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Special Orthogonal Group SO(3)

» The orientation R of a rigid body can be described by a matrix in the
special orthogonal group:

S0(3):={ ReR¥>3| R'R=1[ .,det(R)=1
— N———

distances preserved |, reflection

» It can be verified that SO(3) satisfies all requirements of a group:
> Closure: R R, € SO(3)

> Identity: | € SO(3)
> Inverse: R~ = RT € SO(3)
> Associativity: (RlRQ)Rg = Rl(R2R3) for all Rl, RQ, R3 S 50(3)



Parametrizations of SO(3)
» Rotation Matrix: an element of the Special Orthogonal Group:

RTR =1, det(R) = 1}

R € SO(3) := {R e R3*3

» Euler Angles: roll ¢, pitch 6, yaw 1 specifying a rzyx rotation:
R = R:(¥)Ry(0)Rx(¢)

> Axis-Angle: 6 € R3 specifying a rotation about an axis 1 := ”%

through an angle 0 := ||0||:

R=exp(8)=1+0+

> Unit Quaternion: q=[gs, q,] € {gc H | ¢Z + q,q, =1}
E(q) = [_an qgs! +ﬁv]

o T
R = E(q)G((I) G(q) = [—an qsl - é\lv]



Special Euclidean Group SE(3)
» The pose T of a rigid body can be described by a matrix in the special
Euclidean group:

SE(3) = {T = [ORT ';] c RAx4

R € SO(3),p € R3}

» It can be verified that SE(3) satisfies all requirements of a group:

> Closure: Ty T, = [("} Pll} L:‘)? Plz} _ [R(;fz R1P21+ P1:| € SE3)

0} € SE(3)

> Identity: {OIT 1

-1
R RT —RT
> Inverse: [OT Fl)] = [OT 1 p} € SE(3)

> Associativity: (T1 TQ)T3 = TI(T2 T3) for all Tl7 TQ, T3 € SE(3)



Matrix Lie Group

>

>

SO(3) and SE(3) are matrix Lie groups

A group is a set of elements with an operation that combines any two
elements to form a third element also in the set. A group satisfies four
axioms: closure, associativity, identity, and invertibility

A manifold is a topological space that is locally homeomorphic to
Euclidean space but globally may have more complicated structure

A Lie group is a group that is also a differentiable manifold with the
property that the group operations are smooth

A matrix Lie group further specifies that the group elements are
matrices, the combination operation is matrix multiplication, and the
inversion operation is matrix inversion

The exponential map relates a matrix Lie group to its Lie algebra

exp(A) = Z AT |og(A)—Z(_1,3H(A—/)"

n=1



Lie Algebra

» A Lie algebra is a vector space V over some field [F with a binary
operation, [-, -], called a Lie bracket

» Forall X,Y,Z €V and a, b € F, the Lie bracket satisfies:

closure : [X,Y]eV
bilinearity : [aX + bY, Z] = a[X, Z] + blY, Z]
[Z,aX 4+ bY]| = a[Z,X] + b[Z, Y]
alternating : X, X]=0
Jacobi identity : X, [, ZI|+ 1Y, [1Z,X]] +[Z,[X,Y]]=0
» A Lie algebra may be associated with every Lie group. The vector

space of a Lie algebra forms the tangent space to the Lie group at the
identity element of the group.



Lie Group and Lie Algebra Visualization

» Lie Group: free of singularities but has constraints
» Lie Algebra: free of constraints but has singularities

Lie algebra corresponding to the

T;SE(3) = 50(3,D) — £ T
== ~ tangent space at identity

Manifold belonging to the
Lie group of the Euclidean motions

Figure: SE(3) and the corresponding Lie algebra se(3) as tangent space at identity



SO(3) Geometry



Special Orthogonal Lie Algebra so(3)
» The Lie algebra of SO(3) is the space of skew-symmetric matrices
50(3) == {0 e R>3 | 9 e R}
> The Lie bracket of so(3) is:
PN PP R A
[01,02] = 010, — 0,0, = (9102) € 50(3)

> Generators of s0(3): derivatives of rotations around each standard axis:

d 00 O 0 01 0 -1 0

Gx_dRX(¢)‘ —loo -1] G6=|0 00| 6= 0 0

¢ o=0 [0 1 0 100 0 0 0

» The elements 8 = 6;G, + 62G, + 3G, € s0(3) are linear combinations
of the generators

[y



Exponential Map from s0(3) to SO(3)

> The elements R € SO(3) are related to the elements & € s0(3) through
the exponential map:

=1
—exp Zn—

» The exponential map is surjective but not injective, i.e., every element
of SO(3) can be generated from multiple elements of s0(3)

> Any vector (||@]| + 27k) & roy for integer k leads to the same R € S50(3)

» The exponential map is not commutative, e?1e92 £ 9201 £ 01162
unless [91, 92] == 0102 — 0201 =0
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Rodrigues Formula

» A closed-from expression for the exponential map from so(3) to SO(3):

A sin HHH) A (1 — cosHBH) A2
R:exp0:I+< o4 (——=1P) g
(©) 18] 16112

» The formula is derived using that o> = (—676)"6:

o [o@)
1 A2n42

1 A2n4+1
:’+,,§_30<zn+1>!" RN
_ (=1)"lle]" o (D017 2
—'+(§M)9+(§M)0

sin\|0||> A <1cos||0|]> -
— I+ < o+ (—>1) 9
16l 16112
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Logarithm Map from SO(3) to so0(3)
> VR € SO(3), there exists a (non-unique) 6 € R3 such that R = exp()

~

» The logarithm map log : SO(3) — s0(3) is the inverse of exp(8):

» If R=1, then 6 =0 and
tr(R) — 1 '
0 = ||8]] = arccos <r(;> 7 is undefined
0 1 R35 — Ro3 > If tr(R) =—1,thenf ==

n = m = W Riz — Rs; and for any i € {1,2,3}:

Ro1 — Ri2 1
) Il T (i et
0 = log(R) = R-R + e Rei

» The log map has a singularity at § = 0 because there are infinite choices
of rotation axes or equivalently the exponential map is many-to-one.

> The matrix exponential “integrates’ § € se(3) for one second; the
matrix logarithm “differentiates” R € SO(3) to obtain 8 € se(3)
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SO(3) Jacobians
» The left Jacobian of SO(3) is the matrix:

Ji(8) = E%(njl)l (6)" R=1+0J,0)

» The right Jacobian of SO(3) is the matrix:
._ = 1 % i (_a) — T _ pT
Jr(6) .n;)(nﬁ)!( 8)"  Jr(6) = J(~0) = J(6)" = RTU(6)

» Baker-Campbell-Hausdorff Formulas: the SO(3) Jacobians relate
small perturbations in s0(3) to small perturbations in SO(3):

exp ((6 + 06)") ~ exp(8) exp ((Jr(6)36)")
~ exp ((Ju(6)99)") exp(B)

log(exp(81) exp(H2))” ~ Ji(02)7101 + 62 if By is small
0; + JR(91)_102 if 85 is small
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Closed-forms of the SO(3) Jacobians

1—COSH9H) <H‘9H—S'n\|9ll> 52 1,
_ + 0 ~|+-6
( 16112 I 2
_1p
2

B 1+ cos |6 1a
. ~]_ =
Ji(0)" = 0+ <H9||2 2||0||sin |0 o 2°

1 — cos 6] 161 = sin [6]1\ 52 i
= (== lT 191 —sin i) a2
Ir(6) ( o )0 (e )? o

_ 1, 1 1+ cos @] \ 42 1
L_ 1420 — ~ 4+ =
RO =1+50+ o ~ 2feysnje) ) ? =2

1
2

D

1 —cos||@]\ 2

1 — _o_ 7
<JL(0)JL(9) ) =1/+ (1 21 COSH || o
14



Distances in SO(3)

» There are two ways to define the difference between two rotations:
T\ \V
01> = log (Rl R2) 01 = log <R2R1 ) Ri, R» € SO(3)

» Inner product on so(3):

A

A 1 AT A
(B1.02) = S tr (91 02> ~0]6,

» The metric distance between two rotations may be defined in two ways
as the magnitude of the rotation difference:

012 = \/(Iog (R]_TRQ) ,Iog (R;RQ)) = ”912”2

O21 1= \/(|0g (ReRy") ,log (RoR{')) = [|021]2
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Integration in SO(3)

>

The distance between a rotation R = exp(8) and a small perturbation
exp((8 + 60)") can be approximated using the BCH formulas:

log (exp(@)T exp((0 + (50)A))v ~ log (RTRexp ((JR(H)(SG)A))v = Jr(0)06
log (exp((e +60)" ) exp(d) " ) ~ log (exp ((J(0)56)") RRT) = ()60

Regardless of which distance metric we use, the infinitesimal volume
element is the same:

det(J.(0)) = det(Jr(0))  dR = |det(J(6))|dO =2 (W) d6

Integrating functions of rotations can then be carried out as follows:

/S 06 f(R)dR = / 0||<7rf (exp( )) | det(J(8))|d0
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Derivatives in SO(3)

» Consider s € R3 rotated by a rotation matrix R € SO(3) to a new frame

» How do we compute the derivative of Rs with respect to the rotation R?
» Let O € R3 be the Lie algebra vector representing R, i.e., R = exp (é)

» We can compute derivatives with respect to the elements of 0:

orRs e ((0+he))")s—exp (9) s
96; — 50 h
sey . X ((hJL(6)er)") exp (9) s — exp (9) s
lim
Formula h—0 h
A N A o 0
exp(é@)zl—l—é@ i (I +h (JL(G)ei) ) exp (0> S — exp <0> S
ho0 h
= (J.(8)e))" Rs = — (Rs)" J.(0)e;
: . - ORs A
» Stacking the three directional derivatives: 20~ (Rs)" J.(0) 17




Derivatives in SO(3)

» Perturbation in so(3): the gradient can also be obtained via a small
perturbation §60 to the axis-angle vector 6:

exp (0 +00)") s = exp ((J.0)90)") exp(B)s
~ (I + (J.(0)56)") exp(8)s
= Rs + (J.(6)60)"Rs = Rs — (Rs)" J.(6) 50
N————

9Rs
o0

» This is the same as using first-order Taylor series to identify the
Jacobian of a function f(x):

F(x + 0x) ~ F(x) + [gi(x)} 5x

» Perturbation in SO(3): a small perturbation 1 = J;(0)J@ may also be
applied directly to R:

exp(P)Rs ~ (I + 9)Rs = Rs — (Rs)" 4
18



Gradient Descent in SO(3)

| 2

>

Consider miny f(x)

Gradient descent in R?: given an initial guess x(K) take a step of size
o%) > 0 along the descent direction ox(¥) = —V(x(k)):

KU+ 3 (0 4 (R) g (K)

Consider ming f(Rs)

Gradient descent in SO(3): given an initial guess R() take a step of
size (k) > 0 along the descent direction zp(k) = 50,

RHD) = exp (a<k)17,(k>) R(K)

where () should be the gradient of f wrt R evaluated at R(K)s
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Choosing a Descent Direction in SO(3)

» Use a perturbation ¢(k) around the initial guess R(¥) to determine the
gradient 6(K):

f (exp(iAp(k))R(k)s> ~ (0 fb(k))R(k)s>
_f <R(k)s _ (R(k)s)A¢(k>>

 (RWs) v (R(k)s)T (R(k)s)A "o

§T

%

> Gradient descent in SO(3): given an initial guess R(%) take a step of
size (k) > 0 along the descent direction ':,b(k) = —6(h;

AN
P = — <R(k)s> VF(RWs)
RHD) — exp (a<k)¢(k>> R(K)
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Gauss-Newton Optimization in SO(3)
» Optimization problem:

min f(R ZeJ(RSJ) ej(Rs;))

R
» Linearize f(R) using ej(. )= ej(R(k)sj) and JJ( )= —%(R(k)sj) (R(")sj)A

~ 1 T
F(RED) = fexp($h)RW) ~ 5> (ej.k) + W) (ej(.k) + Jj(k>¢(k)>
]

» The cost is quadratic in w(k) and setting its gradient to zero leads to:

Z Jj(k) (Jj(k))T 'll)(k) _ Z (J}k))'r ej(,k)
J .

J

» Apply the optimal perturbation 1/)(") to the initial guess R(¥) according
to the left perturbation scheme:

R(k+1) _ exp(a(k)i‘b(k))R(k)
21



SO(3) and s0(3) Identities

(o.] .
B A\ L.n sin [|6]] 4 1—cos|@]\ 42 ~
R—exp<9>—§:m0 _I+< o )2t (e )P R0

2
prd 101
T — 1 n
-1 o A A ~ ] A
R1=R —exp<—0) _Zm(—o) ~1-9
n=0
det(R) = 1 o' =
tr(R) = 2cos /0] +1 660 =0
RO =6 (AB) =0 (tr(A)l — A —ATH, AecR>3

I
(

(Rs)" = RSRT, seR® &= (—aTe)ké
0 0

exp ((Rs)") = Rexp (8) RT [0, 9] =



SE(3) Geometry
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Special Euclidean Lie Algebra se(3)

» The Lie algebra of SE(3) is the space of twist matrices:

(e[} fexefe- [ e

» The Lie bracket of se(3) is:

A A A A A N A 0
[£1:&0] = &€& — &6, = <§1§2> € se(3) ¢ = [0

>

P} c R6%6

D

> The elements T € SE(3) are related to the elements & € se¢(3) through
the exponential map:

=1
T=ep(§) =) (&) ¢ = log(T)"
n=0

24



Exponential Map from se(3) to SE(3)

» The exponential map is surjective but not injective, i.e., every element
of SE(3) can be generated from multiple elements of se(3)

» Rodrigues Formula: obtained using é4 + ||0||2€2 =0:

T oxp(d) = [exg_(re) JL(le)P} Sy le

n=0

o (1—cos|0]\ sz []6] —sin[0]]\ 3
= nliaad || = 2
*“( oz )¢ T\ e )¢

» Logarithm map log : SE(3) — s¢(3): for any T € SE(3), there exists a
(non-unique) &€ € RO such that:

_[p] _ v JO=log(R),p=J'(8)p, ifR#I,
5_[9]_|°g(T) '_{ezo,p:p, if R=1.

25



SE(3) Jacobians

> Left Jacobian of SE(3): J,(&) = [JL(G) QL(E))}
» Right Jacobian of SE(3): Jr(&) = [JR(()O) 5):((95))]

> Baker-Campbell-Hausdorff Formulas: the SE(3) Jacobians relate
small perturbations in se(3) to small perturbations in SE(3):

exp ((& + 0€)" )~exp(é) (( R(£)3¢)")
xp ((T1(€)0€)") exp(€)

A s jL(fz)_lfl +&, if§&; issmall
log(exp(&1) exp(&>)) " ~ {51 + Jr(&1) 7€, if £, is small

26



Closed-forms of the SE(3) Jacobians

1 s [U(8) QuE)
‘Z(nﬂ)!“)‘{o ()]

n=0

e

—|lo]sin|@]| —4cosH9H) p (4H0H —5sin||6] + I\H\Icos|\0|\> 42
=1+ ( £+ ¢
2[le]12 2e|?
N <2 [1]Isin [[6]] —2cos\|0|\> 3+ <2H9H —3sin ||| + ||| cos [|€]|
2] 20|
1A
~I+ =
+5€

oD

- _JL(e)-laL(s)JL(e)‘l} ~1- L
J(6): 2

"n Am
Que) = Z n+m+2 o po

nOmO
1 (8l =sinll8ll\ (a4~  ~a . 3.7 012 +2cos ||8]| — 2 /52,
=z o) (8 01+ 0pd NI cosiFll = <)
2"*( [GE (60-+ 06 +88) + 2] (¢
2/0]] — 3sin [8]] + 0]/ <0s 0]\ (5,22 . 22,5
6p0 0 po
*( 20] (006" +0°90)

Qr(€) = Qu(=¢) = RQL(&) + (J(8)p)"RJL(0)

p0° — 39,&@)
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Adjoints
» The adjoint of T = [ORT 1] € SE(3) is

Ad(T) = [’g "If] c R6*6

> Ad(SE(3)) := {Ad(T) € R®*® | T € SE(3)} is a matrix Lie group

> The adjoint of £ = [OOT g] € se(3) is:
A [
ad(8) =€ = [0 g] € R6*6

> ad(se(3)) := {ad(€) € R®*6 | £ € s¢(3)} is the Lie algebra associated
with Ad(SE(3))

It
» The relationship between & and 7 := Ad(T) is specified by the
exponential map:

T—exp(€) = | +ET(E)  T(E) = TTr(E) = Tr(~€) o



Pose Lie Groups and Lie Algebras
Lie algebra Lie group

4% 4 ¢ ese(3) P, TeSE®3)

|ad |Ad

6x6 & cad(se(3) —25 T € Ad(SE(3))

29



Rodrigues Formula for the Adjoint of SE(3)

» The exponential map is surjective but not injective, i.e., every element
of Ad(SE(3)) can be generated from multiple elements of ad(se(3))

A A A
» Rodrigues Formula: using (£)° + 2(|6]/2(€¢)® + ||0]|*€ = 0 we can
obtain a direct expression of 7 € Ad(SE(3)) in terms of £ = [Z} € RO:

o7y = (£) = [90) O o) S 1

0 exp(0) nzoﬁ
3sin|6] — 0] cos ||e||> ) (4 _|lo]sin 6] - 4cos||e||) L
— I+ ( £+ ¢
276 e ©
sin|0|—||e||cos|0|) - (2—||0||sin|0|—2cos||0||> »
+ &) + 3
( E © 26| ©
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Distances in SE(3)
» Two ways to define differences between SE(3) and Ad(SE(3)) elements:
€1 =log (T 'To) " =log (T, 'T2) "
€o = log (T ) =log (LT )"
» Inner product on s¢(3) and ad(se(3)):

~— ~—
~—

~

(€1,&) =tr <§1 (1)] é;) =&l
T

o] 52> - &6,

2

» The right and left distances on SE(3) and Ad(SE(3)) are:

§12 =/ (€12, &12) = \ <§12a§12> =/ £é1n = €12l
§o1 =/ (€21,€01) = \ <§217§21> =/ £31601 = €12

(==X NYI=
bl

| —

A A A
(€1,&) =tr (51

|
A=
o
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Integration in SE(3)

~

» The distance between a pose T = exp(&) and a small perturbation
exp((€ + 6¢)") can be approximated using the BCH formulas:

o5 (xp(&) ™ exp((€ +0€)"))  ~ Tr(€)o€
log (exp((€ +06) ) exp(8) 1) = Ju(€)¢

» Regardless whether the left or the right distance metric is used, the
infinitesimal volume element is:

— COS 2
wauuonzrwaxonﬁz4<lwwwm>

» Integrating functions of poses can then be carried out as follows:

/SE(s) AT)ar = /Ra,||a<7r f (xp(@)) ldet(7 ()l

32



Lie Algebra se(3) Identities
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Lie Group SE(3) Identities

T e (£) - [exp (o) JL<9>P]

0 1
< 1. R 1 _Cos|9|> a2 <||0|| —sin |0||) 23 .
25 o2 R

T1=exp (‘5) = 7" _0> o <_0) B (_£> ~1-g
0 1 n=0 n!
det(T) =1
tr(T) = 2cos||0]| + 2
TE=ET
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Lie Group Ad(SE(3)) Identities

T = Ad(T) = exp (g) _ [exp (9) (JL(8)p)" exp ( )]

0 exp 0)
S P 3sin [|6] — [|6] cos [|6]| 4 — (6]l sin [|6]] — 4cos [|6]|
= —¢& =1+ ( +
;, n! 2||e]| 2||6]?

+(SinH0H \BHCOSIIOII) @2+ (2= 6] sin [|6]] — 2c05|I‘9II)( £~
I-¢

/-\

-
I~

2|03 2|0[*

e (=[5 e -

A A
TE=¢ TE=ET
N A A
(7¢)" =T¢T (TQ)=T¢CT' CeR°
exp ((T¢)") = Texp (&) 7! exp ((%C)) =T exp (2) 771
(Tm)® = Tm®7 1 (Tm)®) " (Tm)® =77 (m®) " mO7
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SO(3) and SE(3) Kinematics

36



Rotation Kinematics

» The trajectory R(t) of a continuous rotation motion should satisfy:
RT()R(t)=1 = R'(t)R(t)+ R"(t)R(t)=0.

» The matrix RT(t)R(t) is skew-symmetric and there must exist some
vector-valued function w(t) € R3 such that:

RT(t)R(t) =&(t) = |R(t) = R(t)&(t)

» A skew-symmetric matrix gives a first order approximation to a rotation
matrix:

R(t + dt) =~ R(t) + R(t)&(t)dt
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Rotation Kinematics

» Let R € SO(3) be the orientation of a rigid body rotating with angular
velocity w € R3 with respect to the world frame.

» Rotation kinematic equations of motion:

R = R&g = OwR

where wp and wy 1= Rwp are the body-frame and world-frame
coordinates of w, respectively.

» Assuming w is constant over a short period 7:
R(t +7) = R(t)exp(t@&g) = exp(t@w)R(t)

> Discrete Rotation Kinematics: let Ry := R(tx), 7« := tk+1 — tk, and
wg := wpg(tx) leading to:

’ Ri+1 = Rk eXP(Tk@Jk)‘

38



Pose Kinematics

>

>

Angular velocity: RT(t)R(t) =1 = R (t)R(t) = &(t) € s50(3)
Twist: similarly for T(t) € SE(3) consider:

T-1(6)T(t) = {RT(QR“) RT(Q"’(”} _ {“A’g” Vg)} € 5e(3)

where &(t) := RT(¢t)R(t) and v(t) := R (t)p(t) are the body-frame
angular and linear velocities of the body

: - _ |v(t) 6
Generalized velocity: ((t) := [w(t)} eR

¢(t) is the velocity of the body frame moving relative to the world frame
as viewed in the body frame

T()4(1)

Continuous-time Pose Kinematics: | T(t)

Discrete-time Pose Kinematics: | Ti11 = Ty exp (Tk&k)
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Pose Kinematics
» Consider a moving body frame {B} with pose T(t) € SE(3)

» Let sg € R3 be a point in the body frame with homogeneous
coordinates sg

» The velocity of sg with respect to the world frame {W} can be
determined as follows:

_ [R(t)cﬁ(t R(t){ R(t)v(t) — R(t)&(t)R(t)Tp(t)] [s\/v(t)}
0" 0 1
— [(R( Jw(t))" (5vv(t)1— p(t)) + R(t)V(t)]
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