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Vectors

> A vector x € R? with d dimensions is a collection of scalars x; € R for

i=1,...,d organized is a column:
X1
X = XT = [Xl Xd]
Xd
» A norm on a vector space V over a field F is a function |- || : V = R

such that for all a € F and all x,y € V:

> lax|| = |a]||x]| (absolute homogeneity)
> x4yl < x|+ ]l (triangle inequality)

> [x]|[>0 (non-negativity)

> [x||=0iffx=0 (definiteness)

» The Euclidean norm of a vector x € R9 is ||x|2 := vx x and satisfies:

> max, Ixi| < [Ix]|l2 < Vd max |x;]

> Ix"y| < Ix]2llyll2 (Cauchy Schwarz Inequality)



Matrices

> A matrix A € R™ " is a rectangular array of scalars A;; € R for
i=1...,mandj=1,...,n

> The entries of the transpose AT € R"™ of a matrix A € R™*" are
A,-JT- = Aji. The transpose satisfies: (AB)" = BT AT

» The trace of a matrix A € R"*" is the sum of its diagonal entries:

tr(A) = Aj tr(ABC) = tr(BCA) = tr(CAB)
i=1
» The determinant of a matrix A € R™*" is:
n
det(A) := Z Ajicofii(A) det(AB) = det(A) det(B) = det(BA)
j=1

where cof;(A) is the cofactor of the entry A; and is equal to (—1)'*/
times the determinant of the (n — 1) x (n — 1) submatrix that results
when the it"-row and jt"-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.



Matrix Inverse

» The adjugate is the transpose of the cofactor matrix:
adj(A) := cof(A)"

> The inverse A~! of A exists iff det(A) # 0 and satisfies:

_1 _ adj(A) “1 141
= AB) ™" =B"A
det(A) (AB)
» If Ac R™" and g € C" is a nonzero vector such that:

Aq = )\q
then q is an eigenvector corresponding to the eigenvalue \ € C.

» A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs. The n eigenvalues of A € R™*" are precisely
the n roots of the characteristic polynomial of A:

p(A) := det(A — A)



Positive Semidefinite Matrices

» The roots of a polynomial are continuous functions of its coefficients and
hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) = i Aj det(A) = 12[)\,'

» The product x' Qx for Q € R™" and x € R" is called a quadratic
form and @ can be assumed symmetric, Q = QT, because:

%XT(Q + QT)x =x' Qx, Vx ¢ R”

» A symmetric matrix Q € R™" is positive semidefinite if x| Qx > 0 for
all x ¢ R™.

» A symmetric matrix @ € R"*" is positive definite if it is positive
semidefinite and if x' Qx = 0 implies x = 0

» All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of
a positive semidefinite matrix are non-negative and all eigenvalues of a
positive definite matrix are positive.



Schur Complement

A B

» The Schur complement of block D of M = [C D

] is Sp=A—-BD~IC

> Let M = [A B] be symmetric. Then:

BT D
> M~02A>=0,Sa=D—-BTA'B>0
» M~0&D=0,Sp=A—BD BT =0

> M~0& A=0,5,>0,(/ — AA8)B = 0, where Ag is the generalized
inverse of A

» M>~0< D>=0,55 =0,(Il — DD&)BT = 0, where D# is the generalized
inverse of D



Matrix Inversion Lemma

» Square completion:

%XTAx+ b'x+c= % (x+ A1) A(x+ A1) +c— %bTA‘lb

» Woodbury matrix identity:
(A+BDC) ' =Al—A1B(CA'B+D 1) A

» Block matrix inversion:

A Bl [ 1 o '[A-BDlC o] '[I BD Y
c pb| T |bpic i 0 D| o 1
[ 1 oftA-BDC)" o |[I —-BD
~|-ptc 0 p-iflo 1
[ (a-BD0) —(A-BD71C) ' BD!
- |-pc(A-BDC)TN D1+ DIC(A-BDIC) T BD




Derivatives (numerator layout)

» Derivatives by scalar

dy1 dYi

dx dx

dy _ . mx1 ay _ .

x| eR o :
X | dvm X Y m
dx dx

» Derivatives by vector

Y [d L A ]epie B

dx - dxy dxp dx -
— —————
[Vxy]" (gradient transpose)
» Derivatives by matrix

O -
o [T
dX d‘y d'y

dXig T dXpg

dYin
dx
. E Ran
dY mn
dx
dyr dyi
dxy dxp
. . c RmXp
dym dym
dxy dxp
Jacobian
€ RI*P



Matrix Derivatives Example

d ¥ _aal
> dTUX—e,ej

> %XTAX =x'(A+AT)

> SM(x) = M) DM (x)

> L tr(AXT1B) = —X"1BAX!

> & logdet X = X!



Matrix Derivatives Example

| 2

d s i e

g Zj:l A1jXj dxn ZJ 1 A1jx; Ain - A
d ae _ . I .
9 Ax = : y : =

dx1 Z_/ 1AmJXJ dx,,z_[ lAmJXJ Ami - Amn
TAX—XTATdX+XTd£(X—X (AT—{—A)

M(x)/\/l’l(x) =1 = 0=[LMx)]M(x)+ M(x)[LM(x)]

d tr(AX!B) :tr(Adi X7'B) = —tr(AX 'eie/ X"!B)

dXjj ij
- —ejTX_lBAX_le,- = ¢/ (Xx7'BAXY)'
9 logdet X = — ZX cof i (X)
dX; ¢ det(X) dx; £ KOk
1 1
fi(X) = ———adj;(X)=e¢' X T
= der() Fi ) = Gy 24 (X) = e

10



Unconstrained Optimization

» Many problems we encounter in this course, lead to an optimization
problem of the form:
min f(x)

X

Descent Direction Theorem

Suppose f is differentiable at x. If 3 6x such that V£(x)"dx < 0, then
J e > 0 such that (X + adx) < f(x) for all a € (0,¢).

» The vector dx is called a descent direction

» The theorem states that if a descent direction exists at X, then it is
possible to move to a new point that has a lower f value.

» Steepest descent direction: ix := —%

» Based on this theorem, we can derive conditions for determining the
optimality of x

11



Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at X. If X is a local minimizer, then VJ(x) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at X. If X is a local minimizer, then
V£(X) = 0 and V2f(x) = 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at X. If V£(X) = 0 and V?f(X) > 0, then X
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x. If f is convex, then X is a global minimizer
if and only if Vf(x) =0.

12



Descent Optimization Methods

» Convex unconstrained optimization: just need to solve the equation
Vf(x) = 0 to determine a global minimizer x*

» Even if f is not convex, we can obtain a critical point by solving
Vf(x) =0

» However, Vf(x) = 0 might not be easy to solve explicitly

» Descent methods: iterative methods for unconstrained optimization.
Given an initial guess x(¥), take a step of size a(k) > 0 along a certain
direction ox(¥):

x(kT1) — (k) 4 o (K) gx(K)

> Different methods differ in the way 6x(%) and a(¥) are chosen but
» 6x(K) should be a descent direction: V£(x(K))T¢x(k) < 0 for all x(¥) £ x*

» (k) needs to ensure sufficient decrease in f to guarantee convergence:

) ¢ argmin £(x0) + adx()
a>0

Usually a(%) is obtained via inexact line search methods
13



Gradient Descent (First-Order Method)

> Idea: —V£(x(¥)) points in the direction of steepest local descent
> Gradient descent: let 0x(¥) := —Vf(x(K) and iterate:

K+ — (K)o £(x(K))

> A good choice for a(¥) is % where L > 0 is the Lipschitz constant of
Vf(x):

[VF(x) — V()| < Lljx — x| Vx, x" € dom(f)

14



Newton's Method (Second-Order Method)

» Newton’s method: iteratively approximates f by a quadratic function

> Since 0x is a ‘small‘ change to the initial guess x(¥), we can approximate
Of (x)

f using a Taylor-series expansion:
2
f(xK) 4 6x) ~ F(x(K) + ( > ox + (5 T (8 flx) ) 0x
ox x=x(k) x=x(k)

OxOx "
Gradient Transpose Hessian

» The symmetric Hessian matrix V2f(x(%)) needs to be positive-definite
for this method to work.

15



Newton's Method (Second-Order Method)

A q(6x,xV)  q(5x,x) f(x)

f(x) = q(0,x)

q (52, x(0))

f(x®) = q(0,xM)

q(gx*.(l)’ x(l)) '
L ] e — X

x* x@) x() 4(0)

A\ 4
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Newton's Method (Second-Order Method)

» Find dx that minimizes the quadratic approximation to f(x(k) + 0x)

» Since this is an unconstrained optimization problem, dx* can be
determined by setting the derivative with respect to dx to zero:

Of (x(K) 4 6x) _(9f(x) +oxT 0°f(x)
- x=x(k) 8x8xT x—=x(k)

00x Ox
T
oo (1)
x=x(k) ox x=x(k)

0?f(x)
OxOxT

» The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., V2f(x(k)) > 0:

-1
ox* = — [vzf(x“))} Vi (x¥)
» Newton’s method:
-1
x(kH1) — (k) _ (k) {Vz f(x(k))} V(x50

17



Newton's Method (Comments)

» Newton's method, like any other descent method, converges only to a
local minimum

» Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes a(¥) are small

» Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e. (k) =1, and
the function value converges quadratically to the optimum

» A disadvantage of Newton's method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high dimensional problems

18



Gauss-Newton's Method
» Gauss-Newton is an approximation to Newton's method that avoids

computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f(x) = Ze(x) "e(x) e(x) e R™

» The Jacobian and Hessian matrices are:

o 0f(x) oy T ((9e(x)
Jacobian: ax | =e(x) Ox |0
PN (de(x) ' (0e(x)
Hessian: axox" | 0 < Ox x—x(k)) ( ox x—x(k>>

x—x(k)>

19
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Gauss-Newton’'s Method

» Near the minimum of f, the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

N <ae(x) )T <8e(x) >
x=x(k) - Ox x=x(k) Ox x=x(k)

» The above does not involve any second derivatives and leads to the

system:
T T
e(x) (%) "
x_x(k)> ( Ox X_x(k)> 0x = ( ox e(x™)

<8e(x)
» Gauss-Newton’s method:

O2f (x)
OxOx T

Oox

x=x(k)
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Gauss-Newton's Method (Alternative Derivation)

» Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f(x):
> ox
x=x(k)

ce) ) (e (5] ) )

» Minimizing this with respect to dx leads to the same system as before:

(L) (L) (L) e

de(x)

e(x() + 6x) ~ e(x(F)) + < Ix

» Substituting into f leads to:

1

(x5 4+ ox) ~ 3 <e(x(k)) + (

de(x)
ox

x=x(k)

21



Levenberg-Marquardt's Method

» The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian

approximation:
) +AD | ox = — <8e(x)
x—x(k) ox

T T
<<8e(x) > <ae(x) ) o)
6x x=x(K) 8X
» When A > 0 is large, the descent vector dx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

x=x(k)

22



Levenberg-Marquardt's Method (Summary)

» An iterative optimization approach for the unconstrained problem:

m|n f(x Zej x) " ej(x ej(x) e R™, x e R"

> Given an initial guess x(K), determine a descent direction dx by solving:

2SN THED) 20 0w = 30 Tex)
J
where J;j(x) := a%(x) e RM*" X>0, D€ R™"is a positive diagonal

matrix, e.g., D = diag (ZJ Ji(xU)T J;(x( k)))
» Obtain an updated estimate according to:
xUFD) = x() 4 oK) x

23



Unconstrained Optimization Example
> Let f(x):=1 i1 [|Ajx + b |3 for x € RY and assume >0 lAJTAj =0

» Solve the unconstrained optimization problem miny f(x) using:
» The necessary and sufficient optimality condition for convex function f
» Gradient descent
» Newton's method
» Gauss-Newton's method

» We will need Vf(x) and sz(x):

n

- 22 A+ bilE = (Ax -+ )T A

j=1
n n
S ATA | xS ATh
j=1 Jj=1

d n
V2f(x) = V) = > AlA =0
j=1

VF(x) = df(x) "

24



Necessary and Sufficient Optimality Condition

» Solve Vf(x) = 0 for x:

0=Vf(x)= (Z AJTAJ-) X+ (Z A]bj>
j=1 j=1

-1
x=— > AlA > Al
j=1 j=1

» The solution above is unique since we assumed that Z}’Zl AJ-TAJ- =0

25



Gradient Descent

> Start with an initial guess x(°) = 0

» At iteration k, gradient descent uses the descent direction
ox(k) = —Vf(x(k))

» Given arbitary x1, x> € R?, determine the Lipschitz constant of V(x):

IVf(x1) — VF(x2)] H(ZA A) X1 — X2) D ATA| 1 — x|
j=1
- L
» Choose step size a(k) = % and iterate:
x(kT1) — x(k) 4 oK) sx(K)
1 n
_ (K Ta | (K Th
_x()—Z D> ATA; | X )_7 ZA
j=1

26



Newton's Method

» Start with an initial guess x(9) = 0

> At iteration k, Newton's method uses the descent direction:

-1
5%“::—[veﬂﬂ“ﬂ v (x*)

n

1
=—xW - [N AT A > Alb
j=1

j=1

and updates the solution estimate via:

1
x(kH1) — x(K) 4 gy (k) — _ ZAJ-TAJ' ZAJTbJ'
j=t =t

» Note that for this problem, Newton's method converges in one iteration!

27



Gauss-Newton's I\/Iethod

» f(x) is of the form % " ei(x)ej(x) for ej(x) ;== Ajx + b;
» The Jacobian of ej(x) is Ji(x) = A;

» Start with an initial guess x(°) = 0

> At iteration k, Gauss-Newton's method uses the descent direction:

(SX(k Z J k))T k)) Z J k))

-1
n n

=— (Y A4 > AT (AXH) 1 by)

Jj=1 Jj=1

= —x(K — (Z Al A; ) : (Z A]bj)

» If k) =1, in this problem, Gauss-Newton’s method behaves exactly
like Newton's method and coverges in one iteration! 28



