ECE276A: Sensing & Estimation in Robotics Lecture 8: Bayesian Filtering

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Qiaojun Feng: qif007@eng.ucsd.edu

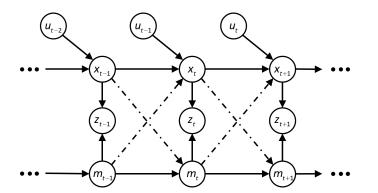
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

Thai Duong: tduong@eng.ucsd.edu

Yiran Xu: y5xu@eng.ucsd.edu

Structure of Robotics Problems

- **► Time**: t (discrete or continuous)
- **Robot state**: \mathbf{x}_t (e.g., position, orientation, velocity)
- **Control input**: \mathbf{u}_t (e.g., quadrotor thrust and torque)
- **Observation**: z_t (e.g., image, laser scan, inertial measurements)
- **Environment state**: \mathbf{m}_t (e.g., map of the occupancy of space)



Structure of Robotics Problems

- ► The sequences of control inputs $\mathbf{u}_{0:t}$ and observations $\mathbf{z}_{0:t}$ are known/observed
- ► The sequences of robot states $\mathbf{x}_{0:t}$ and environment states $\mathbf{m}_{0:t}$ are unknown/hidden

► Markov Assumptions

- The robot state \mathbf{x}_{t+1} only depends on the previous input \mathbf{u}_t and state \mathbf{x}_t , i.e., \mathbf{x}_{t+1} given \mathbf{u}_t , \mathbf{x}_t is independent of the history $\mathbf{x}_{0:t-1}$, $\mathbf{z}_{0:t-1}$, $\mathbf{u}_{0:t-1}$
- ▶ The environment state \mathbf{m}_{t+1} only depends on the previous environment state \mathbf{m}_t .
- The environment state \mathbf{m}_t and robot state \mathbf{x}_t may affect each other's motion (e.g., collisions) but we do not make this explicit to simplify the presentation.
- The observation \mathbf{z}_t only depends on the robot state \mathbf{x}_t and the environment state \mathbf{m}_t

Motion and Observation Models

▶ **Motion Model**: a nonlinear function f or equivalently a probability density function p_f that describes the motion of the robot to a new state \mathbf{x}_{t+1} after applying control input \mathbf{u}_t at state \mathbf{x}_t :

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$$
 $\mathbf{w}_t = \text{motion noise}$

► The robot motion model may also depend on m_t and the environment may have its own motion model:

$$\mathbf{m}_{t+1} = a(\mathbf{m}_t, \mathbf{x}_t, \mathsf{noise}_t) \sim p_a(\cdot \mid \mathbf{m}_t, \mathbf{x}_t)$$

Observation Model: a function h or equivalently a probability density function p_h that describes the observation \mathbf{z}_t of the robot depending on \mathbf{x}_t and \mathbf{m}_t

$$\mathbf{z}_t = h(\mathbf{x}_t, \mathbf{m}_t, \mathbf{v}_t) \sim p_h(\cdot \mid \mathbf{x}_t, \mathbf{m}_t)$$
 $\mathbf{v}_t = \text{observation noise}$

Bayes Filter

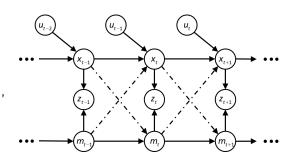
- Bayes filtering is a probabilistic inference technique for estimating the state of dynamical systems (robot and/or environment) that combines evidence from control inputs and observations using the Markov assumptions and Bayes rule:
 - ▶ Total probability: $p(x) = \int p(x, y) dy$
 - ► Conditioning: $p(x, y) = p(y \mid x)p(x)$
 - ▶ Bayes rule: $p(x \mid y, z) = \frac{p(y \mid x, z)p(x \mid z)}{\int p(y, s \mid z)ds} = \frac{p(y \mid x, z)p(z \mid x)p(x)}{p(y \mid z)p(z)}$
- Special cases of the Bayes filter:
 - Particle filter
 - Kalman filter
 - Forward algorithm for Hidden Markov Models (HMMs)

Filtering Examples

- ▶ Track the center $\mathbf{c}_t \in \mathbb{R}^2$ and radius $r_t \in \mathbb{R}$ of a ball in images: http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opency/
- ▶ Track the position $\mathbf{p}_t \in \mathbb{R}^3$ and orientation $\mathbf{R}_t \in SO(3)$ of a camera: https://www.youtube.com/watch?v=CsJkci5lfco
- Estimate the probability of occupancy of a static environment represented as a grid m: https://www.youtube.com/watch?v=RhPlzIyTT58

Filtering Problem

The Markov assumptions are used to decompose the joint pdf of the states x_{0:T} (robot and map combined), observations z_{0:T}, and controls u_{0:T−1}



► Joint distribution:

$$p(\mathbf{x}_{0:T}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) = \underbrace{p_{0|-1}(\mathbf{x}_0)}_{\text{prior}} \prod_{t=0}^{T} \underbrace{p_h(\mathbf{z}_t \mid \mathbf{x}_t)}_{\text{observation model}} \prod_{t=1}^{T} \underbrace{p_f(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})}_{\text{motion model}}$$

► **Filtering**: keeps track of

$$p_{t|t}(\mathbf{x}_t) := p(\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})$$

$$ho_{t+1\mid t}(\mathsf{x}_{t+1}) :=
ho(\mathsf{x}_{t+1}\mid \mathsf{z}_{0:t},\mathsf{u}_{0:t})$$

► Smoothing: keeps track of

$$egin{aligned} p_{t|t}(\mathbf{x}_{0:t}) &:= p(\mathbf{x}_{0:t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) \ p_{t+1|t}(\mathbf{x}_{0:t+1}) &:= p(\mathbf{x}_{0:t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \end{aligned}$$

Bayes Filter Prediction and Update Steps

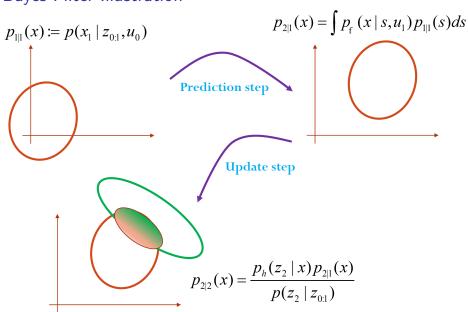
- ▶ The Bayes filter relies on two steps to keep track of $p_{t|t}(\mathbf{x}_t)$ and $p_{t+1|t}(\mathbf{x}_{t+1})$
- ▶ **Prediction step**: given a prior density $p_{t|t}$ over \mathbf{x}_t and the control input \mathbf{u}_t , uses the motion model p_f to compute the predicted density $p_{t+1|t}$ over \mathbf{x}_{t+1} :

$$ho_{t+1|t}(\mathsf{x}) = \int
ho_f(\mathsf{x} \mid \mathsf{s}, \mathsf{u}_t)
ho_{t|t}(\mathsf{s}) d\mathsf{s}$$

▶ **Update step**: given the predicted density $p_{t+1|t}$ over \mathbf{x}_{t+1} and the measurement \mathbf{z}_{t+1} , uses the observation model p_h to incorporate the measurement information and obtain the posterior $p_{t+1|t+1}$ over \mathbf{x}_{t+1} :

$$p_{t+1|t+1}(x) = \frac{p_h(z_{t+1} \mid x)p_{t+1|t}(x)}{\int p_h(z_{t+1} \mid s)p_{t+1|t}(s)ds}$$

Bayes Filter Illustration



Bayes Filter Derivation

$$\begin{split} \rho_{t+1|t+1}(\mathbf{x}_{t+1}) = & \rho(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t+1}, \mathbf{u}_{0:t}) \\ & \frac{\underline{\underline{\underline{Bayes}}}}{\eta_{t+1}} \frac{1}{\rho_{t+1}} \rho(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \rho(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \\ & \frac{\underline{\underline{\underline{Markov}}}}{\eta_{t+1}} \frac{1}{\eta_{t+1}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \rho(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \\ & \frac{\underline{\underline{\underline{Total prob.}}}}{\eta_{t+1}} \frac{1}{\eta_{t+1}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \int \rho(\mathbf{x}_{t+1}, \mathbf{x}_{t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) d\mathbf{x}_{t} \\ & \frac{\underline{\underline{\underline{Cond. prob.}}}}{\eta_{t+1}} \frac{1}{\eta_{t+1}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \int \rho(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}, \mathbf{x}_{t}) \rho(\mathbf{x}_{t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) d\mathbf{x}_{t} \\ & \frac{\underline{\underline{\underline{Markov}}}}{\eta_{t+1}} \frac{1}{\eta_{t+1}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \int \rho_f(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}) \rho(\mathbf{x}_{t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) d\mathbf{x}_{t} \\ & = \frac{1}{\eta_{t+1}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \int \rho_f(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}) \rho_{t|t}(\mathbf{x}_{t}) d\mathbf{x}_{t} \end{split}$$

Normalization constant: $\eta_{t+1} := p(\mathbf{z}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t})$

Bayes Filter Summary

- ▶ Motion model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$
- ▶ Observation model: $\mathbf{z}_t = h(\mathbf{x}_t, \mathbf{v}_t) \sim p_h(\cdot \mid \mathbf{x}_t)$
- ► Joint distribution:

$$p(\mathbf{x}_{0:T}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) = \underbrace{\rho_{0|-1}(\mathbf{x}_0)}_{\text{prior}} \prod_{t=0}^{I} \underbrace{\rho_h(\mathbf{z}_t \mid \mathbf{x}_t)}_{\text{observation model}} \prod_{t=1}^{I} \underbrace{\rho_f(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})}_{\text{motion model}}$$

▶ **Filtering**: recursive computation of $p(\mathbf{x}_T | \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1})$ that tracks:

$$egin{aligned} &
ho_{t|t}(\mathbf{x}_t) :=
ho(\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) \ &
ho_{t+1|t}(\mathbf{x}_{t+1}) :=
ho(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \end{aligned}$$

Bayes filter:

$$p_{t+1|t+1}(\mathbf{x}_{t+1}) = \underbrace{\frac{\frac{1}{\eta_{t+1}}}{1}}_{\substack{p(\mathbf{z}_{t+1} \mid \mathbf{z}_{0:t}, \, \mathbf{u}_{0:t})}} p_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \underbrace{\int p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_t, \mathbf{u}_t) p_{t|t}(\mathbf{x}_t) d\mathbf{x}_t}_{\mathbf{Update}}$$

Bayes Smoother

Smoothing: recursive computation of $p(\mathbf{x}_{0:T}|\mathbf{z}_{0:T},\mathbf{u}_{0:T-1})$ that tracks

$$\begin{aligned} p_{t|t}(\mathbf{x}_{0:t}) &:= p(\mathbf{x}_{0:t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) \\ p_{t+1|t}(\mathbf{x}_{0:t+1}) &:= p(\mathbf{x}_{0:t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) \end{aligned}$$

- Forward pass (Bayes filter): compute $p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t+1}, \mathbf{u}_{0:t})$ and $p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t})$ for t = 0, ..., T
- ▶ Backward pass (**Bayes smoother**): for t = T 1, ..., 0 compute:

$$p(\mathbf{x}_{t} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) \xrightarrow{\text{Total}} \int p(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) d\mathbf{x}_{t+1}$$

$$\xrightarrow{\text{Markov}} \int p(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) d\mathbf{x}_{t+1}$$

$$\xrightarrow{\text{motion model}} \int p(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) d\mathbf{x}_{t+1}$$

$$\frac{\text{Bayes}}{\text{Rule}} \underbrace{p(\mathbf{x}_{t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})}_{\text{forward pass}} \int \left[\underbrace{\frac{p_f(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t})}{p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})}}_{\text{forward pass}} \right] d\mathbf{x}_{t+1}$$

Histogram Filter

- ▶ Represents the pdfs $p_{t|t}$ and $p_{t+1|t}$ via a histogram over a discrete set \mathcal{X} of possible state values
- ightharpoonup Since ${\mathcal X}$ is discrete, the integrals in the prediction and update steps reduce to sums
- ▶ **Prediction step**: given a prior probability mass function $p_{t|t}$ over \mathbf{x}_t and control input \mathbf{u}_t , uses the motion model p_f to compute the predicted pmf $p_{t+1|t}$ over \mathbf{x}_{t+1} :

$$p_{t+1\mid t}(\mathbf{x}_{t+1}) = \sum_{\mathbf{s}\in\mathcal{X}} p_f(\mathbf{x}_{t+1}\mid \mathbf{s}, \mathbf{u}_t) p_{t\mid t}(\mathbf{s})$$

▶ **Update step**: given the predicted pmf $p_{t+1|t}$ over \mathbf{x}_{t+1} and measurement \mathbf{z}_{t+1} , uses the observation model p_h to incorporate the measurement information and obtain the posterior $p_{t+1|t+1}$ over \mathbf{x}_{t+1} :

$$\rho_{t+1|t+1}(\mathbf{x}_{t+1}) = \frac{\rho_h(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}) \rho_{t+1|t}(\mathbf{x}_{t+1})}{\sum_{\mathbf{s} \in \mathcal{X}} \rho_h(\mathbf{z}_{t+1} \mid \mathbf{s}) \rho_{t+1|t}(\mathbf{s})}$$

Efficient Histogram Filter Prediction

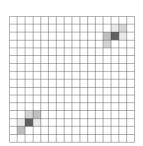
- Assume bounded Gaussian noise in the motion model
- Prediction step:
 - shift the data $p_{t|t}(\mathbf{x})$ in the grid $\mathbf{x} \in \mathcal{X}$ to a new index \mathbf{x}' according to the control input \mathbf{u} and the motion model $\mathbf{x}' = f(\mathbf{x}, \mathbf{u})$
 - convolve the shifted grid values with a separable Gaussian kernel:

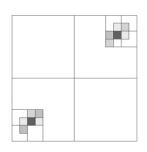
		ľ		i				
1/16	1/8	1/16		1/4				
1/8	1/4	1/8	≅	1/2	+	1/4	1/2	1/4
1/16	1/8	1/16		1/4				

▶ This reduces the prediction step cost from $O(n^2)$ to O(n) where n is the number of cells in \mathcal{X}

Histogram Filter Memory

- lacktriangle The accuracy of the histogram filter is limited by the size of the grid ${\mathcal X}$
- A small-resolution grid becomes very computationally expensive in high dimensional state spaces because the number of cells is exponential in the number of dimensions
- ► Adaptive Histogram Filter: represents the pmf via adaptive discretization, e.g., octrees





Markov Localization

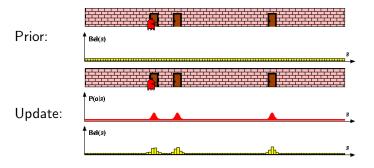
- ▶ Robot Localization Problem: Given a map \mathbf{m} , a sequence of control inputs $\mathbf{u}_{0:t-1}$, and a sequence of measurements $\mathbf{z}_{0:t}$, infer the state of the robot \mathbf{x}_t
- ▶ **Approach**: use a Bayes filter with a multi-modal distribution in order to capture multiple hypotheses about the robot state, e.g.:
 - Histogram filter
 - Particle filter
 - Gaussian mixture filter

Important considerations:

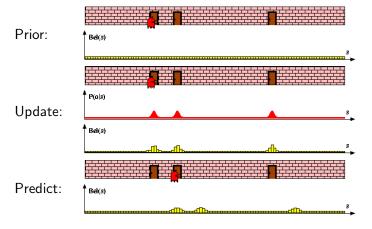
- How is the map m represented?
- What are the motion and observation models?
- Need to keep the number of hypotheses about the value of x_t under control

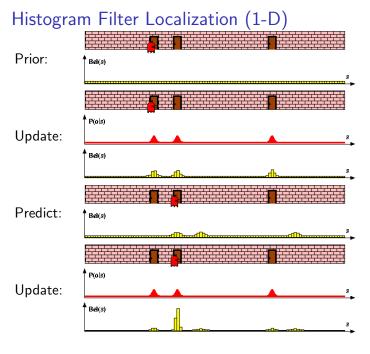
Histogram Filter Localization (1-D)

Histogram Filter Localization (1-D)



Histogram Filter Localization (1-D)





Particle Filter

- lacktriangle The histogram filter uses pmfs over a grid to represent $p_{t|t}$ and $p_{t+1|t}$
- ▶ The particle filter uses a mixture of delta functions (particles):

$$\delta(\mathbf{x}; oldsymbol{\mu}^{(k)}) := egin{cases} \infty & \mathbf{x} = oldsymbol{\mu}^{(k)} \ 0 & ext{else} \end{cases}$$
 for $k = 1, \dots, N$

with weights $\alpha^{(k)}$ to represent $p_{t|t}$ and $p_{t+1|t}$, i.e.,

$$p(\mathbf{x}_{t} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1}) = p_{t|t}(\mathbf{x}_{t}) = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(\mathbf{x}_{t}; \boldsymbol{\mu}_{t|t}^{(k)}\right)$$

$$p(\mathbf{x}_{t+1} \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t}) = p_{t+1|t}(\mathbf{x}_{t+1}) = \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(\mathbf{x}_{t+1}; \boldsymbol{\mu}_{t+1|t}^{(k)}\right)$$

- ➤ To derive the filter, substitute the delta mixture pdfs in the Bayes filter prediction and update steps
- ► The prediction and update steps should maintain the mixture-of-delta-functions form of the pdfs

Particle Filter Prediction

▶ How do we approximate the prediction step as a delta-mixture pdf?

$$p_{t+1|t}(\mathbf{x}) = \int p_f(\mathbf{x} \mid \mathbf{s}, \mathbf{u}_t) \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(\mathbf{s}; \boldsymbol{\mu}_{t|t}^{(k)}\right) d\mathbf{s}$$

$$= \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_f(\mathbf{x} \mid \boldsymbol{\mu}_{t|t}^{(k)}, \mathbf{u}_t) \stackrel{??}{\approx} \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(\mathbf{x}; \boldsymbol{\mu}_{t+1|t}^{(k)}\right)$$

- Since $p_{t+1|t}(\mathbf{x})$ is a mixture pdf with components $p_f(\mathbf{x} \mid \boldsymbol{\mu}_{t|t}^{(k)}, \mathbf{u}_t)$, we may approximate it with particles by drawing samples from it
- ► This process consists of two steps:
 - ▶ **Resampling**: given particles $\left\{ \boldsymbol{\mu}_{t|t}^{(k)}, \boldsymbol{\alpha}_{t|t}^{(k)} \right\}$ for $k = 1, \dots, N_{t|t}$, create a new set, $\left\{ \bar{\boldsymbol{\mu}}_{t|t}^{(k)}, \bar{\boldsymbol{\alpha}}_{t|t}^{(k)} \right\}$ for $k = 1, \dots, N_{t+1|t}$ (usually $N_{t+1|t} = N_{t|t}$)
 - **Prediction**: apply the motion model to each $\bar{\mu}_{t|t}^{(k)}$ by drawing $\mu_{t+1|t}^{(k)} \sim p_f\left(\cdot \mid \bar{\mu}_{t|t}^{(k)}, u_t\right)$ and set $\alpha_{t+1|t}^{(k)} = \bar{\alpha}_{t|t}^{(k)}$

Particle Filter Update

Evaluate Bayes rule with the predicted delta-mixture pdf

$$\begin{split} \rho_{t+1|t+1}(\mathbf{x}) &= \frac{\rho_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}\right) \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(\mathbf{x}; \boldsymbol{\mu}_{t+1|t}^{(k)}\right)}{\int \rho_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{s}\right) \sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} \delta\left(\mathbf{s}; \boldsymbol{\mu}_{t+1|t}^{(j)}\right) d\mathbf{s}} \\ &= \sum_{k=1}^{N_{t+1|t}} \left[\frac{\alpha_{t+1|t}^{(k)} \rho_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1|t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} \rho_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1|t}^{(j)}\right)} \right] \delta\left(\mathbf{x}; \boldsymbol{\mu}_{t+1|t}^{(k)}\right) \end{split}$$

- The resulting pdf turns out to be a delta mixture so no approximation is necessary
- The update step does not update the particle positions but only their weights

Particle Filter Summary

- ▶ Prior: $\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1} \sim p_{t|t}(\mathbf{x}_t) := \sum_{k=1}^{N} \alpha_{t|t}^{(k)} \delta\left(\mathbf{x}_t; \boldsymbol{\mu}_{t|t}^{(k)}\right)$
- ▶ **Resampling**: If $N_{eff} := \frac{1}{\sum_{k=1}^{N} \left(\alpha_{t|t}^{(k)}\right)^2} \le N_{threshold}$, resample the particle set $\left\{\boldsymbol{\mu}_{t|t}^{(k)}, \alpha_{t|t}^{(k)}\right\}$ via stratified or sample importance resampling
- ▶ Prediction: let $\mu_{t+1|t}^{(k)} \sim p_f\left(\cdot \mid \mu_{t|t}^{(k)}, u_t\right)$ and $\alpha_{t+1|t}^{(k)} = \alpha_{t|t}^{(k)}$ so that:

$$p_{t+1|t}(\mathbf{x}) \approx \sum_{k=1}^{N} \alpha_{t+1|t}^{(k)} \delta\left(\mathbf{x}; \boldsymbol{\mu}_{t+1|t}^{(k)}\right)$$

Update: rescale the particles based on the observation likelihood:

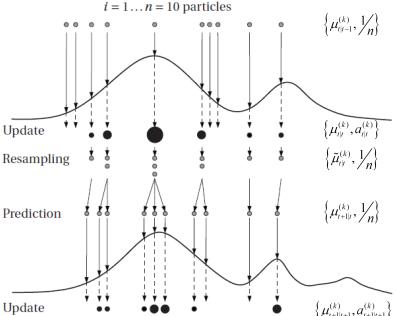
$$p_{t+1|t+1}(\mathbf{x}) = \sum_{k=1}^{N} \left[\frac{\alpha_{t+1|t}^{(k)} p_h \left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1|t}^{(k)} \right)}{\sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} p_h \left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1|t}^{(j)} \right)} \right] \delta \left(\mathbf{x}; \boldsymbol{\mu}_{t+1|t}^{(k)} \right)$$

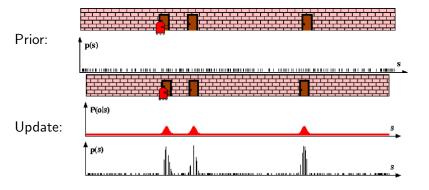
Particle Resampling

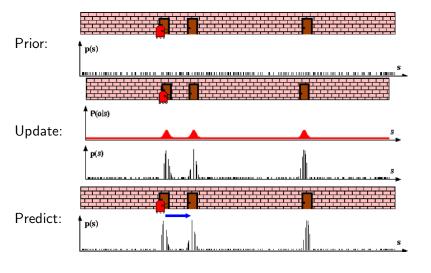
- Particle depletion: a situation in which most of the updated particle weights become close to zero because the finite set of particles are not accurate hypotheses, i.e., the observation likelihoods $p_h\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1\mid t}^{(k)}
 ight)$ are small at all $k = 1, \ldots, N$
- ► The resampling procedure tries to avoid particle depletion
- Given a weighted particle set, resampling creates a new particle set with equal weights by adding many particles to the locations that had high weight and few particles to the locations that had low weights
- Resampling focuses the representation power of the particles to likely regions, while leaving unlikely regions with only few particles
- Resampling is applied at time t if the **effective number of particles**:

$$N_{eff} := rac{1}{\sum_{k=1}^{N} \left(lpha_{t|t}^{(k)}
ight)^2}$$
 is less than a threshold

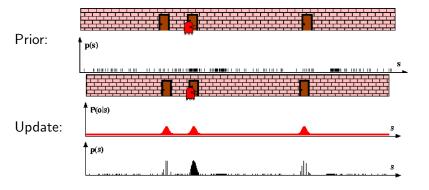
Particle Filter Resampling

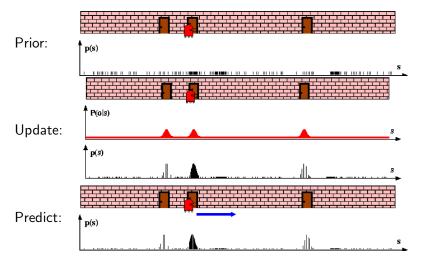


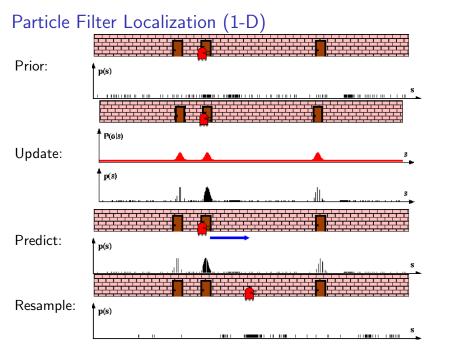










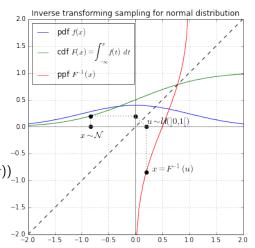


Inverse Transform Sampling

▶ **Target distribution**: How do we sample from a distribution with pdf p(x) and CDF $F(x) = \int_{-\infty}^{x} p(s)ds$?

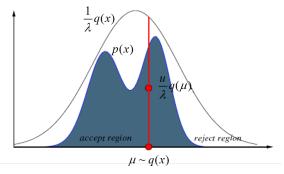
- ► Inverse Transform Sampling:
 - 1. Draw $u \sim \mathcal{U}(0,1)$
 - 2. Return inverse CDF value: $\mu = F^{-1}(u)$
 - 3. The CDF of $F^{-1}(u)$ is:

$$\mathbb{P}(F^{-1}(u) \le x) = \mathbb{P}(u \le F(x))_{-1.0}$$
= $F(x)$



Rejection Sampling

- **Target distribution**: How do we sample from a complicated pdf p(x)?
- **Proposal distribution**: use another pdf q(x) that is easy to sample from (e.g., Uniform, Gaussian) and: $\lambda p(x) \leq q(x)$ with $\lambda \in (0,1)$
- ► Rejection Sampling:
 - 1. Draw $u \sim \mathcal{U}(0,1)$ and $\mu \sim q(\cdot)$
 - 2. Return μ only if $u \leq \frac{\lambda p(\mu)}{q(\mu)}$. If λ is small, many rejections are necessary
- ▶ Good q(x) and λ are **hard to choose** in practice



Sample Importance Resampling (SIR)

- ▶ How about rejection sampling without λ ?
- ▶ Sample Importance Resampling for a target distribution $p(\cdot)$ with proposal distribution $q(\cdot)$
 - 1. Draw $\mu^{(1)},\ldots,\mu^{(N)}\sim q(\cdot)$
 - 2. Compute importance weights $\alpha^{(k)} = \frac{p(\mu^{(k)})}{q(\mu^{(k)})}$ and normalize: $\alpha^{(k)} = \frac{\alpha^{(k)}}{\sum_j \alpha^{(j)}}$
 - 3. Draw $\mu^{(k)}$ independently with replacement from $\left\{\mu^{(1)},\ldots,\mu^{(N)}\right\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$
- ▶ If $q(\cdot)$ is a poor approximation of $p(\cdot)$, then the best samples from q are not necessarily good samples for resampling

Markov Chain Monte Carlo Resampling

- ▶ The main drawback of rejection sampling and SIR is that choosing a good proposal distribution $q(\cdot)$ is hard
- ▶ **Idea**: let the proposed samples μ depend on the last accepted sample μ' , i.e., obtain correlated samples from a conditional proposal distribution $\mu^{(k)} \sim q\left(\cdot \mid \mu^{(k-1)}\right)$
- ▶ Under certain conditions, the samples generated from $q(\cdot \mid \mu')$ form an ergodic Markov chain with $p(\cdot)$ as its stationary distribution
- MCMC methods include Metropolis-Hastings and Gibbs sampling

SIR applied to the Particle Filter

- Let $\left\{ \boldsymbol{\mu}_{t|t}^{(k)}, \alpha_{t|t}^{(k)} \right\}$ for $k = 1, \dots, N$ be the particle set at time t
- ▶ If $N_{eff} := \frac{1}{\sum_{k=1}^{N} \left(\alpha_{t|t}^{(k)}\right)^2} \le N_{threshold}$, create a new set $\left\{\bar{\mu}_{t|t}^{(k)}, \bar{\alpha}_{t|t}^{(k)}\right\}$ for $k=1,\ldots,N$ as follows
- ▶ Repeat *N* times:
 - ▶ Draw $j \in \{1, ..., N\}$ independently with resplacement with discrete probability $\alpha_{t|t}^{(j)}$
 - Add the sample $\mu_{t|t}^{(j)}$ with weight $\frac{1}{N}$ to the new particle set

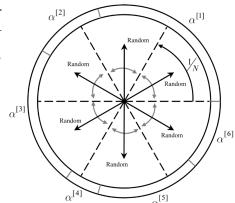
Stratified Resampling

- ▶ In SIR, the weighted set $\{\mu^{(k)}, \alpha^{(k)}\}$ is sampled independently with replacement
- ► This might result in high variance resampling, i.e., sometimes some samples with large weights might not be selected or samples with very small weights may be selected multiple times
- ➤ **Stratified resampling**: guarantees that samples with large weights appear at least once and those with small weights at most once. Stratified resampling is **optimal in terms of variance** (Thrun et al. 2005)
- ▶ Instead of selecting samples independently, use a sequential process:
 - ▶ Add the weights along the circumference of a circle
 - ightharpoonup Divide the circle into N equal pieces and sample a uniform on each piece
 - ► Samples with large weights are chosen at least once and those with small weights at most once

Stratified and Systematic Resampling

Stratified (low variance) resampling

- 1: **Input**: particle set $\{\mu^{(k)}, \alpha^{(k)}\}_{k=1}^{N}$ 2: **Output**: resampled particle set
- 2. Output. resampled particle se
- 3: $j \leftarrow 1$, $c \leftarrow \alpha^{(1)}$
- 4: **for** k = 1, ..., N **do**
- 5: $u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$
- $\beta = u + \frac{k-1}{N}$
- 7: while $\beta > c$ do
- 8: $j = j + 1, c = c + \alpha^{(j)}$
- 9: add $(\mu^{(j)}, \frac{1}{N})$ to the new set



Systematic resampling: the same as stratified resampling except that the **same** uniform is used for each piece, i.e., $u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$ is sampled only once before the for loop above.