}\mathsf{U}_{t}\underline{\mu}_{t,j}
ight) \in \mathbb{R}^{4} \qquad ext{for } i = 1, \dots, \mathsf{N}_{t}$$

Jacobian of ž_{t,i} with respect to m_j evaluated at µ_{t,j}:

$$H_{t,i,j} = \begin{cases} M \frac{d\pi}{d\mathbf{q}} \left({}_O T_I U_t \underline{\mu}_{t,j} \right) {}_O T_I U_t P^\top & \text{if observation } i \text{ corresponds to} \\ & \text{landmark } j \text{ at time } t \\ \mathbf{0} \in \mathbb{R}^{4 \times 3} & \text{otherwise} \end{cases}$$

Perform the EKF update:

$$K_{t} = \Sigma_{t} H_{t}^{\top} \left(H_{t} \Sigma_{t} H_{t}^{\top} + I \otimes V \right)^{-1}$$
$$\mu_{t+1} = \mu_{t} + K_{t} \left(\mathbf{z}_{t} - \tilde{\mathbf{z}}_{t} \right) \qquad I \otimes V := \begin{bmatrix} V & & \\ & \ddots & \\ & & V \end{bmatrix}$$
$$\Sigma_{t+1} = (I - K_{t} H_{t}) \Sigma_{t}$$

Lie Group Probability and Statistics

- The elements of matrix Lie groups do not satisfy some basic operations that we normally take for granted
- We need a different way to define random variables because matrix Lie groups are not closed under the usual addition operation:

$$\mathbf{x} = oldsymbol{\mu} + oldsymbol{\epsilon} ~~ \mathbf{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

Idea: define random variables over the Lie algebra, exploiting its vector space characteristics:

	perturbation	distribution
<i>SO</i> (3)	$R=\exp(\hat{m{\epsilon}})m{\mu}$	$oldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)$
$\mathfrak{so}(3)$	$oldsymbol{ heta} pprox \log(oldsymbol{\mu})^ee + J_L^{-1}(\log(oldsymbol{\mu})^ee) \epsilon$	$R = \exp(\hat{oldsymbol{ heta}})$
SE(3)	${\cal T}=\exp(\hat{\epsilon})\mu$	$\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{\Sigma})$
$\mathfrak{se}(3)$	$oldsymbol{ heta} pprox \log(oldsymbol{\mu})^ee + J_L^{-1}(\log(oldsymbol{\mu})^ee) \epsilon$	$\mathcal{T} = \exp(\hat{oldsymbol{ heta}})$

Lie Group Probability and Statistics

► SO(3) and SE(3) Random Variables:

$$R = \exp(\hat{\epsilon}) oldsymbol{\mu} \qquad \qquad T = \exp(\hat{\epsilon}) oldsymbol{\mu}$$

where μ is a 'large' noise-free nominal rotation/pose and $\epsilon \sim \mathcal{N}(0, \Sigma)$ is a 'small' noisy component in \mathbb{R}^3 or \mathbb{R}^6

- ▶ Note that $\boldsymbol{\epsilon} = \log \left(\boldsymbol{R} \boldsymbol{\mu}^{ op}
 ight)^{\vee}$ and $\boldsymbol{\epsilon} = \log \left(\boldsymbol{T} \boldsymbol{\mu}^{-1}
 ight)^{\vee}$
- Assuming *ϵ* has most of its mass on ||*ϵ*|| < π, the pdf of *R* can be obtained using Change of Density with dR = |det(J_L(*ϵ*))|d*ϵ*:

$$p(R) = \frac{1}{\sqrt{(2\pi)^3 \det(\Sigma)}} \exp\left(-\frac{1}{2} \left(\log\left(R\mu^{\top}\right)^{\vee}\right)^{\top} \Sigma^{-1} \log\left(R\mu^{\top}\right)^{\vee}\right) \frac{1}{|\det(J_L(\epsilon))|}$$

The choice of μ and Σ as the mean and variance of R are justified:

$$\int \log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} p(R) dR = 0$$
$$\int \log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} \left(\log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} \right)^{\top} p(R) dR = \mathbb{E}[\epsilon \epsilon^{\top}] = \Sigma$$

Example: Rotation of a Random Rotation Variable

• Let
$$Q \in SO(3)$$
 and $\theta \in \mathbb{R}^3$. Then:

$$Q \exp(\hat{oldsymbol{ heta}}) Q^ op = \exp\left(Q \hat{oldsymbol{ heta}} Q^ op
ight) = \exp\left((Q oldsymbol{ heta})^\wedge
ight)$$

► Let $R \in SO(3)$ be a random rotation with mean $\mu \in SO(3)$ and covariance $\Sigma \in \mathbb{R}^{3 \times 3}$.

• The random variable $Y = QR \in SO(3)$ satisfies:

$$Y = QR = Q \exp(\hat{\epsilon})\mu = \exp((Q\epsilon)^{\wedge}) Q\mu$$

 $\mathbb{E}[Y] = Q\mu$
 $Var[Y] = Var[Q\epsilon] = Q\Sigma Q^{\top}$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- ▶ Assumption: linear velocity $\mathbf{v}_t \in \mathbb{R}^3$ instead of linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ measurements are available
- ▶ Assumption: the world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 \times M}$ are known
- ► Assumption: the data association π_t : {1,..., M} → {1,..., N_t} stipulating which landmarks were observed at each time t is known or provided by an external algorithm
- **Objective**: given the IMU measurements $\mathbf{u}_{0:T}$ with $\mathbf{u}_t := [\mathbf{v}_t^{\top}, \boldsymbol{\omega}_t^{\top}]^{\top}$ and the visual feature observations $\mathbf{z}_{0:T}$, estimate the inverse IMU pose $U_t := {}_W T_{I,t}^{-1} \in SE(3)$ over time

Visual-Inertial Odometry via the EKF

- ► Prior: $U_t | \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{t|t}, \boldsymbol{\Sigma}_{t|t})$ with $\boldsymbol{\mu}_{t|t} \in SE(3)$ and $\boldsymbol{\Sigma}_{t|t} \in \mathbb{R}^{6 \times 6}$
- ► The covariance is 6 × 6 because only the six degrees of freedom of U_t ∈ SE(3) are changing
- Motion Model: with time discretization τ and noise $\mathbf{w}_t \sim \mathcal{N}(0, W)$

$$U_{t+1} = \exp\left(-\tau\left((\mathbf{u}_t + \mathbf{w}_t)\right)^{\wedge}\right) U_t \qquad \mathbf{u}_t := \begin{bmatrix} \mathbf{v}_t \\ \boldsymbol{\omega}_t \end{bmatrix} \in \mathbb{R}^6$$

▶ Note that $\mathbf{u}_t + \mathbf{w}_t$ is negative above since U_t is the inverse IMU pose

• Let the IMU pose in continuous time be $_W T_I(t) = T(t) = U^{-1}(t)$:

$$\dot{T} = T\hat{\mathbf{u}} \qquad TU = I \qquad \dot{T}U + T\dot{U} = 0$$
$$\dot{U} = -U\dot{T}U = -U(T\hat{\mathbf{u}})U = -\hat{\mathbf{u}}U$$
$$U_{t+1} = \exp(-\tau\hat{\mathbf{u}}_t)U_t$$

Pose Kinematics with Perturbation

Consider what happens with the pose kinematics

$$\dot{ au} = -\left(\hat{\mathbf{u}} + \hat{\mathbf{w}}
ight) au$$

if the pose is expressed as a nominal pose $\mu \in SE(3)$ and small perturbation $\hat{\delta\mu} \in \mathfrak{se}(3)$:

$$\mathcal{T} = \exp(\hat{\delta oldsymbol{\mu}}) oldsymbol{\mu} pprox \left(I + \hat{\delta oldsymbol{\mu}}
ight) oldsymbol{\mu}$$

Substituting the nominal + perturbed pose in the kinematic equations:

$$\begin{pmatrix} \hat{\delta\mu} \end{pmatrix} \mu + \begin{pmatrix} l + \hat{\delta\mu} \end{pmatrix} \dot{\mu} = -(\hat{\mathbf{u}} + \hat{\mathbf{w}}) \begin{pmatrix} l + \hat{\delta\mu} \end{pmatrix} \mu$$

$$\begin{pmatrix} \hat{\delta\mu} \end{pmatrix} \mu + \hat{\delta\mu} \dot{\mu} + \dot{\mu} = -\hat{\mathbf{u}}\mu - \hat{\mathbf{w}}\mu - \hat{\mathbf{u}}\hat{\delta\mu}\mu - \hat{\mathbf{w}}\hat{\delta\mu}\mu^{0}$$

$$\dot{\mu} = -\hat{\mathbf{u}}\mu \qquad \begin{pmatrix} \hat{\delta\mu} \end{pmatrix} \mu - \hat{\delta\mu}\hat{\mathbf{u}}\mu = -\hat{\mathbf{w}}\mu - \hat{\mathbf{u}}\hat{\delta\mu}\mu$$

$$\dot{\mu} = -\hat{\mathbf{u}}\mu \qquad \hat{\delta\mu} = \hat{\delta\mu}\hat{\mathbf{u}} - \hat{\mathbf{u}}\hat{\delta\mu} - \hat{\mathbf{w}} = \begin{pmatrix} -\hat{\mathbf{u}}\delta\mu \end{pmatrix}^{\wedge} - \hat{\mathbf{w}}$$

Pose Kinematics with Perturbation

• Using $T \approx (I + \hat{\lambda \mu}) \mu$, the pose kinematics $\dot{T} = -(\hat{\mathbf{u}} + \hat{\mathbf{w}}) T$ can be split into nominal and perturbation kinematics:

$$\begin{array}{ll} \text{nominal}: \quad \dot{\boldsymbol{\mu}} = -\hat{\mathbf{u}}\boldsymbol{\mu} \\ \text{perturbation}: \quad \dot{\delta\boldsymbol{\mu}} = -\dot{\hat{\mathbf{u}}}\delta\boldsymbol{\mu} + \mathbf{w} \end{array} \qquad \dot{\hat{\mathbf{u}}} := \begin{bmatrix} \hat{\boldsymbol{\omega}} & \hat{\mathbf{v}} \\ 0 & \hat{\boldsymbol{\omega}} \end{bmatrix} \in \mathbb{R}^{6 \times 6} \end{array}$$

In discrete-time with discretization τ , the above becomes:

nominal :
$$\boldsymbol{\mu}_{t+1} = \exp(-\tau \hat{\mathbf{u}}_t) \boldsymbol{\mu}_t$$

perturbation : $\delta \boldsymbol{\mu}_{t+1} = \exp(-\tau \dot{\hat{\mathbf{u}}}_t) \delta \boldsymbol{\mu}_t + \mathbf{w}_t$

This is useful to separate the effect of the noise w_t from the motion of the deterministic part of T_t. See Barfoot Ch. 7.2 for details.

EKF Prediction Step

Using the perturbation idea from the previous slide, converted to discrete time, we can re-write the motion model in terms of nominal kinematics of the mean of T_t and zero-mean perturbation kinematics:

$$\mu_{t+1|t} = \exp\left(-\tau \hat{\mathbf{u}}_t\right) \mu_{t|t}$$
$$\delta \mu_{t+1|t} = \exp\left(-\tau \overset{\wedge}{\mathbf{u}}_t\right) \delta \mu_{t|t} + \mathbf{w}_t$$

EKF Prediction Step with $\mathbf{w}_t \sim \mathcal{N}(0, W)$:

$$\mu_{t+1|t} = \exp\left(-\tau \hat{\mathbf{u}}_{t}\right) \mu_{t|t}$$

$$\Sigma_{t+1|t} = \mathbb{E}[\delta \mu_{t+1|t} \delta \mu_{t+1|t}^{\top}] = \exp\left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t|t} \exp\left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top} + W$$

where

$$\mathbf{u}_t := \begin{bmatrix} \mathbf{v}_t \\ \boldsymbol{\omega}_t \end{bmatrix} \in \mathbb{R}^6 \quad \hat{\mathbf{u}}_t := \begin{bmatrix} \hat{\boldsymbol{\omega}}_t & \mathbf{v}_t \\ \mathbf{0}^\top & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{4 \times 4} \quad \overset{\scriptscriptstyle \wedge}{\mathbf{u}}_t := \begin{bmatrix} \hat{\boldsymbol{\omega}}_t & \hat{\mathbf{v}}_t \\ \mathbf{0} & \hat{\boldsymbol{\omega}}_t \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

EKF Update Step

- ▶ Prior: $U_{t+1}|z_{0:t}, u_{0:t} \sim \mathcal{N}(\mu_{t+1|t}, \Sigma_{t+1|t})$ with $\mu_{t+1|t} \in SE(3)$ and $\Sigma_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- **• Observation Model**: with measurement noise $\mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, V)$

$$\mathbf{z}_{t+1,i} = h(U_{t+1}, \mathbf{m}_j) + \mathbf{v}_{t+1,i} := M\pi \left({}_{O} T_{I} U_{t+1} \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t+1,i}$$

- The observation model is the same as in the visual mapping problem but this time the variable of interest is the inverse IMU pose U_{t+1} ∈ SE(3) instead of the landmark positions m ∈ ℝ^{3×M}
- ▶ We need the observation model Jacobian $H_{t+1|t} \in \mathbb{R}^{4N_t \times 6}$ with respect to the inverse IMU pose U_t , evaluated at $\mu_{t+1|t}$

EKF Update Step

- ▶ Let the elements of $H_{t+1|t} \in \mathbb{R}^{4N_t \times 6}$ corresponding to different observations *i* be $H_{i,t+1|t} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time t + 1 using an inverse IMU pose perturbation δμ_{t+1|t+1} is:

$$\mathbf{z}_{t+1,i} = M\pi \left({}_{O} T_{I} \exp \left(\hat{\delta \boldsymbol{\mu}}_{t+1|t+1} \right) \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$\approx M\pi \left({}_{O} T_{I} \left(I + \hat{\delta \boldsymbol{\mu}}_{t+1|t+1} \right) \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$= M\pi \left({}_{O} T_{I} \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} + {}_{O} T_{I} \left(\boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right)^{\odot} \delta \boldsymbol{\mu}_{t+1|t+1} \right) + \mathbf{v}_{t+1,i}$$

$$\approx \underbrace{M\pi \left({}_{O} T_{I} \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right)}_{\tilde{\mathbf{z}}_{t+1,i}} + \underbrace{M \frac{d\pi}{d\mathbf{q}} \left({}_{O} T_{I} \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right) {}_{O} T_{I} \left(\boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right)^{\odot}}_{H_{i,t+1|t}} \delta \boldsymbol{\mu}_{t+1|t+1} + \mathbf{v}_{t+1,i}$$

where for homogeneous coordinates $\underline{s} \in \mathbb{R}^4$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{se}(3)$:

$$\hat{\boldsymbol{\xi}} \underline{\mathbf{s}} = \underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \qquad \begin{bmatrix} \mathbf{s} \\ 1 \end{bmatrix}^{\odot} := \begin{bmatrix} l & -\hat{\mathbf{s}} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 6}$$

EKF Update Step

• Prior:
$$\mu_{t+1|t} \in SE(3)$$
 and $\Sigma_{t+1|t} \in \mathbb{R}^{6 imes 6}$

- ▶ Known: calibration matrix M, extrinsics ${}_{O}T_{I} \in SE(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3 \times M}$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 \times N_{t}}$
- Predicted observation based on $\mu_{t+1|t}$ and known correspondences π_t :

$$ilde{\mathbf{z}}_{t+1,i} := M\pi\left({}_{O}\mathcal{T}_{I}\boldsymbol{\mu}_{t+1|t}\mathbf{m}_{j}
ight) \qquad ext{for } i=1,\ldots, N_{t}$$

▶ Jacobian of $\tilde{\mathbf{z}}_{t+1,i}$ with respect to U_{t+1} evaluated at $\mu_{t+1|t}$

$$H_{i,t+1|t} = M \frac{d\pi}{d\mathbf{q}} \left({}_{O} T_{I} \boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right) {}_{O} T_{I} \left(\boldsymbol{\mu}_{t+1|t} \mathbf{m}_{j} \right)^{\odot} \in \mathbb{R}^{4 \times 6}$$

Perform the EKF update:

$$\begin{aligned} \kappa_{t+1|t} &= \Sigma_{t+1|t} H_{t+1|t}^{\top} \left(H_{t+1|t} \Sigma_{t+1|t} H_{t+1|t}^{\top} + I \otimes V \right)^{-1} \\ \mu_{t+1|t+1} &= \exp\left(\left(\kappa_{t+1|t} (\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1}) \right)^{\wedge} \right) \mu_{t+1|t} \qquad H_{t+1|t} = \begin{bmatrix} H_{1,t+1|t} \\ \vdots \\ H_{N_{t+1},t+1|t} \end{bmatrix} \\ \kappa_{t+1|t+1} &= (I - \kappa_{t+1|t} H_{t+1|t}) \Sigma_{t+1|t} \end{aligned}$$