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From Photometry to Geometry

» Suppose that instead of a lidar (which measures the positions of points
in the world), we would like to use a camera to localize our robot and
build a map of the environment

» Image: an array of positive numbers that measure the amount of light
incident on the sensor

» How do we go from measurements of light (photometry) to
measurements of positions of points in the world?



Correspondence

» Corresponding points in two views are image projections of the same
geometric point in space

» Correspondence problem: establish which point in the second image
corresponds to a given point z; € R? in the first image in the sense of
being the same point in physical space

» Idea: look for a pixel zy € R? such that /(z2) ~ h(z1)



Correspondence

» Matching windows: a much more robust process of establishing
correspondence is to compare not the brightness of individual pixels but
that of small windows W(z;), W(z2) around the points

» Aperture problem: the brightness profile within the selected windows is
not rich enough to allow us to recover the transformation of the pixel z;
uniquely (e.g., blank wall)

» Features: points whose local regions are rich enough to allow solving
the correspondence problem. Features establish a link between
photometric measurements and geometric primitives.

» The window shape W(z1) and image values 1(y), y € W(z;),
associated with a pixel z; in the first image undergo a nonlinear
transformation as a consequence of the change of viewpoint



Brightness constancy constraint

» Suppose we are imaging a point m € R3 that emits light with the same
energy in all directions (Lambertian) and radiance distribution R(m)

» Suppose the camera is calibrated (i.e., K = /343) and the two camera
frames are related by the rigid-body transformation (R, p) € SE(3).

» Let /; and /» be two images and z1,z> € R? be the two pixels
corresponding to m:

h(z2) = h(z1) ~ R(m)

» From the projection equations, the point z; in image /1 corresponds to
the point z; in image b if:

1
z; = g(z1) := 3 (MRz1+p)

2
where A1, A are the unknown scales/depths of the observed point m.

> Brightness constancy constraint: ‘ll(zl) = Ig(g(zl))‘




Local Deformation Models

» The transformation g undergone by the entire image is determined by
the scales A1, A2 of the visible surface and hence estimating g is as
difficult as estimating the shape of the visible objects!

» Instead, we model the transformation only locally in a region W(z):

» Translational model: each point in the window undergoes the exact
same translational motion d € R:
gly)~y+d, VyeW(z)
This model is valid only in small windows and over short time durations
but it is at the core of many feature matching and tracking algorithms.

» Affine model: each point in the window undergoes an affine
transformation with parameters A € R?*? and d € R%:

gly) = Ay +d, Vye W(z)

Az (4.d)
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Matching Point Features

» Requiring that /(z1) = h(g(z1)) is too much to ask for due to the
approximation of g and the presence of noise and occlusions

» Correspondence problem: an optimization problem that aims to
determine the (translation or affine) parameters of the local
transformation model of g:

min > h(y) — k(y+d)|3 OR min > lIA(y) = R(Ay +d)|3

)

yeWw(z) yeW(z)

» Our approximations of g are valid only locally in space and time so
consider the continuous version of the brightness constancy constraint:

h(z) = I(z(t),t) R~ h(g(z)) R~ 1(z(t) + vdt, t + dt)
brightness constancy translation model

where dt is small and v € R? is the velocity of z



Continuous-Time Brightness Constancy

» Brightness Constancy (for the affine model):
I(z,t) = I(Az + vdt, t + dt)

» Linearizing the right-hand side around (z, t):

/
I(Az + vdt, t + dt) =~ I(z,t) + V,I(z,t) " (Az + vdt — z) + gt(z7 t)dt
leads to: )
ol
» Translational: mln Z Vol(y,t) v+ — 5 (y,t) )

yeEW(2)

Vo l(y. t)" ((Ad_t Dy V) + gi(w t)

2

» Affine: mi
ine IRID Z
yYEW(2)

2

» Aperture problem: The brightness constancy equation ( v+ 8’ =0)
provides only one constraint for the two unknowns v € R?.

» There are enough constraints on v only when the brightness constancy
constraint is applied to each y in a region W/(z) that contains “sufficient
texture” and the motion v is assumed constant in the region. 8



Feature Tracking and Optical Flow

» The brightness constancy equation (%V + % = 0) can be used to
compute optical flow or track photometric features in a sequence of
moving images

» Optical flow: the velocity v of particle flowing through a given image
location z

> Feature tracking: the computation of the velocity v of a particle z(t)
moving through the image domain so that z(t + dt) = z(t) + vdt
(translational model)

» The only difference between optical flow and feature tracking is at the
conceptual level, whether the vector v is computed at fixed locations in
the image or at moving points z(t)



Feature Tracking and Optical Flow

» To compute the velocity v we need to solve:

m|n Z

yeW(z)

2

ol
V.I(y,t) V+a(y,)

2

» Letting z = (v, v) and setting the gradient to zero results in:

0-2 % (Vally, 07w+ 5100.0)) Yl

yeW(2)
2
A (anitn "2 [E0)

_ S Iiy) X ()(Y) >y lu(¥)1e(y)
=2 [Ey Lu(y) I (y) g I(y)? } * [Z I (y )lt(y)}

6(2) b(2)

» The optimal estimate of the image velocity at z is |v* = —G(z)*lb(z)l




Point Feature Selection

» For G(z) to be invertible, the region W/(z) must have nontrivial
gradients along independent directions, therefore resembling a “corner”
structure.

> Corner feature: a pixel z such that the smallest singular value of G(z)
(equal to the eigenvalues for a symmetric matrix) is larger than some
threshold 7

» Harris corner detector: A variation of the corner detector that
thresholds the quantity:

det(G) + ktr’(G) = o102 + k(o1 + 02)? = (1 + 2k)a102 + k(o1 + 02)?,

where k € R is a small scalar and o1, 02 are the singular values of G.
Since k is small, both singular values of G need to be sufficiently large
to pass the threshold.

» More sophisticated techniques that utilize contours (or edges) and search
for high curvature points in the detected contours are used in practice

11



Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow

1. Input: Image / at time ¢t

3: Compute the image gradient (/u, /)

Syewn B0 Xyew (¥ (Y)

at every pixel z = (u, v
e MO Lyewe E) (& v)

: Compute G(z) := {

4
5:
6: (Feature tracking) select point features zi, 2y, ... such that G(z;) is invertible
7: (Optical flow) select z; on a fixed grid

8

Zye W(z) Lu(y)Ie(y)

9: Compute b(z) := |:Zy€W(Z) L(y)(y)

11: If G(z) is invertible (guaranteed for point features), compute v(z) = —G(z) ' b(z)
12: Else v(z) = 0.

14: (Feature tracking) at time t + 1, repeat the operation at z + v(z)
15: (Optical flow) at time t + 1, repeat the operation at z

12



Feature Tracking and Optical Flow

13



Feature Tracking and Optical Flow

» The feature tracking/optical flow algorithm is very efficient when we use
the translational deformation model

» When features are tracked over extended periods of time, however, the
estimation error accumulates

» Instead of matching image regions between adjacent frames, one could
match image regions between an initial frame and the current frame

» The simple translational deformation model is no longer accurate and we
should use the affine deformation model

» Further reading:

» J. Shi and C. Tomasi, “Good features to track,” IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 593-600, 1994.

14



Image Gradient

» How do we compute the gradients /,(u, v, t), I,(u, v, t), and It(u, v,t)
needed for feature tracking/optical flow?

» We could approximate the derivatives using finite differences, e.g.,:
I(u,v,t) = 1(u,v,t) — l(u,v,t =1) OR [(u,v,t)= %(l(u, v,t+1) — (u,v,t — 1))

» To derive a more accurate approach we need to understand the
relationship between a continuous signal f(x) and its sampled version
with period T:

flx]| =f(xT), x€Z
f(z) fl]

A My
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Nyquist-Shannon Sampling Theorem

» If f(x) is band limited, i.e., its Fourier transform satisfies |F(w)| = 0 for
all w > w, (Nyquist frequency), it can be reconstructed exactly from a
set of discrete samples at sampling frequency ws := 2% > 2wp.

» The continuous signal f(x) can be reconstructed by multiplying its
sampled version f[x] in the frequency domain with an ideal
reconstruction filter h(x) with Fourier transform:

_ L we -7, F] e (X
H(w)_{(), o h(x)_s.nc(7), xR

» Multiplication in the frequency domain corresponds to convolution in the
spatial domain, thus as long as w, < F:

f(x) = f[x] = h(x), xeR

16



Derivative of a Sampled Signal
» Differentiating f(x) = f[x] x h(x):

d 0 d dh
S F0) = D FIKh(x — k) = Flx] = —-(x)

k=—oc0
» Sampling the above result shows that the derivative of the sampled
function f’[x] can be computed as a convolution of the sampled signal
f[x] with the sampled derivative of the sync function A'[x]:
f'[x] = f[x] = h'[x]
, (72x/ T?)cos(nx/T) — m/ T sin(mx/T)
H(x) =
(mx/T)?
h(z) h'(x)

, X€ER

hx) [ Hix)
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Five-tap Gaussian Filter

» The sync function has infinite support and falls off very slowly away
from the origin. Hence, the sync convolution is not practically feasible
and simple truncation yields undesirable artifacts.

» The derivative computation can be approximated by convolving with a
Gaussian since it drops to zero much faster than the sync:

2 2
()= et gx) =~
V2mo? 02/ 272

gl2] g'[7]

g[x] = [0.1353 0.6065 1.0000 0.6065 0.1353] g'[x] =[0.2707 0.6065 0 —0.6065 —0.27073



Image Gradient

>

In the case of images (2-D functions) the result is the same:
_sin(mu/T)sin(mv/T)
B m2uv/ T2 ’

I(u,v) = u, v]xh(u, v) h(u, v) = h(u)h(v)

Note that h(u, v) = h(u)h(v) is separable which leads to:
luu, v] = Iu, v] * h'[u] * h[v] I,(u,v) = Iu, v] * h[u] * K'[v]
The computation of the image derivatives is then accomplished as a pair
of 1-D convolutions with filters obtained by sampling a continuous
Gaussian function and its derivative:
w/?2 w/?2
Iu[”a V] = I[uv V]*g/[u]*g[v] = Z Z I[k7/]g,[u_k]g[v_l]
k=—w/2 |=—w/2
w/?2 w/?2
Mu vl =1u vl glul«g'VI= Y > Ik Nglu—Klg'lv—1]
k=—w/2 |=—w/2
The number of samples is typically chosen as w = 50, imposing the fact
that the window subtends 98.76% of the area under the Gaussian curveg



Image Gradient
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Other Derivative Filters, Features, and Descriptors

» Other commonly used derivative filters:
> Interpolation filter: h[x] = 1[1, 1] with derivative h'[x] = 3[1, —1]
> Sobel filter: h[x] = ﬁ[l, V/2,1] with derivative h'[x] = £[1,0, —1]
» Gabor filter: used for texture analysis
» Other features and descriptors (describe feature shape, color, texture):
> SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David
Lowe, is one of the most successful local image features/descriptors in the
past decade. It makes the Harris corner scale invariant by using
scale-space filtering via a Laplacian of Gaussian kernel (blob detector)

» SUREF: the Speeded-Up Robust Feature is a speeded-up version of SIFT
which applies an approximate 2" derivative Gaussian filter at many scales
along the axes and at 45° (more robust to rotation than Harris corners)

> FAST: a Feature from Accelerated Segment Test detects corners by
considering 16 pixels around the pixel y being tested and is several times
faster than other corner detectors

» BRIEF: a Binary Robust Independent Elementary Features speed up
descriptor calculation and matching

» ORB: Oriented FAST and Rotated BRIEF 21



