
ECE276A: Sensing & Estimation in Robotics
Lecture 14: Visual Features

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Thai Duong: tduong@eng.ucsd.edu
Yiran Xu: y5xu@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:aasghari@eng.ucsd.edu
mailto:tduong@eng.ucsd.edu
mailto:y5xu@eng.ucsd.edu

From Photometry to Geometry

I Suppose that instead of a lidar (which measures the positions of points
in the world), we would like to use a camera to localize our robot and
build a map of the environment

I Image: an array of positive numbers that measure the amount of light
incident on the sensor

I How do we go from measurements of light (photometry) to
measurements of positions of points in the world?

2

Correspondence

I Corresponding points in two views are image projections of the same
geometric point in space

I Correspondence problem: establish which point in the second image
corresponds to a given point z1 ∈ R2 in the first image in the sense of
being the same point in physical space

I Idea: look for a pixel z2 ∈ R2 such that I2(z2) ≈ I1(z1)

3

Correspondence

I Matching windows: a much more robust process of establishing
correspondence is to compare not the brightness of individual pixels but
that of small windows W (z1), W (z2) around the points

I Aperture problem: the brightness profile within the selected windows is
not rich enough to allow us to recover the transformation of the pixel z1
uniquely (e.g., blank wall)

I Features: points whose local regions are rich enough to allow solving
the correspondence problem. Features establish a link between
photometric measurements and geometric primitives.

I The window shape W (z1) and image values I1(y), y ∈W (z1),
associated with a pixel z1 in the first image undergo a nonlinear
transformation as a consequence of the change of viewpoint

4

Brightness constancy constraint
I Suppose we are imaging a point m ∈ R3 that emits light with the same

energy in all directions (Lambertian) and radiance distribution R(m)

I Suppose the camera is calibrated (i.e., K = I3×3) and the two camera
frames are related by the rigid-body transformation (R,p) ∈ SE (3).

I Let I1 and I2 be two images and z1, z2 ∈ R2 be the two pixels
corresponding to m:

I2(z2) = I1(z1) ∼ R(m)

I From the projection equations, the point z1 in image I1 corresponds to
the point z2 in image I2 if:

z2 = g(z1) :=
1

λ2
(λ1Rz1 + p)

where λ1, λ2 are the unknown scales/depths of the observed point m.

I Brightness constancy constraint: I1(z1) = I2(g(z1))

5

Local Deformation Models
I The transformation g undergone by the entire image is determined by

the scales λ1, λ2 of the visible surface and hence estimating g is as
difficult as estimating the shape of the visible objects!

I Instead, we model the transformation only locally in a region W (z):
I Translational model: each point in the window undergoes the exact

same translational motion d ∈ R2:

g(y) ≈ y + d, ∀y ∈W (z)

This model is valid only in small windows and over short time durations
but it is at the core of many feature matching and tracking algorithms.

I Affine model: each point in the window undergoes an affine
transformation with parameters A ∈ R2×2 and d ∈ R2:

g(y) ≈ Ay + d, ∀y ∈W (z)

6

Matching Point Features

I Requiring that I1(z1) = I2(g(z1)) is too much to ask for due to the
approximation of g and the presence of noise and occlusions

I Correspondence problem: an optimization problem that aims to
determine the (translation or affine) parameters of the local
transformation model of g :

min
d

∑
y∈W (z)

‖I1(y)− I2(y + d)‖22 OR min
A,d

∑
y∈W (z)

‖I1(y)− I2(Ay + d)‖22

I Our approximations of g are valid only locally in space and time so
consider the continuous version of the brightness constancy constraint:

I1(z) = I (z(t), t) ≈︸︷︷︸
brightness constancy

I2(g(z)) ≈︸︷︷︸
translation model

I (z(t) + νdt, t + dt)

where dt is small and ν ∈ R2 is the velocity of z

7

Continuous-Time Brightness Constancy
I Brightness Constancy (for the affine model):

I (z, t) ≈ I (Az + νdt, t + dt)

I Linearizing the right-hand side around (z , t):

I (Az + νdt, t + dt) ≈ I (z, t) +∇zI (z, t)>(Az + νdt − z) +
∂I

∂t
(z, t)dt

leads to:

I Translational: min
ν

∑
y∈W (z)

∥∥∥∥∇zI (y, t)>ν +
∂I

∂t
(y, t)

∥∥∥∥2
2

I Affine: min
A,ν

∑
y∈W (z)

∥∥∥∥∇zI (y, t)>
(

(A− I)

dt
y + ν

)
+
∂I

∂t
(y, t)

∥∥∥∥2
2

I Aperture problem: The brightness constancy equation (∂I∂zν + ∂I
∂t = 0)

provides only one constraint for the two unknowns ν ∈ R2.

I There are enough constraints on ν only when the brightness constancy
constraint is applied to each y in a region W (z) that contains “sufficient
texture” and the motion ν is assumed constant in the region.

8

Feature Tracking and Optical Flow

I The brightness constancy equation (∂I∂zν + ∂I
∂t = 0) can be used to

compute optical flow or track photometric features in a sequence of
moving images

I Optical flow: the velocity ν of particle flowing through a given image
location z

I Feature tracking: the computation of the velocity ν of a particle z(t)
moving through the image domain so that z(t + dt) = z(t) + νdt
(translational model)

I The only difference between optical flow and feature tracking is at the
conceptual level, whether the vector ν is computed at fixed locations in
the image or at moving points z(t)

9

Feature Tracking and Optical Flow
I To compute the velocity ν we need to solve:

min
ν

∑
y∈W (z)

∥∥∥∥∇zI (y, t)>ν +
∂I

∂t
(y, t)

∥∥∥∥2
2

I Letting z = (u, v) and setting the gradient to zero results in:

0 = 2
∑

y∈W (z)

(
∇zI (y, t)>ν +

∂I

∂t
(y, t)

)
∇zI (y, t)

= 2
∑

y∈W (z)

([
I 2u (y) Iu(y)Iv (y)

Iu(y)Iv (y) Iv (y)2

]
ν +

[
Iu(y)It(y)
Iv (y)It(y)

])

= 2


[∑

y I
2
u (y)

∑
y Iu(y)Iv (y)∑

y Iu(y)Iv (y)
∑

y Iv (y)2

]
︸ ︷︷ ︸

G(z)

ν +

[∑
y Iu(y)It(y)∑
y Iv (y)It(y)

]
︸ ︷︷ ︸

b(z)


I The optimal estimate of the image velocity at z is ν∗ = −G (z)−1b(z)10

Point Feature Selection
I For G (z) to be invertible, the region W (z) must have nontrivial

gradients along independent directions, therefore resembling a “corner”
structure.

I Corner feature: a pixel z such that the smallest singular value of G (z)
(equal to the eigenvalues for a symmetric matrix) is larger than some
threshold τ

I Harris corner detector: A variation of the corner detector that
thresholds the quantity:

det(G) + k tr2(G) = σ1σ2 + k(σ1 + σ2)2 = (1 + 2k)σ1σ2 + k(σ1 + σ2)2,

where k ∈ R is a small scalar and σ1, σ2 are the singular values of G .
Since k is small, both singular values of G need to be sufficiently large
to pass the threshold.

I More sophisticated techniques that utilize contours (or edges) and search
for high curvature points in the detected contours are used in practice

11

Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow

1: Input: Image I at time t
2:
3: Compute the image gradient (Iu, Iv)

4: Compute G(z) :=

[∑
y∈W (z) I

2
u (y)

∑
y∈W (z) Iu(y)Iv (y)∑

y∈W (z) Iu(y)Iv (y)
∑

y∈W (z) I
2
v (y)

]
at every pixel z = (u, v)

5:
6: (Feature tracking) select point features z1, z2, . . . such that G(zi) is invertible
7: (Optical flow) select zi on a fixed grid
8:

9: Compute b(z) :=

[∑
y∈W (z) Iu(y)It(y)∑
y∈W (z) Iv (y)It(y)

]
10:
11: If G(z) is invertible (guaranteed for point features), compute ν(z) = −G(z)−1b(z)
12: Else ν(z) = 0.
13:
14: (Feature tracking) at time t + 1, repeat the operation at z + ν(z)
15: (Optical flow) at time t + 1, repeat the operation at z

12

Feature Tracking and Optical Flow

13

Feature Tracking and Optical Flow

I The feature tracking/optical flow algorithm is very efficient when we use
the translational deformation model

I When features are tracked over extended periods of time, however, the
estimation error accumulates

I Instead of matching image regions between adjacent frames, one could
match image regions between an initial frame and the current frame

I The simple translational deformation model is no longer accurate and we
should use the affine deformation model

I Further reading:
I J. Shi and C. Tomasi, “Good features to track,” IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pp. 593-600, 1994.

14

Image Gradient
I How do we compute the gradients Iu(u, v , t), Iv (u, v , t), and It(u, v , t)

needed for feature tracking/optical flow?

I We could approximate the derivatives using finite differences, e.g.,:

It(u, v , t) = I (u, v , t)− It(u, v , t − 1) OR It(u, v , t) =
1

2
(I (u, v , t + 1)− It(u, v , t − 1))

I To derive a more accurate approach we need to understand the
relationship between a continuous signal f (x) and its sampled version
with period T :

f [x] = f (xT), x ∈ Z

15

Nyquist-Shannon Sampling Theorem

I If f (x) is band limited, i.e., its Fourier transform satisfies |F (ω)| = 0 for
all ω > ωn (Nyquist frequency), it can be reconstructed exactly from a
set of discrete samples at sampling frequency ωs := 2π

T > 2ωn.

I The continuous signal f (x) can be reconstructed by multiplying its
sampled version f [x] in the frequency domain with an ideal
reconstruction filter h(x) with Fourier transform:

H(ω) =

{
1, ω ∈

[
− π

T ,
π
T

]
0, else

h(x) = sinc
(πx
T

)
, x ∈ R

I Multiplication in the frequency domain corresponds to convolution in the
spatial domain, thus as long as ωn <

π
T :

f (x) = f [x] ∗ h(x), x ∈ R

16

Derivative of a Sampled Signal
I Differentiating f (x) = f [x] ∗ h(x):

d

dx
f (x) =

∞∑
k=−∞

f [k]
d

dx
h(x − k) = f [x] ∗ dh

dx
(x)

I Sampling the above result shows that the derivative of the sampled
function f ′[x] can be computed as a convolution of the sampled signal
f [x] with the sampled derivative of the sync function h′[x]:

f ′[x] = f [x] ∗ h′[x]

h′(x) =
(π2x/T 2) cos(πx/T)− π/T sin(πx/T)

(πx/T)2
, x ∈ R

17

Five-tap Gaussian Filter
I The sync function has infinite support and falls off very slowly away

from the origin. Hence, the sync convolution is not practically feasible
and simple truncation yields undesirable artifacts.

I The derivative computation can be approximated by convolving with a
Gaussian since it drops to zero much faster than the sync:

g(x) =
1√

2πσ2
e
−x2

2σ2 g ′(x) = − x

σ2
√

2πσ2
e
−x2

2σ2

g [x] =
[
0.1353 0.6065 1.0000 0.6065 0.1353

]
g ′[x] =

[
0.2707 0.6065 0 −0.6065 −0.2707

]
18

Image Gradient
I In the case of images (2-D functions) the result is the same:

I (u, v) = I [u, v]∗h(u, v) h(u, v) = h(u)h(v) =
sin(πu/T) sin(πv/T)

π2uv/T 2
, u, v ∈ R

I Note that h(u, v) = h(u)h(v) is separable which leads to:

Iu[u, v] = I [u, v] ∗ h′[u] ∗ h[v] Iv (u, v) = I [u, v] ∗ h[u] ∗ h′[v]

I The computation of the image derivatives is then accomplished as a pair
of 1-D convolutions with filters obtained by sampling a continuous
Gaussian function and its derivative:

Iu[u, v] = I [u, v] ∗ g ′[u] ∗ g [v] =

ω/2∑
k=−ω/2

ω/2∑
l=−ω/2

I [k, l]g ′[u − k]g [v − l]

Iv [u, v] = I [u, v] ∗ g [u] ∗ g ′[v] =

ω/2∑
k=−ω/2

ω/2∑
l=−ω/2

I [k, l]g [u − k]g ′[v − l]

I The number of samples is typically chosen as ω = 5σ, imposing the fact
that the window subtends 98.76% of the area under the Gaussian curve19

Image Gradient

I Iu Iv

20

Other Derivative Filters, Features, and Descriptors
I Other commonly used derivative filters:

I Interpolation filter: h[x] = 1
2 [1, 1] with derivative h′[x] = 1

2 [1,−1]
I Sobel filter: h[x] = 1

2+
√
2

[1,
√

2, 1] with derivative h′[x] = 1
3 [1, 0,−1]

I Gabor filter: used for texture analysis
I Other features and descriptors (describe feature shape, color, texture):

I SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David
Lowe, is one of the most successful local image features/descriptors in the
past decade. It makes the Harris corner scale invariant by using
scale-space filtering via a Laplacian of Gaussian kernel (blob detector)

I SURF: the Speeded-Up Robust Feature is a speeded-up version of SIFT
which applies an approximate 2nd derivative Gaussian filter at many scales
along the axes and at 45◦ (more robust to rotation than Harris corners)

I FAST: a Feature from Accelerated Segment Test detects corners by
considering 16 pixels around the pixel y being tested and is several times
faster than other corner detectors

I BRIEF: a Binary Robust Independent Elementary Features speed up
descriptor calculation and matching

I ORB: Oriented FAST and Rotated BRIEF 21

