
ECE276A: Sensing & Estimation in Robotics
Lecture 3: Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Thai Duong: tduong@eng.ucsd.edu
Yiran Xu: y5xu@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qif007@eng.ucsd.edu
mailto:aasghari@eng.ucsd.edu
mailto:tduong@eng.ucsd.edu
mailto:y5xu@eng.ucsd.edu

Vectors
I A vector x ∈ Rd with d dimensions is a collection of scalars xi ∈ R for

i = 1, . . . , d organized is a column:

x =

x1
...
xd

 x> =
[
x1 · · · xd

]
I A norm on a vector space V over a field F is a function ‖ · ‖ : V → R

such that for all a ∈ F and all x, y ∈ V :

I ‖ax‖ = |a|‖x‖ (absolute homogeneity)

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I ‖x‖ ≥ 0 (non-negativity)

I ‖x‖ = 0 iff x = 0 (definiteness)

I The Euclidean norm of a vector x ∈ Rd is ‖x‖2 :=
√

x>x and satisfies:
I max

1≤i≤d
|xi | ≤ ‖x‖2 ≤

√
d max

1≤i≤d
|xi |

I |x>y| ≤ ‖x‖2‖y‖2 (Cauchy-Schwarz Inequality)
2

Matrices
I A matrix A ∈ Rm×n is a rectangular array of scalars Aij ∈ R for

i = 1, . . . ,m and j = 1, . . . , n

I The entries of the transpose A> ∈ Rn×m of a matrix A ∈ Rm×n are
A>ij = Aji . The transpose satisfies: (AB)> = B>A>

I The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC) = tr(BCA) = tr(CAB)

I The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j

times the determinant of the (n − 1)× (n − 1) submatrix that results
when the i th-row and j th-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.

3

Matrix Inverse
I The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)>

I The inverse A−1 of A exists iff det(A) 6= 0 and satisfies:

A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1

I If A ∈ Rn×n and q ∈ Cn is a nonzero vector such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ ∈ C.

I A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs. The n eigenvalues of A ∈ Rn×n are precisely
the n roots of the characteristic polynomial of A:

p(λ) := det(λI − A)

4

Positive Semidefinite Matrices
I The roots of a polynomial are continuous functions of its coefficients and

hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) :=
n∑

i=1

λi det(A) :=
n∏

i=1

λi

I The product x>Qx for Q ∈ Rn×n and x ∈ Rn is called a quadratic
form and Q can be assumed symmetric, Q = Q>, because:

1

2
x>(Q + Q>)x = x>Qx, ∀x ∈ Rn

I A symmetric matrix Q ∈ Rn×n is positive semidefinite if x>Qx ≥ 0 for
all x ∈ Rn.

I A symmetric matrix Q ∈ Rn×n is positive definite if it is positive
semidefinite and if x>Qx = 0 implies x = 0

I All eigenvalues of a symmetric matrix are real. Hence, all eigenvalues of
a positive semidefinite matrix are non-negative and all eigenvalues of a
positive definite matrix are positive.

5

Schur Complement

I The Schur complement of block D of M =

[
A B
C D

]
is SD =A−BD−1C

I Let M =

[
A B
B> D

]
be symmetric. Then:

I M � 0⇔ A � 0,SA = D − B>A−1B � 0

I M � 0⇔ D � 0,SD = A− BD−1B> � 0

I M � 0⇔ A � 0,SA � 0, (I − AAg)B = 0, where Ag is the generalized
inverse of A

I M � 0⇔ D � 0,SD � 0, (I − DDg)B> = 0, where Dg is the generalized
inverse of D

6

Matrix Inversion Lemma

I Square completion:

1

2
x>Ax + b>x + c =

1

2

(
x + A−1b

)>
A
(
x + A−1b

)
+ c − 1

2
b>A−1b

I Woodbury matrix identity:

(A + BDC)−1 = A−1 − A−1B
(
CA−1B + D−1

)−1
CA−1

I Block matrix inversion:[
A B
C D

]−1

=

[
I 0

D−1C I

]−1 [
A− BD−1C 0

0 D

]−1 [
I BD−1

0 I

]−1

=

[
I 0

−D−1C I

] [(
A− BD−1C

)−1
0

0 D−1

] [
I −BD−1

0 I

]
=

[(
A− BD−1C

)−1 −
(
A− BD−1C

)−1
BD−1

−D−1C
(
A− BD−1C

)−1
D−1 + D−1C

(
A− BD−1C

)−1
BD−1

]

7

Derivatives (numerator layout)
I Derivatives by scalar

dy

dx
=


dy1
dx
...

dym
dx

 ∈ Rm×1 dY

dx
=


dY11
dx · · · dY1n

dx
...

. . .
...

dYm1
dx · · · dYmn

dx

 ∈ Rm×n

I Derivatives by vector

dy

dx
=

[
dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy]> (gradient transpose)

∈ R1×p dy

dx
=


dy1
dx1

· · · dy1
dxp

...
. . .

...
dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

∈ Rm×p

I Derivatives by matrix

dy

dX
=


dy
dX11

· · · dy
dXp1

...
. . .

...
dy

dX1q
· · · dy

dXpq

 ∈ Rq×p

8

Matrix Derivatives Example

I d
dXij

X = eie
>
j

I d
dxAx = A

I d
dxx>Ax = x>(A + A>)

I d
dxM

−1(x) = −M−1(x)dM(x)
dx M−1(x)

I d
dX tr(AX−1B) = −X−1BAX−1

I d
dX log detX = X−1

9

Matrix Derivatives Example

I d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn


I d

dxx>Ax = x>A> dx
dx + x> dAx

dx = x>(A> + A)

I M(x)M−1(x) = I ⇒ 0 =
[
d
dxM(x)

]
M−1(x) + M(x)

[
d
dxM

−1(x)
]

I

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

>
j X
−1B)

= −e>j X
−1BAX−1ei = −e>i

(
X−1BAX−1

)>
ej

I

d

dXij
log detX =

1

det(X)

d

dXij

n∑
k=1

Xikcof ik(X)

=
1

det(X)
cof ij(X) =

1

det(X)
adjji (X) = e>i X

−Tej

10

Unconstrained Optimization

I Many problems we encounter in this course, lead to an optimization
problem of the form:

min
x

f (x)

Descent Direction Theorem

Suppose f is differentiable at x̄. If ∃ δx such that ∇f (x̄)>δx < 0, then
∃ ε > 0 such that f (x̄ + αδx) < f (x̄) for all α ∈ (0, ε).

I The vector δx is called a descent direction

I The theorem states that if a descent direction exists at x̄, then it is
possible to move to a new point that has a lower f value.

I Steepest descent direction: δx := − ∇f (x̄)
‖∇f (x̄)‖

I Based on this theorem, we can derive conditions for determining the
optimality of x̄

11

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇J(x̄) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at x̄. If x̄ is a local minimizer, then
∇f (x̄) = 0 and ∇2f (x̄) � 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at x̄. If ∇f (x̄) = 0 and ∇2f (x̄) � 0, then x̄
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x̄. If f is convex, then x̄ is a global minimizer
if and only if ∇f (x̄) = 0.

12

Descent Optimization Methods
I Convex unconstrained optimization: just need to solve the equation
∇f (x) = 0 to determine a global minimizer x∗

I Even if f is not convex, we can obtain a critical point by solving
∇f (x) = 0

I However, ∇f (x) = 0 might not be easy to solve explicitly

I Descent methods: iterative methods for unconstrained optimization.
Given an initial guess x(k), take a step of size α(k) > 0 along a certain
direction δx(k):

x(k+1) = x(k) + α(k)δx(k)

I Different methods differ in the way δx(k) and α(k) are chosen but
I δx(k) should be a descent direction: ∇f (x(k))>δx(k) < 0 for all x(k) 6= x∗

I α(k) needs to ensure sufficient decrease in f to guarantee convergence:

α(k),∗ ∈ arg min
α>0

f (x(k) + αδx(k))

Usually α(k) is obtained via inexact line search methods
13

Gradient Descent (First-Order Method)

I Idea: −∇f (x(k)) points in the direction of steepest local descent

I Gradient descent: let δx(k) := −∇f (x(k)) and iterate:

x(k+1) = x(k) − α(k)∇f (x(k))

I A good choice for α(k) is 1
L , where L > 0 is the Lipschitz constant of

∇f (x):

‖∇f (x)−∇f (x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ dom(f)

14

Newton’s Method (Second-Order Method)

I Newton’s method: iteratively approximates f by a quadratic function

I Since δx is a ‘small‘ change to the initial guess x(k), we can approximate
f using a Taylor-series expansion:

f (x(k) + δx) ≈ f (x(k)) +

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸
Gradient Transpose

δx +
1

2
δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸

Hessian

δx

I The symmetric Hessian matrix ∇2f (x(k)) needs to be positive-definite
for this method to work.

15

Newton’s Method (Second-Order Method)

16

Newton’s Method (Second-Order Method)
I Find δx that minimizes the quadratic approximation to f (x(k) + δx)

I Since this is an unconstrained optimization problem, δx∗ can be
determined by setting the derivative with respect to δx to zero:

∂f (x(k) + δx)

∂δx
≈
(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
+ δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
⇒

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
δx = −

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)>
I The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., ∇2f (x(k)) � 0:

δx∗ = −
[
∇2f (x(k))

]−1
∇f (x(k))

I Newton’s method:

x(k+1) = x(k) − α(k)
[
∇2f (x(k))

]−1
∇f (x(k))

17

Newton’s Method (Comments)

I Newton’s method, like any other descent method, converges only to a
local minimum

I Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes α(k) are small

I Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e. α(k) = 1, and
the function value converges quadratically to the optimum

I A disadvantage of Newton’s method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high dimensional problems

18

Gauss-Newton’s Method

I Gauss-Newton is an approximation to Newton’s method that avoids
computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f (x) =
1

2
e(x)>e(x) e(x) ∈ Rm

I The Jacobian and Hessian matrices are:

Jacobian:
∂f (x)

∂x

∣∣∣∣
x=x(k)

= e(x(k))>
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
Hessian:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

=

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+

m∑
i=1

ei (x(k))

(
∂2ei (x)

∂x∂x>

∣∣∣∣
x=x(k)

)

19

Gauss-Newton’s Method

I Near the minimum of f , the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

≈
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
I The above does not involve any second derivatives and leads to the

system:(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I Gauss-Newton’s method:

x(k+1) = x(k) + α(k)δx

20

Gauss-Newton’s Method (Alternative Derivation)

I Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f (x):

e(x(k) + δx) ≈ e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

I Substituting into f leads to:

f (x(k) + δx) ≈ 1

2

(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)>(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)
I Minimizing this with respect to δx leads to the same system as before:(

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

21

Levenberg-Marquardt’s Method

I The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian
approximation:((

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+ λD

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I When λ ≥ 0 is large, the descent vector δx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

22

Levenberg-Marquardt’s Method (Summary)

I An iterative optimization approach for the unconstrained problem:

min
x

f (x) :=
1

2

∑
j

ej(x)>ej(x) ej(x) ∈ Rmj , x ∈ Rn

I Given an initial guess x(k), determine a descent direction δx by solving:∑
j

Jj(x(k))>Jj(x(k)) + λD

 δx = −

∑
j

Jj(x(k))>ej(x(k))


where Jj(x) :=

∂ej (x)
∂x ∈ Rmj×n, λ ≥ 0, D ∈ Rn×n is a positive diagonal

matrix, e.g., D = diag
(∑

j Jj(x(k))>Jj(x(k))
)

I Obtain an updated estimate according to:

x(k+1) = x(k) + α(k)δx

23

Unconstrained Optimization Example
I Let f (x) := 1

2

∑n
j=1 ‖Ajx + bj‖2

2 for x ∈ Rd and assume
∑n

j=1 A
>
j Aj � 0

I Solve the unconstrained optimization problem minx f (x) using:
I The necessary and sufficient optimality condition for convex function f
I Gradient descent
I Newton’s method
I Gauss-Newton’s method

I We will need ∇f (x) and ∇2f (x):

df (x)

dx
=

1

2

n∑
j=1

d

dx
‖Ajx + bj‖2

2 =
n∑

j=1

(Ajx + bj)
> Aj

∇f (x) =
df (x)

dx

>
=

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


∇2f (x) =

d

dx
∇f (x) =

n∑
j=1

A>j Aj � 0

24

Necessary and Sufficient Optimality Condition

I Solve ∇f (x) = 0 for x:

0 = ∇f (x) =

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


x = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I The solution above is unique since we assumed that

∑n
j=1 A

>
j Aj � 0

25

Gradient Descent

I Start with an initial guess x(0) = 0

I At iteration k , gradient descent uses the descent direction
δx(k) = −∇f (x(k))

I Given arbitary x1, x2 ∈ Rd , determine the Lipschitz constant of ∇f (x):

‖∇f (x1)−∇f (x2)‖ =

∥∥∥∥(n∑
j=1

A>j Aj

)
(x1 − x2)

∥∥∥∥ ≤ ∥∥∥∥ n∑
j=1

A>j Aj

∥∥∥∥︸ ︷︷ ︸
L

‖x1 − x2‖

I Choose step size α(k) = 1
L and iterate:

x(k+1) = x(k) + α(k)δx(k)

= x(k) − 1

L

 n∑
j=1

A>j Aj

 x(k) − 1

L

 n∑
j=1

A>j bj


26

Newton’s Method

I Start with an initial guess x(0) = 0

I At iteration k , Newton’s method uses the descent direction:

δx(k) = −
[
∇2f (x(k))

]−1
∇f (x(k))

= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


and updates the solution estimate via:

x(k+1) = x(k) + δx(k) = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I Note that for this problem, Newton’s method converges in one iteration!

27

Gauss-Newton’s Method
I f (x) is of the form 1

2

∑n
j=1 ej(x)>ej(x) for ej(x) := Ajx + bj

I The Jacobian of ej(x) is Jj(x) = Aj

I Start with an initial guess x(0) = 0

I At iteration k , Gauss-Newton’s method uses the descent direction:

δx(k) = −

 n∑
j=1

Jj(x(k))>Jj(x(k))

−1 n∑
j=1

Jj(x(k))>ej(x(k))


= −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j (Ajx
(k) + bj)


= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I If α(k) = 1, in this problem, Gauss-Newton’s method behaves exactly

like Newton’s method and coverges in one iteration! 28

