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Events

I Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

I Sample space Ω: the set of possible outcomes of an experiment.
I Ω = {HH,HT ,TH,TT}
I Ω = { , , , , , }

I Event A: a subset of the possible outcomes Ω
I A = {HH}, B = {HT ,TH}

I Probability of an event: P(A) = volume of A
volume of all possible outcomes Ω
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Measure and Probability Space

I σ-algebra: a collection of subsets of Ω closed under complementation
and countable unions.

I Borel σ-algebra B: the smallest σ-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).

I Measurable space: a tuple (Ω,F), where Ω is a sample space and F is
a σ-algebra.

I Measure: a function µ : F → R satisfying µ(A) ≥ µ(∅) = 0 for all
A ∈ F and countable additivity µ (∪iAi ) =

∑
i µ(Ai ) for disjoint Ai .

I Probability measure: a measure that satisfies µ(Ω) = 1.

I Probability space: a triple (Ω,F ,P), where Ω is a sample space, F is a
σ-algebra, and P : F → [0, 1] is a probability measure.
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Probability Axioms

I Probability Axioms:
I P(A) ≥ 0
I P(Ω) = 1
I If {Ai} are disjoint (Ai ∩ Aj = ∅), then P(

⋃
i Ai ) =

∑
i P(Ai )

I Corollary:
I P(∅) = 0
I max{P(A),P(B)} ≤ P(A ∪B) = P(A) + P(B)− P(A∩B) ≤ P(A) + P(B)
I A ⊆ B ⇒ P(A) ≤ P(B)
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Events Example

I An experiment consists of randomly selecting one chip among ten chips
marked 1, 2, 2, 3, 3, 3, 4, 4, 4, 4.
I What is a reasonable sample space for this experiment? Ω = {1, 2, 3, 4}
I What is the probability of observing a chip marked with an even number?

P({2, 4}) = P({2} ∪ {4}) = P({2}) + P({4}) =
6

10

I What is the probability of observing a chip marked with a prime number?

P({2, 3}) = P({2} ∪ {3}) = P({2}) + P({3}) =
5

10
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Set of Events
I Conditional Probability: P(A ∩ B) = P(A | B)P(B)

I Bayes Theorem: assume P(B) > 0

P(A | B) =
P(A ∩ B)

P(B)
=

P(B | A)P(A)

P(B)

I Total Probability: If {A1, . . . ,An} is a partition of Ω, i.e., Ω =
⋃

i Ai

and Ai ∩ Aj = ∅, i 6= j , then:

P(B) =
n∑

i=1

P(B ∩ Ai )

I Corollary: If {A1, . . . ,An} is a partition of Ω, then:

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

I Independent events: P (
⋂

i Ai ) =
∏

i P(Ai )
I observing one does not give any information about another
I in contrast, disjoint events never occur together: one occuring tells you

that others will not occur and hence, disjoint events are always dependent6



Independent Events Example

I A box contains 7 green and 3 red chips.

I Experiment: select one chip, replace the drawn chip, and repeat until
the color red has been observed four times

I Assuming that no draw affects or is affected by any other draw, what is
the probability that the experiment terminates on the ninth draw?
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Independent Events Example
I Let Ω denote the sample space for this experiment, which is a countably

infinite set of all ordered tuples such that:
I Each term is either g or r
I The last component of the tuple is r
I There are exactly four components of r in the tuple

I Let E be the set of elements in Ω which have 9 components, e.g.,
(g , r , g , r , g , r , g , g , r) ∈ E

I Idea:
I Show that every singleton subset of E has the same probability pe
I Determine the cardinality of E so that P(E ) =

∑
e∈E P(e) = |E |pe

I Due to independence, for any element e ∈ E we have:

P(e) = P (e1 ∩ e2 ∩ · · · ∩ e9) =
9∏

i=1

P(ei ) =

(
3

10

)4( 7

10

)5

I Since the last component of each 9-tuple e ∈ E must be r , the
cardinality of E is the number of ways to distribute 3 red chips among 8
slots, i.e., |E | =

(8
3

)
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Random Variable

I Random variable X : an F-measurable function from (Ω,F) to (R,B),
i.e., a function X : Ω→ R s.t. the preimage of every set in B is in F .

I The cumulative distribution function (CDF) F (x) := P(X ≤ x) of a
random variable X is non-decreasing, right-continuous, and
limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

(a) Discrete CDF (b) Continuous CDF (c) Mixed CDF
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CDF Examples
I X ∼ U([a, b])

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b

I X ∼ U({a, b})

F (x) =


0 x < a

1/2 a ≤ x < b

1 x ≥ b

I X ∼ Exp(λ) with λ > 0

F (x) =

{
0 x < 0

1− e−λx x ≥ 0

I X ∼ N (µ, σ2)

F (x) =
1√

2πσ2

∫ x

−∞
exp

(
−1

2

(y − µ)2

σ2

)
dy
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Probability Density Function
I The probability density/mass function (pdf) f (x) of a random

variable X : (Ω,F ,P)→ (R,B,P ◦ X−1) satisfies:

I Continuous random variable:
I f (x) ≥ 0

I
∫
f (y)dy = 1

I F (x) = P(X ≤ x) =
∫ x

−∞ f (y)dy

I P(X = x) = F (x)− F (x−) = limε→0

∫ x

x−ε f (y)dy = 0

I P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
f (x)dx

I Discrete random variable:
I f (i) = P(X = i) ≥ 0

I
∑

i∈Z f (i) = 1

I F (x) = P(X ≤ x) =
∑

i∈Z,i≤x f (i)

I The pdf f (x) of X behaves like a derivative of the CDF F (x)

I The values f (a), f (b) measure the relative likelihood of X being a or b
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pdf Examples
I X ∼ U([a, b])

f (x) =


0 x < a

1
b−a a ≤ x ≤ b

0 x > b

I X ∼ U({a, b})

f (x) =

{
1
2 x ∈ {a, b}
0 else

I X ∼ Exp(λ) with λ > 0

f (x) =

{
0 x < 0

λe−λx x ≥ 0

I X ∼ N (µ, σ2)

f (x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)
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Gaussian Distribution

I Gaussian random vector X ∼ N (µ,Σ)
I parameters: mean µ ∈ Rn, covariance Σ ∈ Sn�0 (symmetric positive

semidefinite matrix)

I pdf: φ(x;µ,Σ) := 1√
(2π)n det(Σ)

exp
(
− 1

2 (x− µ)>Σ−1(x− µ)
)

I expectation: E[X ] =
∫
xφ(x;µ,Σ)dx = µ

I variance: Var [X ] = E
[
(X − E[X ]) (X − E[X ])>

]
= Σ

I Gaussian mixture X ∼ NM({αk}, {µk}, {Σk})
I parameters: weights αk ≥ 0,

∑
k αk = 1,

means µk ∈ Rn, covariances Σk ∈ Sn�0

I pdf: p(x) :=
∑

k αkφ(x;µk ,Σk)

I expectation: E[X ] =
∫
xp(x)dx =

∑
k αkµk =: µ̄

I variance: Var [X ] = E
[
XX>

]
− E[X ]E[X ]>=

∑
kαk

(
Σk + µkµ

>
k

)
− µ̄µ̄>
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pdf of a Mixture of Two 2-D Gaussians
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Expectation and Variance

I Given a random variable X with pdf p and a measurable function g , the
expectation of g(X ) is:

E [g(X )] =

∫
g(x)p(x)dx

I The variance of g(X ) is:

Var [g(X )] = E
[
(g(X )− E[g(X )]) (g(X )− E[g(X )])>

]
= E

[
g(X )g(X )>

]
− E[g(X )]E[g(X )]>

I The variance of a sum of random variables is:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ) +
n∑

i=1

∑
j 6=i

Cov(Xi ,Xj)

Cov(Xi ,Xj) = E
(

(Xi − EXi )(Xj − EXj)
>
)

= E(XiX
>
j )− EXiEX>j
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Expectation and Variance Examples

I X ∼ U([a, b])

E[X ] =

∫
yf (y)dy =

1

b − a

∫ b

a
ydy =

b2 − a2

2(b − a)
=

1

2
(a + b)

Var [X ] =

∫
y2f (y)dy − E[X ]2 =

b3 − a3

3(b − a)
− 1

4
(a + b)2 =

1

12
(b − a)2

I X ∼ U({a, b})

E[X ] =
∑

i∈{a,b}

i f (i) =
1

2
(a + b)

Var [X ] = E[X 2]− E[X ]2 =
1

2
(a2 + b2)− 1

4
(a + b)2 =

1

4
(b − a)2
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Expectation and Variance Examples
I X ∼ Exp(λ) with λ > 0

E[X ] =

∫ ∞
0

yλe−λydy
z=λy , dz=λdy

==========
1

λ

∫ ∞
0

ze−zdz

u=z, dv=e−zdz
===========
du=dz, v=−e−z

1

λ

((
−ze−z

) ∣∣∣∣∞
0

+

∫ ∞
0

e−zdz

)
=

1

λ
(0 + 1) =

1

λ

Var [X ] =

∫ ∞
0

y2λe−λydy − 1

λ2

z=λy , dz=λdy
==========

1

λ2

(∫ ∞
0

z2e−zdz − 1

)
u=z2, dv=e−zdz

============
du=2zdz, v=−e−z

1

λ2

((
−z2e−z

) ∣∣∣∣∞
0

+ 2

∫ ∞
0

e−zdz − 1

)
=

1

λ2

I X ∼ N (µ, σ2)

E[X − µ] =
1√
2π

∫ ∞
−∞

(y − µ)

σ
exp

(
−1

2

(y − µ)2

σ2

)
dy

z= (y−µ)2

2σ=========
dz= (y−µ)

σ
dy

1√
2π

(∫ µ2/2σ

∞
e−z/σdz +

∫ ∞
µ2/2σ

e−z/σdz

)
= 0
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Expectation Example

I Suppose V = (X ,Y ) is a continuous random vector with density
fV (x , y) = 8xy for 0 < y < x and 0 < x < 1. Let g(x , y) := 2x + y .
I Determine E [g(V )]

I Evaluate E [X ] and E [Y ] by finding the marginal densities of X and Y
and then evaluating the appropriate univariate integrals

I Determine Var [g(V )]
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Expectation Example

E [2X + Y ] =

∫ 1

0

∫ x

0
(2x + y)8xy dydx =

32

15

fX (x) =

∫ x

0
8xy dy = 4x3 for 0 ≤ x ≤ 1

E [X ] =

∫ 1

0
xfX (x)dx =

∫ 1

0
4x4dx =

4

5

fY (y) =

∫ 1

y
8xy dx = 4y − 4y3 for 0 ≤ y ≤ 1

E [Y ] =

∫ 1

0
yfY (y)dy =

∫ 1

0
4y2 − 4y4dy =

8

15

Var [g(V )] = E
[
(g(V )− E [g(V )])2

]
= E

[(
2X + Y − 32

15

)2
]

=

∫ 1

0

∫ x

0

(
2x + y − 32

15

)2

8xy dydx =
17

75
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Set of Random Variables

I The joint distribution of random variables {Xi}ni=1 on (Ω,F ,P) defines
their simultaneous behavior and is associated with a cumulative
distribution function F (x1, . . . , xn) := P(X1 ≤ x1, . . . ,Xn ≤ xn). The
CDF Fi (xi ) of Xi defines its marginal distribution.

I Random variables {Xi}ni=1 on (Ω,F ,P) are jointly independent iff for
all {Ai}ni=1 ⊂ F , P(Xi ∈ Ai ,∀i) =

∏n
i=1 P(Xi ∈ Ai )

I Let X and Y be random variables and suppose EX , EY , and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X ,Y ) = 0.

I Independence implies uncorrelatedness
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Change of Density

I Convolution: Let X and Y be independent random variables with pdfs
f and g , respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g :

[f ∗ g ](z) :=

∫
f (z − y)g(y)dy =

∫
f (x)g(z − x)dx

I Change of Density: Let Y = f (X ). Then, with dy =
∣∣det

(
df
dx (x)

)∣∣ dx :

P(Y ∈ A) = P(X ∈ f −1(A)) =

∫
f −1(A)

px(x)dx

=

∫
A

1∣∣det
(
df
dx (f −1(y))

)∣∣px(f −1(y))︸ ︷︷ ︸
py (y)

dy
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Change of Density Example

I Let X ∼ N (0, σ2) and Y = f (X ) = exp(X )

I Note that f (x) is invertible f −1(y) = log(y)

I The infinitesimal integration volumes for y and x are related by:

dy =

∣∣∣∣det

(
df

dx
(x)

)∣∣∣∣ dx = exp(x)dx

I Using the change of density theorem:

P(Y ∈ [0,∞)) =

∫ ∞
−∞

φ(x ; 0, σ2)dx =

∫ ∞
0

1

exp(log(y))
φ(log(y); 0, σ2)dy

=

∫ ∞
0

1

y

1√
2πσ2

exp

(
−1

2

log2(y)

σ2

)
︸ ︷︷ ︸

p(y)

dy
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Change of Density Example
I Let V := (X ,Y ) be a random vector with pdf:

pV (x , y) :=

{
2y − x x < y < 2x and 1 < x < 2

0 else

I Let T := (M,N) = g(V ) :=
(

2X−Y
3 , X+Y

3

)
be a function of V

I Note that X = M + N and Y = 2N −M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

det

(
dg

dv

)
= det

[
2/3 − 1/3
1/3 1/3

]
=

1

3

I The pdf T is:

pT (m, n) =


1

|det( dg
dv

(m+n,2n−m))|pV (m + n, 2n −m),
0 < m < n/2 and

1 < m + n < 2,

0, else.
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Conditional and Total Probability

I Total Probability: If two random variables X ,Y have a joint pdf
p(x , y), the marginal pdf p(x) of X is:

p(x) =

∫
p(x , y)dy

I Conditional Distribution: If two random variables X ,Y have a joint
pdf p(x , y), the pdf p(x |y) of X conditioned on Y = y and the pdf
p(y |x) of Y conditioned on X = x satisfy

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

I Bayes Theorem: The pdf p(x |y) of X conditioned on Y = y can be
expressed in terms of the pdf p(y |x) of Y conditioned on X = x and the
marginal pdf p(x) of X :

p(x |y) =
p(y |x)p(x)

p(y)
=

p(y |x)p(x)∫
p(y | x ′)p(x ′)dx ′
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Conditional Probability Example
I Suppose that V = (X ,Y ) is a discrete random vector with probability

mass function:

fV (x , y) =



0.10 if (x , y) = (0, 0)

0.20 if (x , y) = (0, 1)

0.30 if (x , y) = (1, 0)

0.15 if (x , y) = (1, 1)

0.25 if (x , y) = (2, 2)

0 elsewhere

I What is the conditional probability that V is (0, 0) given that V is (0, 0)
or (1, 1)?

I What is the conditional probability that X is 1 or 2 given that Y is 0 or 1?

I What is the probability that X is 1 or 2?

I What is the probability mass function of X | Y = 0?

I What is the expected value of X | Y = 0?
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Conditional Probability Example

P (V ∈ {(0, 0)} | V ∈ {(0, 0), (1, 1)}) =
P (V ∈ {(0, 0)} ∩ {(0, 0), (1, 1)})

P (V ∈ {(0, 0), (1, 1)})

=
0.10

0.25
= 0.4

P (X ∈ {1, 2} | Y ∈ {0, 1}) = P (V ∈ {1, 2} × R | V ∈ R× {0, 1})

=
P (V ∈ {(1, 0), (1, 1)})

P (V ∈ {(0, 0), (0, 1), (1, 0), (1, 1)})
=

45

75

P (X ∈ {1, 2}) = P (V ∈ {1, 2} × R) = 0.7

fX |Y=0(x) =
fV (x , 0)∑

x ′ fV (x ′, 0)dx ′
=

1

4
fV (x , 0) =

{
0.25 if x = 0

0.75 if x = 1

E [X | Y = 0] =
∑

x∈{0,1}

xfX |Y=0(x) =
3

4
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