ECE276A: Sensing & Estimation in Robotics Lecture 3: Unconstrained Optimization

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Qiaojun Feng: qif007@eng.ucsd.edu Arash Asgharivaskasi: aasghari@eng.ucsd.edu Thai Duong: tduong@eng.ucsd.edu Yiran Xu: y5xu@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Vectors

A vector $\mathbf{x} \in \mathbb{R}^d$ with d dimensions is a collection of scalars $x_i \in \mathbb{R}$ for i = 1, ..., d organized is a column:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \qquad \mathbf{x}^\top = \begin{bmatrix} x_1 & \cdots & x_d \end{bmatrix}$$

A norm on a vector space V over a field F is a function || · || : V → ℝ such that for all a ∈ F and all x, y ∈ V:

- $||a\mathbf{x}|| = |a|||\mathbf{x}|| (absolute homogeneity)$
- $||\mathbf{x}|| \ge 0$ (non-negativity)
- $\|\mathbf{x}\| = 0 \text{ iff } \mathbf{x} = 0 (definiteness)$

• The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^d$ is $\|\mathbf{x}\|_2 := \sqrt{\mathbf{x}^\top \mathbf{x}}$ and satisfies:

$$\begin{array}{l} & \max_{1 \leq i \leq d} |x_i| \leq \|\mathbf{x}\|_2 \leq \sqrt{d} \max_{1 \leq i \leq d} |x_i| \\ & |\mathbf{x}^\top \mathbf{y}| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \text{ (Cauchy-Schwarz Inequality)} \end{array}$$

Matrices

- A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of scalars $A_{ij} \in \mathbb{R}$ for i = 1, ..., m and j = 1, ..., n
- ▶ The entries of the **transpose** $A^{\top} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are $A_{ij}^{\top} = A_{ji}$. The transpose satisfies: $(AB)^{\top} = B^{\top}A^{\top}$
- ▶ The **trace** of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$\operatorname{tr}(A) := \sum_{i=1}^{n} A_{ii}$$
 $\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$

• The **determinant** of a matrix $A \in \mathbb{R}^{n \times n}$ is:

$$\det(A) := \sum_{j=1}^{n} A_{ij} \operatorname{cof}_{ij}(A)$$
 $\det(AB) = \det(A) \det(B) = \det(BA)$

where $\mathbf{cof}_{ij}(A)$ is the **cofactor** of the entry A_{ij} and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times (n-1)$ submatrix that results when the i^{th} -row and j^{th} -col of A are removed. This recursive definition uses the fact that the determinant of a scalar is the scalar itself.

Matrix Inverse

• The **adjugate** is the transpose of the cofactor matrix:

 $\operatorname{adj}(A) := \operatorname{cof}(A)^{\top}$

• The **inverse** A^{-1} of A exists iff det $(A) \neq 0$ and satisfies:

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$
 $(AB)^{-1} = B^{-1}A^{-1}$

• If $A \in \mathbb{R}^{n \times n}$ and $\mathbf{q} \in \mathbb{C}^n$ is a nonzero vector such that:

$$A\mathbf{q} = \lambda \mathbf{q}$$

then **q** is an **eigenvector** corresponding to the **eigenvalue** $\lambda \in \mathbb{C}$.

A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs. The *n* eigenvalues of A ∈ ℝ^{n×n} are precisely the *n* roots of the characteristic polynomial of A:

$$p(\lambda) := \det(\lambda I - A)$$

Positive Semidefinite Matrices

The roots of a polynomial are continuous functions of its coefficients and hence the eigenvalues of a matrix are continuous functions of its entries.

$$\operatorname{tr}(A) := \sum_{i=1}^{n} \lambda_i$$
 $\operatorname{det}(A) := \prod_{i=1}^{n} \lambda_i$

• The product $\mathbf{x}^{\top}Q\mathbf{x}$ for $Q \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ is called a **quadratic form** and Q can be assumed **symmetric**, $Q = Q^{\top}$, because:

$$\frac{1}{2}\mathbf{x}^{\top}(Q+Q^{\top})\mathbf{x}=\mathbf{x}^{\top}Q\mathbf{x}, \qquad \forall \mathbf{x} \in \mathbb{R}^{n}$$

A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive semidefinite** if $\mathbf{x}^{\top} Q \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

- A symmetric matrix $Q \in \mathbb{R}^{n \times n}$ is **positive definite** if it is positive semidefinite and if $\mathbf{x}^{\top} Q \mathbf{x} = 0$ implies $\mathbf{x} = 0$
- All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of a positive semidefinite matrix are non-negative and all eigenvalues of a positive definite matrix are positive.

Schur Complement

• The **Schur complement** of block *D* of $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is $S_D = A - BD^{-1}C$

• $M \succeq 0 \Leftrightarrow D \succeq 0, S_D \succeq 0, (I - DD^g)B^\top = 0$, where D^g is the generalized inverse of D

Matrix Inversion Lemma

Square completion:

$$\frac{1}{2}x^{\top}Ax + b^{\top}x + c = \frac{1}{2}(x + A^{-1}b)^{\top}A(x + A^{-1}b) + c - \frac{1}{2}b^{\top}A^{-1}b$$

Woodbury matrix identity:

$$(A + BDC)^{-1} = A^{-1} - A^{-1}B(CA^{-1}B + D^{-1})^{-1}CA^{-1}$$

Block matrix inversion:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}^{-1} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}^{-1} \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} I & 0 \\ -D^{-1}C & I \end{bmatrix} \begin{bmatrix} (A - BD^{-1}C)^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I & -BD^{-1} \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C (A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C (A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}$$

Derivatives (numerator layout)

Derivatives by scalar

$$\frac{d\mathbf{y}}{dx} = \begin{bmatrix} \frac{dy_1}{dx} \\ \vdots \\ \frac{dy_m}{dx} \end{bmatrix} \in \mathbb{R}^{m \times 1} \qquad \frac{dY}{dx} = \begin{bmatrix} \frac{dY_{11}}{dx} & \cdots & \frac{dY_{1n}}{dx} \\ \vdots & \ddots & \vdots \\ \frac{d\mathbf{Y}_{m1}}{dx} & \cdots & \frac{d\mathbf{Y}_{mn}}{dx} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Derivatives by vector

$$\frac{dy}{d\mathbf{x}} = \underbrace{\begin{bmatrix} \frac{dy}{dx_1} & \cdots & \frac{dy}{dx_p} \end{bmatrix}}_{\left[\nabla_{\mathbf{x}}y\right]^{\top} \text{ (gradient transpose)}} \in \mathbb{R}^{1 \times p} \qquad \frac{d\mathbf{y}}{d\mathbf{x}} = \underbrace{\begin{bmatrix} \frac{dy_1}{dx_1} & \cdots & \frac{dy_1}{dx_p} \\ \vdots & \ddots & \vdots \\ \frac{dy_m}{dx_1} & \cdots & \frac{dy_m}{dx_p} \end{bmatrix}}_{\text{Jacobian}} \in \mathbb{R}^{m \times p}$$

Derivatives by matrix

$$\frac{dy}{dX} = \begin{bmatrix} \frac{dy}{dX_{11}} & \cdots & \frac{dy}{dX_{p1}} \\ \vdots & \ddots & \vdots \\ \frac{dy}{dX_{1q}} & \cdots & \frac{dy}{dX_{pq}} \end{bmatrix} \in \mathbb{R}^{q \times p}$$

Matrix Derivatives Example

$$\blacktriangleright \ \frac{d}{dX_{ij}}X = \mathbf{e}_i\mathbf{e}_j^\top$$

$$\quad \bullet \ \frac{d}{d\mathbf{x}}A\mathbf{x} = A$$

$$\quad \quad \frac{d}{d\mathbf{x}}\mathbf{x}^{\top}A\mathbf{x} = \mathbf{x}^{\top}(A + A^{\top})$$

•
$$\frac{d}{dx}M^{-1}(x) = -M^{-1}(x)\frac{dM(x)}{dx}M^{-1}(x)$$

$$\quad \bullet \quad \frac{d}{dX} \operatorname{tr}(AX^{-1}B) = -X^{-1}BAX^{-1}$$

$$\quad \quad \frac{d}{dX} \log \det X = X^{-1}$$

Matrix Derivatives Example

$$\frac{d}{d\mathbf{x}}A\mathbf{x} = \begin{bmatrix} \frac{d}{dx_1}\sum_{j=1}^n A_{1j}x_j & \cdots & \frac{d}{dx_n}\sum_{j=1}^n A_{1j}x_j \\ \vdots & \ddots & \vdots \\ \frac{d}{dx_1}\sum_{j=1}^n A_{mj}x_j & \cdots & \frac{d}{dx_n}\sum_{j=1}^n A_{mj}x_j \end{bmatrix} = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

$$\frac{d}{d\mathbf{x}}\mathbf{x}^\top A\mathbf{x} = \mathbf{x}^\top A^\top \frac{d\mathbf{x}}{d\mathbf{x}} + \mathbf{x}^\top \frac{dA\mathbf{x}}{d\mathbf{x}} = \mathbf{x}^\top (A^\top + A)$$

$$M(x)M^{-1}(x) = I \quad \Rightarrow \quad 0 = \begin{bmatrix} \frac{d}{dx}M(x) \end{bmatrix} M^{-1}(x) + M(x) \begin{bmatrix} \frac{d}{dx}M^{-1}(x) \end{bmatrix}$$

$$\frac{d}{dX_{ij}}\operatorname{tr}(AX^{-1}B) = \operatorname{tr}(A\frac{d}{dX_{ij}}X^{-1}B) = -\operatorname{tr}(AX^{-1}\mathbf{e}_i\mathbf{e}_j^\top X^{-1}B)$$

$$= -\mathbf{e}_j^\top X^{-1}BAX^{-1}\mathbf{e}_i = -\mathbf{e}_i^\top (X^{-1}BAX^{-1})^\top \mathbf{e}_j$$

$$\frac{d}{dX_{ij}}\log\det X = \frac{1}{\det(X)}\frac{d}{dX_{ij}}\sum_{k=1}^n X_{ik}\operatorname{cof}_{ik}(X)$$

$$= \frac{1}{\det(X)}\operatorname{cof}_{ij}(X) = \frac{1}{\det(X)}\operatorname{adj}_{ji}(X) = \mathbf{e}_i^\top X^{-T}\mathbf{e}_j$$

Unconstrained Optimization

Many problems we encounter in this course, lead to an optimization problem of the form:

 $\min_{\mathbf{x}} f(\mathbf{x})$

Descent Direction Theorem

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\exists \delta \mathbf{x}$ such that $\nabla f(\bar{\mathbf{x}})^{\top} \delta \mathbf{x} < 0$, then $\exists \epsilon > 0$ such that $f(\bar{\mathbf{x}} + \alpha \delta \mathbf{x}) < f(\bar{\mathbf{x}})$ for all $\alpha \in (0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a **descent direction**
- The theorem states that if a descent direction exists at x
 , then it is possible to move to a new point that has a lower f value.
- Steepest descent direction: $\delta \mathbf{x} := -\frac{\nabla f(\bar{\mathbf{x}})}{\|\nabla f(\bar{\mathbf{x}})\|}$
- Based on this theorem, we can derive conditions for determining the optimality of x

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla J(\bar{\mathbf{x}}) = 0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then $\bar{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If f is **convex**, then $\bar{\mathbf{x}}$ is a global minimizer **if and only if** $\nabla f(\bar{\mathbf{x}}) = 0$.

Descent Optimization Methods

- Convex unconstrained optimization: just need to solve the equation \(\nabla f(\mathbf{x}) = 0\) to determine a global minimizer \(\mathbf{x}^*\)
- Even if f is not convex, we can obtain a critical point by solving $\nabla f(\mathbf{x}) = 0$
- However, $\nabla f(\mathbf{x}) = 0$ might not be easy to solve explicitly
- Descent methods: iterative methods for unconstrained optimization. Given an initial guess x^(k), take a step of size α^(k) > 0 along a certain direction δx^(k):

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}^{(k)}$$

Different methods differ in the way δx^(k) and α^(k) are chosen but
 δx^(k) should be a descent direction: ∇f(x^(k))^Tδx^(k) < 0 for all x^(k) ≠ x*

• $\alpha^{(k)}$ needs to ensure sufficient decrease in f to guarantee convergence:

$$\alpha^{(k),*} \in \operatorname*{arg\,min}_{\alpha > 0} f(\mathbf{x}^{(k)} + \alpha \delta \mathbf{x}^{(k)})$$

Usually $\alpha^{(k)}$ is obtained via inexact **line search** methods

Gradient Descent (First-Order Method)

▶ Idea: $-\nabla f(\mathbf{x}^{(k)})$ points in the direction of steepest local descent

• Gradient descent: let $\delta \mathbf{x}^{(k)} := -\nabla f(\mathbf{x}^{(k)})$ and iterate:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla f(\mathbf{x}^{(k)})$$

A good choice for α^(k) is ¹/_L, where L > 0 is the Lipschitz constant of ∇f(x):

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\| \le L \|\mathbf{x} - \mathbf{x}'\| \qquad \forall \mathbf{x}, \mathbf{x}' \in \mathbf{dom}(f)$$

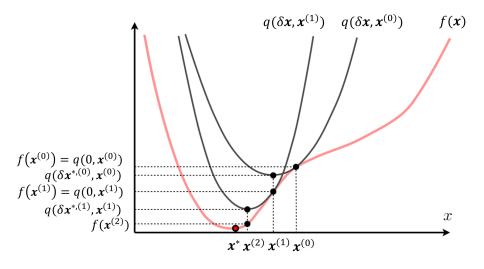
Newton's Method (Second-Order Method)

- **Newton's method**: iteratively approximates *f* by a quadratic function
- Since δx is a 'small' change to the initial guess x^(k), we can approximate f using a Taylor-series expansion:

$$f(\mathbf{x}^{(k)} + \delta \mathbf{x}) \approx f(\mathbf{x}^{(k)}) + \underbrace{\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}^{(k)}}\right)}_{\text{Gradient Transpose}} \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^{\top} \underbrace{\left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x} = \mathbf{x}^{(k)}}\right)}_{\text{Hessian}} \delta \mathbf{x}$$

The symmetric Hessian matrix ∇²f(x^(k)) needs to be positive-definite for this method to work.

Newton's Method (Second-Order Method)



Newton's Method (Second-Order Method)

- Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f(\mathbf{x}^{(k)} + \delta \mathbf{x})$
- Since this is an unconstrained optimization problem, δx* can be determined by setting the derivative with respect to δx to zero:

$$\frac{\partial f(\mathbf{x}^{(k)} + \delta \mathbf{x})}{\partial \delta \mathbf{x}} \approx \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) + \delta \mathbf{x}^{\top} \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)$$
$$\Rightarrow \quad \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} = - \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)^{\top}$$

The above is a linear system of equations and can be solved when the Hessian is invertible, i.e., ∇²f(x^(k)) ≻ 0:

$$\delta \mathbf{x}^* = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})$$

Newton's method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \nabla f(\mathbf{x}^{(k)})$$

Newton's Method (Comments)

- Newton's method, like any other descent method, converges only to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimal point, the function value is decreased sublinearly, i.e., the step sizes α^(k) are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e. $\alpha^{(k)} = 1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian, which can be numerically ill-conditioned or very computationally expensive in high dimensional problems

Gauss-Newton's Method

Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$f(\mathbf{x}) = rac{1}{2} \mathbf{e}(\mathbf{x})^{ op} \mathbf{e}(\mathbf{x}) \qquad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^m$$

► The Jacobian and Hessian matrices are:

Jacobian:

Hessian:

$$\begin{aligned} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} &= \mathbf{e}(\mathbf{x}^{(k)})^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} \right) \\ \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} &= \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} \right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} \right) \\ &+ \sum_{i=1}^{m} e_i(\mathbf{x}^{(k)}) \left(\frac{\partial^2 e_i(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x}=\mathbf{x}^{(k)}} \right) \end{aligned}$$

Gauss-Newton's Method

Near the minimum of f, the second term in the Hessian is small relative to the first and the Hessian can be approximated according to:

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}} \approx \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)$$

The above does not involve any second derivatives and leads to the system:

$$\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

Gauss-Newton's method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}$$

Gauss-Newton's Method (Alternative Derivation)

Another way to think about the Gauss-Newton method is to start with a Taylor expansion of e(x) instead of f(x):

$$\mathbf{e}(\mathbf{x}^{(k)} + \delta \mathbf{x}) \approx \mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}^{(k)}}\right) \delta \mathbf{x}$$

Substituting into f leads to:

$$f(\mathbf{x}^{(k)} + \delta \mathbf{x}) \approx \frac{1}{2} \left(\mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} \right)^{\top} \left(\mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} \right)$$

• Minimizing this with respect to $\delta \mathbf{x}$ leads to the same system as before:

$$\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

Levenberg-Marquardt's Method

The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$\left(\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) + \lambda D\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

When λ ≥ 0 is large, the descent vector δx corresponds to a very small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Levenberg-Marquardt's Method (Summary)

> An iterative optimization approach for the unconstrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x}) := \frac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x}) \qquad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \ \mathbf{x} \in \mathbb{R}^{r}$$

• Given an initial guess $\mathbf{x}^{(k)}$, determine a descent direction $\delta \mathbf{x}$ by solving:

$$\left(\sum_{j} J_j(\mathbf{x}^{(k)})^\top J_j(\mathbf{x}^{(k)}) + \lambda D\right) \delta \mathbf{x} = -\left(\sum_{j} J_j(\mathbf{x}^{(k)})^\top \mathbf{e}_j(\mathbf{x}^{(k)})\right)$$

where $J_j(\mathbf{x}) := \frac{\partial \mathbf{e}_j(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m_j \times n}$, $\lambda \ge 0$, $D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D = \operatorname{diag}\left(\sum_j J_j(\mathbf{x}^{(k)})^\top J_j(\mathbf{x}^{(k)})\right)$

Obtain an updated estimate according to:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}$$

Unconstrained Optimization Example

• Let
$$f(\mathbf{x}) := \frac{1}{2} \sum_{j=1}^n \|A_j \mathbf{x} + b_j\|_2^2$$
 for $\mathbf{x} \in \mathbb{R}^d$ and assume $\sum_{j=1}^n A_j^\top A_j \succ 0$

Solve the unconstrained optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$ using:

- The necessary and sufficient optimality condition for convex function f
- Gradient descent
- Newton's method
- Gauss-Newton's method

• We will need $\nabla f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$:

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \frac{1}{2} \sum_{j=1}^{n} \frac{d}{d\mathbf{x}} ||A_j \mathbf{x} + b_j||_2^2 = \sum_{j=1}^{n} (A_j \mathbf{x} + b_j)^\top A_j$$
$$\nabla f(\mathbf{x}) = \frac{df(\mathbf{x})}{d\mathbf{x}}^\top = \left(\sum_{j=1}^{n} A_j^\top A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^\top b_j\right)$$
$$\nabla^2 f(\mathbf{x}) = \frac{d}{d\mathbf{x}} \nabla f(\mathbf{x}) = \sum_{j=1}^{n} A_j^\top A_j \succ 0$$

Necessary and Sufficient Optimality Condition

Solve $\nabla f(\mathbf{x}) = 0$ for \mathbf{x} :

$$0 = \nabla f(\mathbf{x}) = \left(\sum_{j=1}^{n} A_j^{\top} A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$
$$\mathbf{x} = -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

▶ The solution above is unique since we assumed that $\sum_{j=1}^{n} A_j^{\top} A_j \succ 0$

Gradient Descent

- Start with an initial guess x⁽⁰⁾ = 0
- At iteration k, gradient descent uses the descent direction δx^(k) = -∇f(x^(k))
- Given arbitary $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^d$, determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$\|\nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_2)\| = \left\| \left(\sum_{j=1}^n A_j^\top A_j \right) (\mathbf{x}_1 - \mathbf{x}_2) \right\| \le \underbrace{\left\| \sum_{j=1}^n A_j^\top A_j \right\|}_{L} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

• Choose step size $\alpha^{(k)} = \frac{1}{L}$ and iterate:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}^{(k)}$$
$$= \mathbf{x}^{(k)} - \frac{1}{L} \left(\sum_{j=1}^{n} A_j^{\top} A_j \right) \mathbf{x}^{(k)} - \frac{1}{L} \left(\sum_{j=1}^{n} A_j^{\top} b_j \right)$$

Newton's Method

• Start with an initial guess
$$\mathbf{x}^{(0)} = \mathbf{0}$$

▶ At iteration *k*, Newton's method uses the descent direction:

$$\delta \mathbf{x}^{(k)} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})$$
$$= -\mathbf{x}^{(k)} - \left(\sum_{j=1}^n A_j^\top A_j\right)^{-1} \left(\sum_{j=1}^n A_j^\top b_j\right)$$

and updates the solution estimate via:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)} = -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

Note that for this problem, Newton's method converges in one iteration!

Gauss-Newton's Method

- $f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_j(\mathbf{x})^\top \mathbf{e}_j(\mathbf{x})$ for $\mathbf{e}_j(\mathbf{x}) := A_j \mathbf{x} + b_j$
- The Jacobian of $\mathbf{e}_j(\mathbf{x})$ is $J_j(\mathbf{x}) = A_j$
- Start with an initial guess $\mathbf{x}^{(0)} = \mathbf{0}$
- At iteration k, Gauss-Newton's method uses the descent direction:

$$\delta \mathbf{x}^{(k)} = -\left(\sum_{j=1}^{n} J_j(\mathbf{x}^{(k)})^{\top} J_j(\mathbf{x}^{(k)})\right)^{-1} \left(\sum_{j=1}^{n} J_j(\mathbf{x}^{(k)})^{\top} \mathbf{e}_j(\mathbf{x}^{(k)})\right)$$
$$= -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} (A_j \mathbf{x}^{(k)} + b_j)\right)$$
$$= -\mathbf{x}^{(k)} - \left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

If α^(k) = 1, in this problem, Gauss-Newton's method behaves exactly like Newton's method and coverges in one iteration!

28