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Events

» Experiment: any procedure that can be repeated infinitely and has a
well-defined set of possible outcomes.

» Sample space Q: the set of possible outcomes of an experiment.
> Q= {HH, HT,TH,TT}
> Q= {068}

» Event A: a subset of the possible outcomes 2
> A= {HH}, B={HT, TH}

> Probability of an event: P(A) = volume of A

volume of all possible outcomes Q2



Measure and Probability Space

» o-algebra: a collection of subsets of €2 closed under complementation
and countable unions.

» Borel g-algebra 5: the smallest o-algebra containing all open sets from
a topological space. Necessary because there is no valid translation
invariant way to assign a finite measure to all subsets of [0, 1).

» Measurable space: a tuple (2, F), where Q is a sample space and F is
a o-algebra.

» Measure: a function p : F — R satisfying p(A) > pu(0) = 0 for all
A € F and countable additivity p (U;A;) = >, u(A;) for disjoint A;.
Q) =

—~

» Probability measure: a measure that satisfies

/-\

> Probability space: a triple (Q2, F,P), where Q is a sample space, F is a
o-algebra, and P : F — [0,1] is a probability measure.



Probability Axioms

» Probability Axioms:
> P(A) >0
> P(Q)=1
> If {A;} are disjoint (A; N A; = 0), then P(U; A)) = 32, P(A))

» Corollary:
> P(0)=0
> max{P(A), B(B)} <
> ACB=PA) <P

(AU B) = P(A) + P(B) — P(AN B) < P(A) + P(B)



Events Example

» An experiment consists of randomly selecting one chip among ten chips
marked 1,2,2,3,3,3,4,4,4 4.
> What is a reasonable sample space for this experiment? Q = {1,2,3,4}

» What is the probability of observing a chip marked with an even number?

P({2,4}) =P({2} U {4}) =P({2}) + P({4}) = 1%

» What is the probability of observing a chip marked with a prime number?

P({2,3}) = P({2} U {3}) = B({2}) + B({3}) = 1



Set of Events
» Conditional Probability: P(AN B) =P(A | B)P(B)
> Bayes Theorem: assume P(B) >0
P(AnB) P(B|AP(A)
P(A| B) = =
) F()
> Total Probability: If {A1,..., Ay} is a partition of Q, i.e,, Q = J; A
and AiNA; =0,i #j, then:

P(B) = EH:IP’(B NA))
i=1

» Corollary: If {A1,...,A,} is a partition of Q, then:
P(B [ A)P(A)
21 P(B | Aj)P(A))
» Independent events: P(); A;) = [[; P(A))
» observing one does not give any information about another

» in contrast, disjoint events never occur together: one occuring tells you
that others will not occur and hence, disjoint events are always dependeng

P(A; | B) =




Independent Events Example

» A box contains 7 green and 3 red chips.

» Experiment: select one chip, replace the drawn chip, and repeat until
the color red has been observed four times

» Assuming that no draw affects or is affected by any other draw, what is
the probability that the experiment terminates on the ninth draw?



Independent Events Example

> Let Q denote the sample space for this experiment, which is a countably
infinite set of all ordered tuples such that:
» Each term is either g or r
» The last component of the tuple is r
» There are exactly four components of r in the tuple

» Let E be the set of elements in Q which have 9 components, e.g.,
(g,r.g:r.,8,r.8.8.r)€E

» lIdea:
» Show that every singleton subset of E has the same probability pe
» Determine the cardinality of E so that P(E) = > ... P(e) = |E|pe

» Due to independence, for any element e € E we have:

P(e) =P(etNexN---Neg) = f[lﬁ”(ei) - <130>4 (170>5

» Since the last component of each 9-tuple e € E must be r, the
cardinality of E is the number of ways to distribute 3 red chips among 8
slots, i.e., |E| = (§) 8



Random Variable

» Random variable X: an F-measurable function from (Q, F) to (R, B),

i.e., a function X : Q2 — R s.t. the preimage of every set in B is in F.

» The cumulative distribution function (CDF) F(x) :=P(X < x) of a

random variable X is non-decreasing, right-continuous, and
limy— 00 F(x) =1 and limy_,_~ F(x) = 0.

F(x)

AF()

AF(x)

——o0

1 /
0

el

0—0C

(a) Discrete CDF

X

(b) Continuous CDF

X

0

(c) Mixed CDF

Ry



CDF Examples
> X ~ U([a, b])

> X ~U({a,b})

x < a
a<x<hb
x> b

x<a
a<x<b
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Probability Density Function

» The probability density/mass function (pdf) f(x) of a random
variable X : (Q, F,P) — (R, B,P o X~ 1) satisfies:

» Continuous random variable:
> f(x)>0

> [f(y)dy =1
> F(x)=P(X <x)= [ f(y)dy
> P(X =x)=F(x)— F(x7)=limcso [[ _f(y)dy =0

> P(a< X < b)=F(b) — F(a) = [ f(x)dx

» Discrete random variable:
> f(i)=P(X=1i)>0

> ZIGZ f(i) =1
> F(x)=P(X <x)= Zfez,igx £(i)
» The pdf f(x) of X behaves like a derivative of the CDF F(x)

» The values f(a), f(b) measure the relative likelihood of X being a or ?1



pdf Examples
> X ~U([a, b])

> X ~U({a, b})

> X ~ Exp(\) with A >0

> XNN(/,L,O'2)

x <a
a<x<hb
x> b
3 xe{ab}
0 else
0 x <0
e ™ x>0
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Gaussian Distribution

» Gaussian random vector X ~ N(u,Y)

» parameters: mean p € R”, covariance ¥ € ST, (symmetric positive

semidefinite matrix)
. . — 1 Ll — )Ty 1(x —
> pdf: o(x; p, X) = ) exp (—3(x — p) TEH(x — )
> expectation: E[X] = [ x¢(x; p,X)dx = p
> variance: Var[X] = E [(X —E[X]) (X — ]E[X])T} -

» Gaussian mixture X ~ NM({a}, {me}, {Z«})

> parameters: weights o, >0, >, ax =1,
means p, € R", covariances ¥, € S

> pdf: p(x) = 32 akp(x; gy, Tk)
> expectation: E[X] = [xp(x)dx =Y, axp, =: v
» variance: Var[X] = E[XXT] — E[X]E[X] = Y ou (Zk + pyepey ) —

i’
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pdf of a Mixture of Two 2-D Gaussians
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Expectation and Variance

» Given a random variable X with pdf p and a measurable function g, the
expectation of g(X) is:

E[(X)] = [ g(x)p(x)dx
> The variance of g(X) is:
Varlg(X)] = E [ (g(X) — Elg(X)]) (g(X) ~ Elg(X)])"
—E |g(X)g(X)"| ~ Elg(X)|E[g(X)]"
» The variance of a sum of random variables is:

Var <Zn: X,-) = Zn: Var(X;) + z”: Z Cov(X;, X;j)
i=1 i=1

i=1 j£i

Cov(X;, X;) = E (X = EX)(X — EX)) ) = E(X;X]) ~ EXEX]"

15



Expectation and Variance Examples

> X ~U([a, b])

1 b b2 —a2 1
EX]= [ yf(y)dy = o — [ ydy = 2b—3) 5(a+b)
a

— (a+b)?==(b—a)?

Var[X] = /y2f(y)dy ~E[X]* = 3(b—a) 4 T 12

> X ~U({a, b})
EX]= > if(i)= %(34— b)
ie{a,b}

Var[X] = E[X?] — E[X]? = %(;;2 + b?) — 1(3 +b)? = 1(b —a)?

4 4
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Expectation and Variance Examples
> X ~ Exp(\) with A >0

E[X] :/ y)\e_Aydy 2=y, dz=hdy / ze “dz
0 0

A
u=z, dv=e—7dz 1 * &0 1 1
_t — -z _zd [ 0 1 — _
di—dz ez A <( ze7?%) ) ~|—/0 e z> )\( +1) 3

& _ 1 z=Ay, dz=M\dy 1 & > _
Var[X] = / y2)\e )\ydy —_—— e — (/ zZ e Zdz _ ]_
0 A2 A2 \Jo

—2 a2z 1 o0 oo 1
u=z*°, dv=e~%dz L <(—2262) i 2/ e~Zdy — 1) ==
0 0 A

du=2zdz, v=—e—7 A2
E[X — ] = W/ = M) (2(yagﬂ)2>dy

> X~ N(u,0?)
S =w)? 1 u? /20 00
é [ / efz/o.dz +/ efz/gdz — O
dz:@dy V2m oo u?/20




Expectation Example

» Suppose V = (X, Y) is a continuous random vector with density
fv(x,y) =8xy for 0 <y < x and 0 < x < 1. Let g(x,y) :=2x+y.
» Determine E[g(V)]

> Evaluate E[X] and E[Y] by finding the marginal densities of X and Y
and then evaluating the appropriate univariate integrals

» Determine Var[g(V)]

18



Expectation Example

1 X 2
E2X 4+ Y] = / / (2x + y)8xy dydx = 32
o Jo 15

fX(X)Z/ 8xy dy = 4x3 for 0 < x < 1
0
1 1 4
E [X] :/ xfx(x)dx:/ Ax*dx = —
0 0 5
1
fv(y)Z/ 8xy dx =4y —4y3for0<y <1
y
1 1 ) 8
IE[Y]:/ yfv(y)dyz/ 4y —4y4dy=T5
0 0

2
Vor (V)] = £ [(e(V) - BLe(VI]?) = | (2 + v - 32) ]

2 17
// <2x+y—> 8xydydx:ﬁ
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Set of Random Variables

» The joint distribution of random variables {X;}7_; on (€2, F,P) defines
their simultaneous behavior and is associated with a cumulative
distribution function F(xy,...,x,) :=P(X1 < x1,...,Xp < xp). The
CDF Fi(x;) of X; defines its marginal distribution.

» Random variables {X;}7_; on (2, F,P) are jointly independent iff for
all {Ai}izl C F,P(X; € A, Vi) = H7:1 P(X; € A))

» Let X and Y be random variables and suppose EX, EY, and EXY
exist. Then, X and Y are uncorrelated iff EXY = EXEY or
equivalently Cov(X,Y)=0.

» Independence implies uncorrelatedness

20



Change of Density

» Convolution: Let X and Y be independent random variables with pdfs
f and g, respectively. Then, the pdf of Z = X + Y is given by the
convolution of f and g:

Fel(z)i= [ £z~ yey)dy = [ Flxelz )
> Change of Density: Let Y = f(X). Then, with dy = |det (% (x))] dx:

P(Y € A)=P(X € f1(A)) = /fl(A) Px(x)dx

_ L -1
= L@y 0

py(y)

21



Change of Density Example

> Let X ~ N(0,02) and Y = f(X) = exp(X)

» Note that f(x) is invertible f~1(y) = log(y)

» The infinitesimal integration volumes for y and x are related by:
df

det <dx(x)>

» Using the change of density theorem:

dy = dx = exp(x)dx

B(Y € [0,00)) = / Z 6(x; 0, 0%)dx = /0 h exp(ljg(y))wlog(y); 0,0%)dy
11 1log?(y)
_/0 ; o exp (—2 2 >d

pz;)
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Change of Density Example
» Let V:=(X,Y) be a random vector with pdf:

2y —x x<y<2xandl<x<?2

0 else

pV(va) = {

> Let T:=(M,N)=g(V):= (25X, X£¥) be a function of V

» Note that X = M + N and Y = 2N — M and hence the pdf of V is
non-zero for 0 < m < n/2 and 1 < m+ n < 2. Also:

o)l 0TS

» The pdf T is:
1 (m+n2 ) 0<m< n/2and
m+n,2n — m),
pr(m, n) = { [ee(ZE(men2n-m)[PY l<m+4n<2,
0, else.
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Conditional and Total Probability

» Total Probability: If two random variables X, Y have a joint pdf
p(x,y), the marginal pdf p(x) of X is:

p(x) = / p(x, y)dy

» Conditional Distribution: If two random variables X, Y have a joint
pdf p(x,y), the pdf p(x|y) of X conditioned on Y = y and the pdf
p(y|x) of Y conditioned on X = x satisfy

p(x,y) = p(xly)p(y) = p(y[x)p(x)

» Bayes Theorem: The pdf p(x|y) of X conditioned on Y =y can be
expressed in terms of the pdf p(y|x) of Y conditioned on X = x and the
marginal pdf p(x) of X:

plylx)p(x) plylx)p(x)

P =500 T TRl [ p0eax
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Conditional Probability Example

» Suppose that V = (X, Y) is a discrete random vector with probability
mass function:

(0.10 if (x,y) = (0,0)
0.20 if (x,y) = (0,1)
~ 030 if (x,y)=(1,0)
VY= 015 i (x,y) = (1,1)
0.25 if (x,y)=1(2,2)

0 elsewhere

> What is the conditional probability that V is (0,0) given that V is (0, 0)
or (1,1)?

What is the conditional probability that X is 1 or 2 given that Y is 0 or 17
What is the probability that X is 1 or 27
What is the probability mass function of X | Y =07

vV v.v Yy

What is the expected value of X | Y =07
25



Conditional Probability Example

P(V € {(0,0)} n{(0,0),(1,1)})

PV {000}V & {(0,0,.(LDD) = 5 ra o0 . 1))
0.10
= 558 =04
P(Xe{1,2}|Ye{0,1})=P(Ve{l,2}xR|VeRx{0,1})
_ P(Ve{(1,0).(1,1)}) _4
P(V €{(0,0),(0,1),(1,0),(1,1)}) 75

P(X €{1,2}) =P(V € {1,2} xR) = 0.7

fy(x,0) 1 025 ifx=0
f. _ — = —fi ,0 -
x|y =0(x) S fu(x,0)dx’ 4 v(x.0) {0.75 if x=1

3
E[X|Y =0]= Z xfx|y—o(x) = 2
x€{0,1}
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