ECE276A: Sensing \& Estimation in Robotics Lecture 6: Rotations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qif007@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Thai Duong: tduong@eng.ucsd.edu
Yiran Xu: y5xu@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Rigid Body Motion

- Consider a moving object in a fixed world reference frame $\{W\}$
- Rigid object: it is sufficient to specify the motion of one point $\mathbf{p}(t) \in \mathbb{R}^{3}$ and 3 coordinate axes $\mathbf{r}_{1}(t), \mathbf{r}_{2}(t), \mathbf{r}_{3}(t)$ attached to that point (body reference frame $\{B\}$)
- A point \mathbf{s} on the rigid body has fixed coordinates $\mathbf{s}_{B} \in \mathbb{R}^{3}$ in the body frame but time-varying coordinates $\mathbf{s}_{W}(t) \in \mathbb{R}^{3}$ in the world frame.

Rigid Body Motion

- A rigid body is free to translate (3 degrees of freedom) and rotate (3 degrees of freedom)
- The pose $T(t) \in S E(3)$ of a moving rigid object $\{B\}$ at time t in a fixed world frame $\{W\}$ is determined by

1. The position $\mathbf{p}(t) \in \mathbb{R}^{3}$ of $\{B\}$ relative to $\{W\}$
2. The orientation $R(t) \in S O(3)$ of $\{B\}$ relative to $\{W\}$

- The space \mathbb{R}^{3} of positions is familiar
- How do we describe the space $S O(3)$ of orientations and the space SE (3) of poses?

Special Euclidean Group

- Rigid body motion is a family of transformations $g(t): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that describe how the coordinates of points on the object change in time
- Rigid body motion preserves distances (vector norms) and does not allow reflection of the coordinate system (vector cross products)
- Euclidean Group $E(3):$ a set of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm of any two vectors
- Special Euclidean Group SE(3): a set of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm and cross product of any two vectors
- The set of rigid body motions forms a group because:
- We can combine several motions to generate a new one (closure)
- We can execute a motion that leaves the object at the same state (identity element)
- We can move rigid objects from one place to another and then reverse the action (inverse element)

Special Euclidean Group

- A group is a set G with an associated operator $\odot($ group law of $G)$ that satisfies:
- Closure: $a \odot b \in G, \forall a, b \in G$
- Identity element: \exists ! $e \in G$ (unique) such that $e \odot a=a \odot e=a$
- Inverse element: for $a \in G, \exists b \in G$ such that $a \odot b=b \odot a=e$
- Associativity: $(a \odot b) \odot c=a \odot(b \odot c), \forall a, b, c, \in G$
$-S E(3)$ is a group of maps $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve:

1. Norm: $\|g(\mathbf{u})-g(\mathbf{v})\|=\|\mathbf{v}-\mathbf{u}\|, \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$
2. Cross product: $g(\mathbf{u}) \times g(\mathbf{v})=g(\mathbf{u} \times \mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$

- Corollary: SE (3) elements also preserve:

1. Angle: $\mathbf{u}^{\top} \mathbf{v}=\frac{1}{4}\left(\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}\right) \Rightarrow \mathbf{u}^{\top} \mathbf{v}=g(\mathbf{u})^{\top} g(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$
2. Volume: $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, g(\mathbf{u})^{\top}(g(\mathbf{v}) \times g(\mathbf{w}))=\mathbf{u}^{\top}(\mathbf{v} \times \mathbf{w})$
(volume of parallelepiped spanned by $\mathbf{u}, \mathbf{v}, \mathbf{w}$)

Orientation and Rotation

- Pure rotational motion is a special case of rigid body motion
- First, we need to define the orientation of a rigid body
- The orientation of a body frame $\{B\}$ is determined by the coordinates of the three orthogonal vectors $\mathbf{r}_{1}=g\left(\mathbf{e}_{1}\right), \mathbf{r}_{2}=g\left(\mathbf{e}_{2}\right), \mathbf{r}_{3}=g\left(\mathbf{e}_{3}\right)$ in the world frame $\{W\}$, ie., by the 3×3 matrix:

$$
R=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

- Consider a point with coordinates $\mathbf{s}_{B} \in \mathbb{R}^{3}$ in $\{B\}$
- Its coordinates \mathbf{s}_{W} in $\{W\}$ are:

$$
\begin{aligned}
\mathbf{s}_{W} & =\left[s_{B}\right]_{1} \mathbf{r}_{1}+\left[s_{B}\right]_{2} \mathbf{r}_{2}+\left[s_{B}\right]_{3} \mathbf{r}_{3} \\
& =R \mathbf{s}_{B}
\end{aligned}
$$

Special Orthogonal Group SO(3)

- $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ form an orthonormal basis: $\mathbf{r}_{i}^{\top} \mathbf{r}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}$
- R belongs to the orthogonal group:

$$
O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=R R^{\top}=I\right\}
$$

- The inverse of R is its transpose: $R^{-1}=R^{T}$
- Distances are preserved under rotation:

$$
\|R(\mathbf{x}-\mathbf{y})\|_{2}^{2}=(\mathbf{x}-\mathbf{y})^{\top} R^{\top} R(\mathbf{x}-\mathbf{y})=(\mathbf{x}-\mathbf{y})^{\top}(\mathbf{x}-\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

- One more property is needed to prevent reflections, ie., to maintain a right-handed coordinate system:

$$
R(\mathbf{x} \times \mathbf{y})=R\left(\mathbf{x} \times\left(R^{\top} R \mathbf{y}\right)\right)=\left(R[\mathbf{x}]_{\times} R^{\top}\right) R \mathbf{y}=\frac{1}{\operatorname{det}(R)}(R \mathbf{x}) \times(R \mathbf{y})
$$

- Note that $\operatorname{det}(R)=\mathbf{r}_{1}^{\top}\left(\mathbf{r}_{2} \times \mathbf{r}_{3}\right)=1$
- Thus, R belongs to the special orthogonal group:

$$
S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{T} R=I, \operatorname{det}(R)=1\right\}
$$

Parametrizing 2-D Rotations

- Rotation angle: a 2-D rotation of a point $\mathbf{s}_{B} \in \mathbb{R}^{2}$ can be parametrized by an angle θ :

$$
\mathbf{s}_{W}=R(\theta) \mathbf{s}_{B}:=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \mathbf{s}_{B}
$$

- $\theta>0$: counterclockwise rotation

- Unit-norm complex number: a 2-D rotation of $\left[s_{B}\right]_{1}+i\left[s_{B}\right]_{2} \in \mathbb{C}^{2}$ can be parametrized by a unit-norm complex number $e^{i \theta}$:
$e^{i \theta}\left(\left[s_{B}\right]_{1}+i\left[s_{B}\right]_{2}\right)=\left(\left[s_{B}\right]_{1} \cos \theta-\left[s_{B}\right]_{2} \sin \theta\right)+i\left(\left[s_{B}\right]_{1} \sin \theta+\left[s_{B}\right]_{2} \cos \theta\right)$

Principal 3-D Rotations

- A rotation by an angle ϕ around the x-axis is represented by:

$$
R_{x}(\phi):=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
$$

- A rotation by an angle θ around the y-axis is represented by:

$$
R_{y}(\theta):=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

- A rotation by an angle ψ around the z-axis is represented by:

$$
R_{z}(\psi):=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Euler Angle Parametrization

- One way to parametrize rotation is to use three angles that specify the rotations around the principal axes
- There are 24 different ways to apply these rotations
- Extrinsic axes: the rotation axes remain fixed/global/static
- Intrinsic axes: the rotation axes move with the rotations
- Each of the two groups (intrinsic and extrinsic) can be divided into:
- Euler Angles: rotation about one axis, then a second and then the first
- Tait-Bryan Angles: rotation about all three axes
- The Euler and Tait-Bryan Angles each have 6 possible choices for each of the extrinsic/intrinsic groups leading to $2 * 2 * 6=24$ possible conventions to specify a rotation sequence with three given angles
- For simplicity we will refer to all these 24 conventions as Euler Angles and will explicitly specify:
- r (rotating $=$ intrinsic $)$ or s (static $=$ extrinic)
- xyz or zyx or $z x z$, etc. (axes about which to perform the rotation in the specified order)

Common Euler Angle Conventions

- Spin (θ), nutation (γ), precession (ψ) sequence (rzxz convention):
- A rotation ψ about the original z-axis
- A rotation γ about the intermediate x-axis
- A rotation θ about the transformed z-axis
- Roll (ϕ), pitch (θ), yaw (ψ) sequence (rzyx convention):
- A rotation ϕ about the original x-axis
- A rotation θ about the intermediate y-axis
- A rotation ψ about the transformed z-axis

- We will call Euler Angles the roll (ϕ), pitch (θ), yaw (ψ) angles specifying an XYZ extrinsic or equivalently a ZYX intrinsic rotation:

$$
\begin{aligned}
R & =R_{z}(\psi) R_{y}(\theta) R_{x}(\phi) \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
\end{aligned}
$$

Gimbal Lock

- Angle parametrizations are widely used due to their simplicity
- Unfortunately, in 3-D angle parametrizations have singularities (not one-to-one), which can result in gimbal lock, e.g., if the pitch becomes $\theta=90^{\circ}$, the roll and yaw become associated with the same degree of freedom and cannot be uniquely determined.
- Gimbal lock is a problem only if we want to recover the rotation angles from a rotation matrix

Cross Product and Hat Map

- The cross product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ is also a vector in \mathbb{R}^{3} :

$$
\mathbf{x} \times \mathbf{y}:=\left[\begin{array}{l}
x_{2} y_{3}-x_{3} y_{2} \\
x_{3} y_{1}-x_{1} y_{3} \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=[\mathbf{x}]_{\times} \mathbf{y}
$$

- The cross product $\mathbf{x} \times \mathbf{y}$ can be represented by a linear map $[\mathbf{x}]_{\times}$called the hat map
- The hat map $[\cdot]_{\times}: \mathbb{R}^{3} \rightarrow \mathfrak{s o}(3)$ transforms a vector $\mathbf{x} \in \mathbb{R}^{3}$ to a skew-symmetric matrix:

$$
[\mathbf{x}]_{\times}:=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-v_{0} & v_{1} & 0
\end{array} \quad[\mathbf{x}]_{\times}^{\top}=-[\mathbf{x}]_{\times}\right.
$$

- The vector space \mathbb{R}^{3} and the space of skew-symmetric 3×3 matrices $\mathfrak{s o}(3)$ are isomorphic, i.e., there exists a one-to-one map (the hat map) that preserves their structure.

Hat Map Properties

- Lemma: A matrix $M \in \mathbb{R}^{3 \times 3}$ is skew-symmetric iff $M=[\mathbf{x}]_{\times}$for some $x \in \mathbb{R}^{3}$.
- The inverse of the hat map is the vee map, $V: \mathfrak{s o}(3) \rightarrow \mathbb{R}^{3}$, that extracts the components of the vector $\mathbf{x}=[\mathbf{x}]_{\times}^{\vee}$ from the matrix $[\mathbf{x}]_{\times}$.
- For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}, A \in \mathbb{R}^{3 \times 3}$, the hat map satisfies:
- $[\mathrm{x}]_{\times} \mathbf{y}=\mathbf{x} \times \mathbf{y}=-\mathbf{y} \times \mathbf{x}=-[\mathbf{y}]_{\times} \mathbf{x}$
- $[\mathbf{x}]_{\times}^{2}=\mathbf{x x}^{\top}-\mathbf{x}^{\top} \mathbf{x} l_{3 \times 3}$
- $[\mathbf{x}]_{\times}^{2 k+1}=\left(-\mathbf{x}^{\top} \mathbf{x}\right)^{k}[\mathbf{x}]_{\times}$
$-\frac{1}{2} \operatorname{tr}\left([\mathbf{x}]_{\times}[\mathbf{y}]_{\times}\right)=\mathbf{x}^{\top} \mathbf{y}$
$-[\mathbf{x}]_{\times} A+A^{\top}[\mathbf{x}]_{\times}=\left[\left(\operatorname{tr}(A) I_{3 \times 3}-A\right) \mathbf{x}\right]_{\times}$
- $\operatorname{tr}\left([\mathbf{x}]_{\times} A\right)=\frac{1}{2} \operatorname{tr}\left([\mathbf{x}]_{\times}\left(A-A^{\top}\right)\right)=-\mathbf{x}^{\top}\left(A-A^{\top}\right)^{\vee}$
- $[A \mathbf{x}]_{\times}=\operatorname{det}(A) A^{-\top}[\mathbf{x}]_{\times} A^{-1}$

Axis-Angle Parametrization

- Every rotation can be represented as a rotation about an axis $\boldsymbol{\xi} \in \mathbb{R}^{3}$ through angle $\theta \in \mathbb{R}$
- The axis-angle parametrization can be combined in a single rotation vector $\boldsymbol{\theta}:=\theta \boldsymbol{\xi} \in \mathbb{R}^{3}$
- Consider a point $\mathbf{s} \in \mathbb{R}^{3}$ rotating about an axis $\boldsymbol{\xi}$ at constant unit velocity:

$$
\begin{aligned}
\dot{\mathbf{s}}(t) & =\boldsymbol{\xi} \times \mathbf{s}(t)=[\boldsymbol{\xi}]_{\times} \mathbf{s}(t), \quad \mathbf{s}(0)=\mathbf{s}_{0} \\
& \Rightarrow \mathbf{s}(t)=e^{t[\boldsymbol{\xi}]_{\times}} \mathbf{s}_{0}=R(t) \mathbf{s}_{0} \quad \underset{t=\theta}{\text { unit velocity }} \Rightarrow R(\theta)=e^{\theta[\boldsymbol{\xi}]_{\times}}
\end{aligned}
$$

- Axis-angle representation: a rotation around the axis $\boldsymbol{\xi}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_{2}}$ through an angle $\theta:=\|\boldsymbol{\theta}\|_{2}$ can be represented as

$$
R=\exp \left([\boldsymbol{\theta}]_{\times}\right):=\sum_{n=0}^{\infty} \frac{1}{n!}[\boldsymbol{\theta}]_{\times}^{n}=I+[\boldsymbol{\theta}]_{\times}+\frac{1}{2!}[\boldsymbol{\theta}]_{\times}^{2}+\frac{1}{3!}[\boldsymbol{\theta}]_{\times}^{3}+\ldots
$$

- The matrix exponential defines a map from the space $\mathfrak{s o (3)}$ of skew symmetric matrices to the space $S O(3)$ of rotation matrices

Quaternions (Hamilton Convention)

- Quaternions: $\mathbb{H}=\mathbb{C}+\mathbb{C} j$ generalize complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i$

$$
\mathbf{q}=q_{s}+q_{1} i+q_{2} j+q_{3} k=\left[q_{s}, \mathbf{q}_{v}\right] \quad i j=-j i=k, i^{2}=j^{2}=k^{2}=-1
$$

- Just as in 2-D, 3-D rotations can be represented using "complex numbers", i.e., unit-norm quaternions $\left\{\mathbf{q} \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}=1\right\}$
- To represent rotations, the quaternion space embeds a 3-D space into a 4-D space (no singularities) and introduces a unit norm constraint.
- A rotation matrix $R \in S O(3)$ can be obtained from a unit quaternion \mathbf{q} :

$$
R(\mathbf{q})=E(\mathbf{q}) G(\mathbf{q})^{\top} \quad E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\left[\mathbf{q}_{v}\right]_{\times}\right] \quad G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\left[\mathbf{q}_{v}\right]_{\times}\right]
$$

- The space of quaternions is a double covering of $S O(3)$ because two unit quaternions correspond to the same rotation: $R(\mathbf{q})=R(-\mathbf{q})$.

Quaternion Conversions

- A rotation around a unit axis $\boldsymbol{\xi}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|} \in \mathbb{R}^{3}$ by angle $\theta:=\|\boldsymbol{\theta}\|$ can be represented by a unit quaternion:

$$
\mathbf{q}=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \boldsymbol{\xi}\right]
$$

- A rotation around a unit axis $\boldsymbol{\xi} \in \mathbb{R}^{3}$ by angle θ can be recovered from a unit quaternion \mathbf{q} :

$$
\theta=2 \arccos \left(q_{s}\right) \quad \boldsymbol{\xi}= \begin{cases}\frac{1}{\sin (\theta / 2)} \mathbf{q}_{v}, & \text { if } \theta \neq 0 \\ 0, & \text { if } \theta=0\end{cases}
$$

- The inverse transformation above has a singularity at $\theta=0$ because there are infinitely many rotation axes that can be used or equivalently the transformation from an axis-angle representation to a quaternion representation is many-to-one

Quaternion Properties

Addition

$$
\mathbf{q}+\mathbf{p}:=\left[q_{s}+p_{s}, \mathbf{q}_{v}+\mathbf{p}_{v}\right]
$$

Multiplication $\quad \mathbf{q} \circ \mathbf{p}:=\left[q_{s} p_{s}-\mathbf{q}_{v}^{T} \mathbf{p}_{v}, q_{s} \mathbf{p}_{v}+p_{s} \mathbf{q}_{v}+\mathbf{q}_{v} \times \mathbf{p}_{v}\right]$
Conjugate

$$
\overline{\mathbf{q}}:=\left[q_{s},-\mathbf{q}_{v}\right]
$$

Norm

$$
\|\mathbf{q}\|:=\sqrt{q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}} \quad\|\mathbf{q} \circ \mathbf{p}\|=\|\mathbf{q}\|\|\mathbf{p}\|
$$

Inverse

$$
\mathbf{q}^{-1}:=\frac{\overline{\mathbf{q}}}{\|\mathbf{q}\|^{2}}
$$

Rotation

$$
\left[0, \mathbf{x}^{\prime}\right]=\mathbf{q} \circ[0, \mathbf{x}] \circ \mathbf{q}^{-1}=[0, R(\mathbf{q}) \mathbf{x}]
$$

Velocity

$$
\dot{\mathbf{q}}=\frac{1}{2} \mathbf{q} \circ[0, \omega]=\frac{1}{2} G(\mathbf{q})^{T} \boldsymbol{\omega}
$$

Exp
Log

$$
\exp (\mathbf{q}):=e^{q_{s}}\left[\cos \left\|\mathbf{q}_{v}\right\|, \frac{\mathbf{q}_{v}}{\left\|\mathbf{q}_{v}\right\|} \sin \left\|\mathbf{q}_{v}\right\|\right]
$$

$$
\log (\mathbf{q}):=\left[\log |q|, \frac{\mathbf{q}_{v}}{\left\|\mathbf{q}_{v}\right\|} \arccos \frac{q_{s}}{|q|}\right]
$$

- Exp: constructs \mathbf{q} from rotation vector $\boldsymbol{\omega} \in \mathbb{R}^{3}: \mathbf{q}=\exp \left(\left[0, \frac{\omega}{2}\right]\right)$
- Log: recovers a rotation vector $\boldsymbol{\omega} \in \mathbb{R}^{3}$ from $\mathbf{q}:[0, \boldsymbol{\omega}]=2 \log (\mathbf{q})$

Representations of Orientation (Summary)

- Rotation Matrix: an element of the Special Orthogonal Group:

$$
R \in S O(3):=\{R \in \mathbb{R}^{3 \times 3} \mid \underbrace{R^{\top} R=1}_{\text {distances preserved }}, \underbrace{\operatorname{det}(R)=1}_{\text {no reflection }}\}
$$

- Euler Angles: roll ϕ, pitch θ, roll ψ specifying a rzyx rotation:

$$
R=R_{z}(\psi) R_{y}(\theta) R_{x}(\phi)
$$

- Axis-Angle: $\boldsymbol{\theta} \in \mathbb{R}^{3}$ specifying a rotation about an axis $\boldsymbol{\xi}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}$ through an angle $\theta:=\|\boldsymbol{\theta}\|$:

$$
R=\exp \left([\boldsymbol{\theta}]_{\times}\right)=I+[\boldsymbol{\theta}]_{\times}+\frac{1}{2!}[\boldsymbol{\theta}]_{\times}^{2}+\frac{1}{3!}[\boldsymbol{\theta}]_{\times}^{3}+\ldots
$$

- Unit Quaternion: $\mathbf{q}=\left[q_{s}, \mathbf{q}_{v}\right] \in\left\{q \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}=1\right\}$:

$$
R=E(\mathbf{q}) G(\mathbf{q})^{\top} \quad \begin{array}{ll}
E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\left[\mathbf{q}_{v}\right]_{\times}\right] \\
& G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\left[\mathbf{q}_{v}\right]_{\times}\right]
\end{array}
$$

Example: Rotation with a Quaternion

- Let $\mathbf{x}=\mathbf{e}_{2}$ be a point in frame $\{A\}$.
- What are the coordinates of \mathbf{x} in frame $\{B\}$ which is rotated by $\theta=\pi / 3$ with respect to $\{A\}$ around the x-axis?
- The quaternion corresponding to the rotation from $\{B\}$ to $\{A\}$ is:

$$
{ }_{A} \mathbf{q}_{B}=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) \boldsymbol{\xi}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right]
$$

- The quaternion corresponding to the rotation from $\{A\}$ to $\{B\}$ is:

$$
{ }_{B} \mathbf{q}_{A}={ }_{A} \mathbf{q}_{B}^{-1}={ }_{A} \overline{\mathbf{q}}_{B}=\frac{1}{2}\left[\begin{array}{c}
\sqrt{3} \\
-\mathbf{e}_{1}
\end{array}\right]
$$

- The coordinates of \mathbf{x} in frame $\{B\}$ are:

$$
\begin{aligned}
{ }_{B} \mathbf{q}_{A} \circ[0, \mathbf{x}] \circ{ }_{B} \mathbf{q}_{A}^{-1} & =\frac{1}{4}\left[\begin{array}{c}
\sqrt{3} \\
-\mathbf{e}_{1}
\end{array}\right] \circ\left[\begin{array}{c}
0 \\
\mathbf{e}_{2}
\end{array}\right] \circ\left[\begin{array}{l}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
0 \\
\sqrt{3} \mathbf{e}_{2}-\mathbf{e}_{1} \times \mathbf{e}_{2}
\end{array}\right] \circ\left[\begin{array}{l}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
0 \\
\mathbf{e}_{2}-\sqrt{3} \mathbf{e}_{3}
\end{array}\right]
\end{aligned}
$$

Rigid Body Pose

- Let $\{B\}$ be a body frame whose position and orientation with respect to the world frame $\{W\}$ are $\mathbf{p} \in \mathbb{R}^{3}$ and $R \in S O(3)$, respectively.
- The coordinates of a point $\mathbf{s}_{B} \in \mathbb{R}^{3}$ can be converted to the world frame by first rotating the point and then translating it to the world frame:

$$
\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p}
$$

- The homogeneous coordinates of a point $\mathbf{s} \in \mathbb{R}^{3}$ are

$$
\underline{\mathbf{s}}:=\lambda\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right] \propto\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right] \in \mathbb{R}^{4}
$$

The scale factor λ allows representing points arbitrarily far away from the origin as $\lambda \rightarrow 0$, e.g., $\underline{\mathbf{s}}=\left[\begin{array}{llll}1 & 2 & 1 & 0\end{array}\right]^{\top}$

- Rigid-body transformations are linear in homogeneous coordinates:

$$
\underline{\mathbf{s}}_{W}=\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]=T \underline{\mathbf{s}}_{B}
$$

Special Euclidean Group $S E(3)$

- The pose T of a rigid body can be described by a matrix in the special Euclidean group:

$$
S E(3):=\left\{T: \left.=\left[\begin{array}{rr}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{4 \times 4}
$$

- It can be verified that $S E(3)$ satisfies all requirements of a group:
- Closure: $T_{1} T_{2}=\left[\begin{array}{cc}R_{1} & \mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right]\left[\begin{array}{cc}R_{2} & \mathbf{p}_{2} \\ \mathbf{0}^{\top} & 1\end{array}\right]=\left[\begin{array}{cc}R_{1} R_{2} & R_{1} \mathbf{p}_{2}+\mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$
- Identity: $\left[\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in S E(3)$
- Inverse: $\left[\begin{array}{cc}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}R^{\top} & -R^{\top} \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in S E(3)$
- Associativity: $\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$ for all $T_{1}, T_{2}, T_{3} \in \operatorname{SE}(3)$

Point Transformations

- Let the pose of a rigid body be ${ }_{\{W\}} T_{\{B\}}:=\left[\begin{array}{cc}\{W\} & R_{\{B\}} \\ \mathbf{0}^{\top} & \{W\} \mathbf{p}_{\{B\}} \\ 1\end{array}\right]$
- The subscripts indicate that the pose of a rigid body in the world frame specifies a transformation from the body to the world frame
- A point with body-frame coordinates \mathbf{s}_{B}, has world-frame coordinates:

$$
\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p} \quad \text { equivalent to } \quad\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]
$$

- A point with world-frame coordinates \mathbf{s}_{W}, has body-frame coordinates:

$$
\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R^{\top} & -R^{\top} \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]
$$

Composing Transformations

- Give a robot with pose ${ }_{\{W\}} T_{\{1\}}$ at time t_{1} and ${ }_{\{W\}} T_{\{2\}}$ at time t_{2}, the relative transformation from the inertial frame $\{2\}$ at time t_{2} to the inertial frame $\{1\}$ at time t_{1} is:

$$
\begin{aligned}
{ }_{\{1\}} T_{\{2\}} & ={ }_{\{1\}} T_{\{W\}}\{W\} T_{\{2\}}=\left({ }_{\{W\}} T_{\{1\}}\right)^{-1} \\
& =\left[\begin{array}{cc}
\{W\} \\
T_{\{2\}} R_{\{1\}}^{\top} & -{ }_{\{W\}} R_{\{1\}}^{\top} \times{ }_{\{W\}} \mathbf{p}_{\{1\}} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\{W\} & R_{\{2\}} \\
\mathbf{0}^{\top} & \{W\} \\
\mathbf{p}_{\{2\}} \\
1
\end{array}\right]
\end{aligned}
$$

- The pose $T\left(t_{k}\right)=T_{k}$ of a robot at time t_{k} always specifies a transformation from the body frame at time t_{k} to the world frame so we will not explicitly write the world frame subscript
- The relative transformation from inertial frame $\{2\}$ with world-frame pose T_{2} to an inertial frame $\{1\}$ with world-frame pose T_{1} is:

$$
{ }_{1} T_{2}=T_{1}^{-1} T_{2}
$$

Summary

	Rotation $S O(3)$	Pose $\operatorname{SE}(3)$
Representation	$R:\left\{\begin{array}{l}R^{\top} R=I \\ \operatorname{det}(R)=1\end{array}\right.$	$T=\left[\begin{array}{ll}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Transformation	$\mathbf{s}_{W}=R \mathbf{s}_{B}$	$\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p}$
Inverse	$R^{-1}=R^{\top}$	$T^{-1}=\left[\begin{array}{ll}R^{\top} & -R^{\top} \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Composition	$w R_{B}=w R_{A} A_{B} R_{B}$	$w T_{B}=w T_{A} T_{B}$

