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Visual-Inertial Localization and Mapping
I Input:

I IMU data: linear accleration at ∈ R3 and rotational velocity ωt ∈ R3

I Camera data: visual features zt ∈ R4×Nt (left and right image pixels)

I Assumption: The transformation OTI ∈ SE (3) from the IMU to the
camera optical frame (extrinsic parameters) and the stereo camera
calibration matrix M (intrinsic parameters) are known.

M :=


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


f = focal length [m]

su, sv = pixel scaling [pixels/m]

cu, cv = principal point [pixels]

b = stereo baseline [m] 2



Visual-Inertial Localization and Mapping
I Output:

I IMU pose WTI ∈ SE (3) in the world frame over time (green)
I World-frame coordinates of the point landmarks m ∈ R3×M that

generated the visual features zt (black)
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Visual Mapping

I Consider the mapping-only problem first

I Assumption: the inverse IMU pose Ut := WT−1I ,t ∈ SE (3) is known

I Objective: given the visual feature observations z0:T , estimate the
homogeneous coordinates m ∈ R4×M in the world frame of the
landmarks that generated the visual observations

I Homogeneous coordinates: m :=

[
m
1

]
I Assumption: the data association πt : {1, . . . ,M} → {1, . . . ,Nt}

stipulating which landmarks were observed at each time t is known or
provided by an external algorithm

I Assumption: the landmarks are static, i.e., it is not necessary to
consider a motion model or a prediction step
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Visual Mapping via the EKF

I Prior: m | z0:t ∼ N (µt ,Σt) with µt ∈ R3M and Σt ∈ R3M×3M

I Observation Model: with measurement noise vt,i ∼ N (0,V )

zt,i = h(Ut ,mj) + vt,i := Mπ
(
OTIUtmj

)
+ vt,i

I Projection function and its derivative:

π(q) :=
1

q3
q ∈ R4 dπ

dq
(q) =

1

q3


1 0 −q1

q3
0

0 1 −q2
q3

0

0 0 0 0
0 0 −q4

q3
1

 ∈ R4×4

I All observations (stacked as a 4Nt vector) at time t with notation abuse:

zt = Mπ (OTIUtm) + vt vt ∼ N (0, I ⊗ V ) I ⊗ V :=

V . . .

V
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Visual Mapping via the EKF

I EKF Update:

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
µt+1 = µt + Kt

(
zt −Mπ

(
OTIUtµt

)
︸ ︷︷ ︸

z̃t

)

Σt+1 = (I − KtHt)Σt

I z̃t is the predicted observation based on the landmark position estimates
µt at time t

I We need the observation model Jacobian Ht ∈ R4Nt×3M evaluated at µt

I Let the elements of Ht ∈ R4Nt×3M corresponding to different
observations i and different landmarks j be Ht,i ,j ∈ R4×3
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Stereo Camera Jacobian

I Consider a perturbation δµt,j for the position of landmark j :

mj = µt,j + δµt,j

I Projection Matrix: P =
[
I 0

]
I The first-order Taylor series approximation to observation i at time t

using the perturbation δµt,j is:

zt,i = Mπ
(
OTIUt

(
µt,j + δµt,j

))
+ vt,i

= Mπ
(
OTIUt

(
µ
t,j

+ P>δµt,j

))
+ vt,i

≈ Mπ
(
OTIUtµt,j

)
︸ ︷︷ ︸

z̃t,i

+M
dπ

dq

(
OTIUtµt,j

)
OTIUtP

>︸ ︷︷ ︸
Ht,i,j

δµt,j + vt,i
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Visual Mapping via the EKF (Summary)
I Prior: µt ∈ R3M and Σt ∈ R3M×3M

I Known: calibration matrix M, extrinsics OTI ∈ SE (3), inverse IMU pose
Ut ∈ SE (3), projection matrix P, new observation zt ∈ R4×Nt

I Predicted observations based on µt and known correspondences πt :

z̃t,i := Mπ
(
OTIUtµt,j

)
∈ R4 for i = 1, . . . ,Nt

I Jacobian of z̃t,i with respect to mj evaluated at µt,j :

Ht,i ,j =


M dπ

dq

(
OTIUtµt,j

)
OTIUtP

> if observation i corresponds to

landmark j at time t

0 ∈ R4×3 otherwise

I Perform the EKF update:

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
µt+1 = µt + Kt (zt − z̃t)

Σt+1 = (I − KtHt)Σt

I ⊗ V :=

V . . .

V
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Lie Group Probability and Statistics
I The elements of matrix Lie groups do not satisfy some basic operations

that we normally take for granted

I We need a different way to define random variables because matrix Lie
groups are not closed under the usual addition operation:

x = µ+ ε ε ∼ N (0,Σ)

I Idea: define random variables over the Lie algebra, exploiting its vector
space characteristics:

perturbation distribution

SO(3) R = exp(ε̂)µ ε ∼ N (0,Σ)

so(3) θ ≈ log(µ)∨ + J−1L (log(µ)∨)ε R = exp(θ̂)

SE (3) T = exp(ε̂)µ ε ∼ N (0,Σ)

se(3) θ ≈ log(µ)∨ + J−1L (log(µ)∨)ε T = exp(θ̂)
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Lie Group Probability and Statistics
I SO(3) and SE (3) Random Variables:

R = exp(ε̂)µ T = exp(ε̂)µ

where µ is a ‘large’ noise-free nominal rotation/pose and ε ∼ N (0,Σ) is
a ‘small’ noisy component in R3 or R6

I Note that ε = log
(
Rµ>

)∨
and ε = log

(
Tµ−1

)∨
I Assuming ε has most of its mass on ‖ε‖ < π, the pdf of R can be

obtained using Change of Density with dR = |det(JL(ε))|dε:

p(R) =
1√

(2π)3 det(Σ)
exp

(
−1

2

(
log
(
Rµ>

)∨)>
Σ−1 log

(
Rµ>

)∨) 1

|det(JL(ε))|

I The choice of µ and Σ as the mean and variance of R are justified:∫
log
(
Rµ>

)∨
p(R)dR = 0∫

log
(
Rµ>

)∨(
log
(
Rµ>

)∨)>
p(R)dR = E[εε>] = Σ
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Example: Rotation of a Random Rotation Variable

I Let Q ∈ SO(3) and θ ∈ R3. Then:

Q exp(θ̂)Q> = exp
(
Qθ̂Q>

)
= exp

(
(Qθ)∧

)
I Let R ∈ SO(3) be a random rotation with mean µ ∈ SO(3) and

covariance Σ ∈ R3×3.

I The random variable Y = QR ∈ SO(3) satisfies:

Y = QR = Q exp(ε̂)µ = exp
(
(Qε)∧

)
Qµ

E[Y ] = Qµ

Var[Y ] = Var[Qε] = QΣQ>
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Visual-Inertial Odometry

I Now, consider the localization-only problem

I We will simplify the prediction step by using kinematic rather than
dynamic equations

I Assumption: linear velocity vt ∈ R3 instead of linear acceleration
at ∈ R3 measurements are available

I Assumption: the world-frame landmark coordinates m ∈ R3×M are
known

I Assumption: the data association πt : {1, . . . ,M} → {1, . . . ,Nt}
stipulating which landmarks were observed at each time t is known or
provided by an external algorithm

I Objective: given the IMU measurements u0:T with ut := [v>t , ω
>
t ]>

and the visual feature observations z0:T , estimate the inverse IMU pose
Ut := WT−1I ,t ∈ SE (3) over time
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Visual-Inertial Odometry via the EKF

I Prior: Ut |z0:t ,u0:t−1 ∼ N (µt|t ,Σt|t) with µt|t ∈SE (3) and Σt|t ∈ R6×6

I The covariance is 6× 6 because only the six degrees of freedom of
Ut ∈ SE (3) are changing

I Motion Model: with time discretization τ and noise wt ∼ N (0,W )

Ut+1 = exp
(
−τ ((ut + wt))∧

)
Ut ut :=

[
vt
ωt

]
∈ R6

I Note that ut + wt is negative above since Ut is the inverse IMU pose

I Let the IMU pose in continuous time be WTI (t) = T (t) = U−1(t):

Ṫ = T û TU = I ṪU + TU̇ = 0

U̇ = −UṪU = −U (T û)U = −ûU
Ut+1 = exp(−τ ût)Ut
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Pose Kinematics with Perturbation
I Consider what happens with the pose kinematics

Ṫ = − (û + ŵ)T

if the pose is expressed as a nominal pose µ ∈ SE (3) and small
perturbation δ̂µ ∈ se(3):

T = exp(δ̂µ)µ ≈
(
I + δ̂µ

)
µ

I Substituting the nominal + perturbed pose in the kinematic equations:(
ˆ̇δµ
)
µ+

(
I + δ̂µ

)
µ̇ = − (û + ŵ)

(
I + δ̂µ

)
µ(

ˆ̇δµ
)
µ+ δ̂µµ̇+ µ̇ = −ûµ− ŵµ− ûδ̂µµ−��

��*
0

ŵδ̂µµ

µ̇ = −ûµ
(

ˆ̇δµ
)
µ− δ̂µûµ = −ŵµ− ûδ̂µµ

µ̇ = −ûµ ˆ̇δµ = δ̂µû− ûδ̂µ− ŵ =
(
−f
uδµ

)∧
− ŵ
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Pose Kinematics with Perturbation

I Using T ≈
(
I + δ̂µ

)
µ, the pose kinematics Ṫ = − (û + ŵ)T can be

split into nominal and perturbation kinematics:

nominal : µ̇ = −ûµ

perturbation : ˙δµ = −f
uδµ+ w

f
u :=

[
ω̂ v̂
0 ω̂

]
∈ R6×6

I In discrete-time with discretization τ , the above becomes:

nominal : µt+1 = exp (−τ ût)µt

perturbation : δµt+1 = exp
(
−τfut

)
δµt + wt

I This is useful to separate the effect of the noise wt from the motion of
the deterministic part of Tt . See Barfoot Ch. 7.2 for details.
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EKF Prediction Step

I Using the perturbation idea from the previous slide, converted to
discrete time, we can re-write the motion model in terms of nominal
kinematics of the mean of Tt and zero-mean perturbation kinematics:

µt+1|t = exp (−τ ût)µt|t

δµt+1|t = exp
(
−τfut

)
δµt|t + wt

I EKF Prediction Step with wt ∼ N (0,W ):

µt+1|t = exp (−τ ût)µt|t

Σt+1|t = E[δµt+1|tδµ
>
t+1|t ] = exp

(
−τfut

)
Σt|t exp

(
−τfut

)>
+ W

where

ut :=

[
vt
ωt

]
∈ R6 ût :=

[
ω̂t vt
0> 0

]
∈ R4×4 f

ut :=

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6

16



EKF Update Step

I Prior: Ut+1|z0:t , u0:t ∼ N (µt+1|t ,Σt+1|t) with µt+1|t ∈ SE (3) and

Σt+1|t ∈ R6×6

I Observation Model: with measurement noise vt ∼ N (0,V )

zt+1,i = h(Ut+1,mj) + vt+1,i := Mπ
(
OTIUt+1mj

)
+ vt+1,i

I The observation model is the same as in the visual mapping problem but
this time the variable of interest is the inverse IMU pose Ut+1 ∈ SE (3)
instead of the landmark positions m ∈ R3×M

I We need the observation model Jacobian Ht+1|t ∈ R4Nt×6 with respect
to the inverse IMU pose Ut , evaluated at µt+1|t
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EKF Update Step
I Let the elements of Ht+1|t ∈ R4Nt×6 corresponding to different

observations i be Hi ,t+1|t ∈ R4×6

I The first-order Taylor series approximation of observation i at time t + 1
using an inverse IMU pose perturbation δµt+1|t+1 is:

zt+1,i = Mπ
(
OTI exp

(
δ̂µt+1|t+1

)
µt+1|tmj

)
+ vt+1,i

≈ Mπ
(
OTI

(
I + δ̂µt+1|t+1

)
µt+1|tmj

)
+ vt+1,i

= Mπ

(
OTIµt+1|tmj + OTI

(
µt+1|tmj

)�
δµt+1|t+1

)
+ vt+1,i

≈ Mπ
(
OTIµt+1|tmj

)
︸ ︷︷ ︸

z̃t+1,i

+M
dπ

dq

(
OTIµt+1|tmj

)
OTI

(
µt+1|tmj

)�
︸ ︷︷ ︸

Hi,t+1|t

δµt+1|t+1 + vt+1,i

where for homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3):

ξ̂s = s�ξ

[
s
1

]�
:=

[
I −ŝ
0 0

]
∈ R4×6
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EKF Update Step
I Prior: µt+1|t ∈ SE (3) and Σt+1|t ∈ R6×6

I Known: calibration matrix M, extrinsics OTI ∈ SE (3), landmark
positions m ∈ R3×M , new observation zt+1 ∈ R4×Nt

I Predicted observation based on µt+1|t and known correspondences πt :

z̃t+1,i := Mπ
(
OTIµt+1|tmj

)
for i = 1, . . . ,Nt

I Jacobian of z̃t+1,i with respect to Ut+1 evaluated at µt+1|t

Hi ,t+1|t = M
dπ

dq

(
OTIµt+1|tmj

)
OTI

(
µt+1|tmj

)�
∈ R4×6

I Perform the EKF update:

Kt+1|t = Σt+1|tH
>
t+1|t

(
Ht+1|tΣt+1|tH

>
t+1|t + I ⊗ V

)−1
µt+1|t+1 = exp

((
Kt+1|t(zt+1 − z̃t+1)

)∧)
µt+1|t

Σt+1|t+1 = (I − Kt+1|tHt+1|t)Σt+1|t

Ht+1|t =

 H1,t+1|t
...

HNt+1,t+1|t
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