ECE276A: Sensing & Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

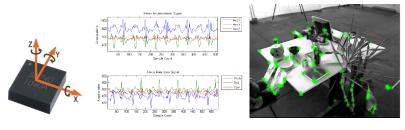
Teaching Assistants:

Mo Shan: moshan@eng.ucsd.edu

Arash Asgharivaskasi: aasghari@eng.ucsd.edu

Visual-Inertial Localization and Mapping

- Input:
 - ▶ IMU: linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ and rotational velocity $\boldsymbol{\omega}_t \in \mathbb{R}^3$
 - ightharpoonup Camera: features $\mathbf{z}_{t,i} \in \mathbb{R}^4$ (left and right image pixels) for $i = 1, \dots, N_t$



Assumption: The transformation $O(T_1) \in SE(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix M (intrinsic parameters) are known.

$$M := \begin{bmatrix} fs_u & 0 & c_u & 0 \\ 0 & fs_v & c_v & 0 \\ fs_u & 0 & c_u & -fs_ub \\ 0 & fs_v & c_v & 0 \end{bmatrix} \qquad \begin{array}{l} f = \text{focal length } [m] \\ s_u, s_v = \text{pixel scaling } [pixels/m] \\ c_u, c_v = \text{principal point } [pixels] \\ b = \text{stereo baseline } [m] \end{array}$$

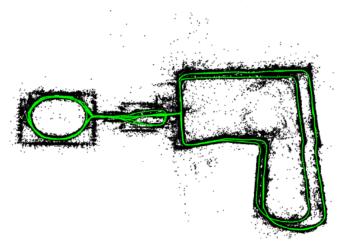
f = focal length [m]

b = stereo baseline [m]

Visual-Inertial Localization and Mapping

Output:

- ▶ World-frame IMU pose $_W T_I \in SE(3)$ over time (green)
- ▶ World-frame coordinates $\mathbf{m}_j \in \mathbb{R}^3$ of the j = 1, ..., M point landmarks (black) that generated the visual features $\mathbf{z}_{t,i} \in \mathbb{R}^4$



Visual Mapping

- Consider the mapping-only problem first
- ▶ **Assumption**: the IMU pose $T_t := {}_W T_{I,t} \in SE(3)$ is known
- ▶ **Objective**: given the observations $\mathbf{z}_t := \begin{bmatrix} \mathbf{z}_{t,1}^\top & \cdots & \mathbf{z}_{t,N_t}^\top \end{bmatrix}^\top \in \mathbb{R}^{4N_t}$ for $t = 0, \dots, T$, estimate the coordinates $\mathbf{m} := \begin{bmatrix} \mathbf{m}_1^\top & \cdots & \mathbf{m}_M^\top \end{bmatrix}^\top \in \mathbb{R}^{3M}$ of the landmarks that generated them
- ▶ **Assumption**: the data association Δ_t : $\{1,\ldots,M\} \rightarrow \{1,\ldots,N_t\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t,i} \in \mathbb{R}^4$ with $i = \Delta_t(j)$ at time t is known or provided by an external algorithm
- **Assumption**: the landmarks \mathbf{m}_i are static, i.e., it is not necessary to consider a motion model or a prediction step

Visual Mapping via the EKF

▶ **Observation Model**: with measurement noise $\mathbf{v}_{t,i} \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t,i} = h(T_t, \mathbf{m}_i) + \mathbf{v}_{t,i} := M\pi \left({}_O T_I T_t^{-1} \underline{\mathbf{m}}_i \right) + \mathbf{v}_{t,i}$$

- ▶ Homogeneous coordinates: $\underline{\mathbf{m}}_j := \begin{bmatrix} \mathbf{m}_j \\ 1 \end{bmatrix}$
- ▶ Projection function and its derivative:

$$\pi(\mathbf{q}) := rac{1}{q_3} \mathbf{q} \in \mathbb{R}^4 \qquad \quad rac{d\pi}{d\mathbf{q}}(\mathbf{q}) = rac{1}{q_3} egin{bmatrix} 1 & 0 & -rac{q_1}{q_3} & 0 \ 0 & 1 & -rac{q_2}{q_3} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{q_4}{q_2} & 1 \end{bmatrix} \in \mathbb{R}^{4 imes 4}$$

ightharpoonup All observations, stacked as a $4N_t$ vector, at time t with notation abuse:

$$\mathbf{z}_{t} = M\pi\left({}_{O}T_{I}T_{t}^{-1}\underline{\mathbf{m}}\right) + \mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}\left(\mathbf{0}, I \otimes V\right) \quad I \otimes V := \begin{bmatrix} V & & & \\ & \ddots & & \\ & & V \end{bmatrix}$$

Visual Mapping via the EKF

- ▶ Prior: m | $\mathbf{z}_{0:t} \sim \mathcal{N}(\mu_t, \Sigma_t)$ with $\mu_t \in \mathbb{R}^{3M}$ and $\Sigma_t \in \mathbb{R}^{3M \times 3M}$
- **EKF Update**: given a new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$:

$$K_{t+1} = \Sigma_t H_{t+1}^{\top} \left(H_{t+1} \Sigma_t H_{t+1}^{\top} + I \otimes V \right)^{-1}$$

$$\mu_{t+1} = \mu_t + K_{t+1} \left(\mathbf{z}_{t+1} - \underbrace{M\pi \left({}_{O} T_{I} T_{t+1}^{-1} \underline{\mu}_{t} \right)}_{\tilde{\mathbf{z}}_{t+1}} \right)$$

$$\Sigma_{t+1} = (I - K_{t+1}H_{t+1})\Sigma_t$$

- $ilde{\mathbf{z}}_{t+1} \in \mathbb{R}^{4N_{t+1}}$ is the predicted observation based on the landmark position estimates μ_t at time t
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4N_t \times 3M}$ evaluated at μ_t with block elements $H_{t+1,i,j} \in \mathbb{R}^{4 \times 3}$:

$$H_{t+1,i,j} := egin{cases} rac{\partial}{\partial \mathbf{m}_j} h(T_{t+1},\mathbf{m}_j) \Big|_{\mathbf{m}_j = oldsymbol{\mu}_{t,j}}, & ext{if } \Delta_t(j) = i, \ \mathbf{0}, & ext{otherwise}. \end{cases}$$

Stereo Camera Jacobian

► Consider a perturbation $\delta \mu_{t,j} \in \mathbb{R}^3$ for the position of landmark j:

$$\mathbf{m}_j = \boldsymbol{\mu}_{t,j} + \delta \boldsymbol{\mu}_{t,j}$$

- Projection Matrix: $P = \begin{bmatrix} I & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 4}$ such that $\mathbf{m}_j = P \mathbf{\underline{m}}_j$
- ► The first-order Taylor series approximation to observation i at time t using the perturbation $\delta \mu_{t,i}$ is:

$$\begin{split} \mathbf{z}_{t+1,i} &= M\pi \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\left(\boldsymbol{\mu}_{t,j} + \delta\boldsymbol{\mu}_{t,j} \right)} \right) + \mathbf{v}_{t+1,i} \\ &= M\pi \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\left(\underline{\boldsymbol{\mu}}_{t,j} + \boldsymbol{P}^{\top}\delta\boldsymbol{\mu}_{t,j} \right)} \right) + \mathbf{v}_{t+1,i} \\ &\approx \underbrace{M\pi \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\boldsymbol{\mu}}_{t,j} \right)}_{\widetilde{\mathbf{z}}_{t+1,i}} + \underbrace{M\frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\boldsymbol{\mu}}_{t,j} \right) {}_{O}T_{I}T_{t+1}^{-1}\boldsymbol{P}^{\top}}_{H_{t+1,i,j}} \delta\boldsymbol{\mu}_{t,j} + \mathbf{v}_{t+1,i} \end{split}$$

Visual Mapping via the EKF (Summary)

- Prior: $\mu_t \in \mathbb{R}^{3M}$ and $\Sigma_t \in \mathbb{R}^{3M \times 3M}$
- ▶ Known: calibration matrix M, extrinsics $_{O}T_{I} \in SE(3)$, IMU pose $T_{t+1} \in SE(3)$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$
- \blacktriangleright Predicted observations based on μ_t and known correspondences Δ_{t+1} :

$$ilde{\mathbf{z}}_{t+1,i} := extit{M}\pi\left({}_{O} extit{T}_{I} extit{T}_{t+1}^{-1}\underline{\mu}_{t,j}
ight) \in \mathbb{R}^{4} \qquad ext{for } i=1,\ldots, extit{N}_{t+1}$$

▶ Jacobian of $\tilde{\mathbf{z}}_{t+1,i}$ with respect to \mathbf{m}_i evaluated at $\mu_{t,i}$:

$$H_{t+1,i,j} = \begin{cases} M \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\mu}_{t,j} \right) {}_{O}T_{I}T_{t+1}^{-1}P^{\top} & \text{if } \Delta_{t}(j) = i, \\ \mathbf{0}, \in \mathbb{R}^{4\times3} & \text{otherwise} \end{cases}$$

EKF update:

$$K_{t+1} = \Sigma_t H_{t+1}^{\top} \left(H_{t+1} \Sigma_t H_{t+1}^{\top} + I \otimes V \right)^{-1}$$

$$\mu_{t+1} = \mu_t + K_{t+1} \left(\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1} \right)$$

$$\Sigma_{t+1} = (I - K_{t+1} H_{t+1}) \Sigma_t$$

$$I \otimes V := \begin{bmatrix} V & & \\ & \ddots & \\ & & V \end{bmatrix}$$

Lie Group Probability and Statistics

- ► The elements of matrix Lie groups do not satisfy some basic operations that we normally take for granted
- ▶ We need a different way to define random variables because matrix Lie groups are not closed under the usual addition operation:

$$\mathbf{x} = \boldsymbol{\mu} + \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$$

▶ Idea: define random variables over the Lie algebra, exploiting its vector space characteristics:

	perturbation	distribution
<i>SO</i> (3)	$R= \exp(\hat{m{\epsilon}}) \mu$	$oldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)$
$\mathfrak{so}(3)$	$oldsymbol{ heta} pprox \log(oldsymbol{\mu})^ee + J_{L}^{-1}(\log(oldsymbol{\mu})^ee) oldsymbol{\epsilon}$	$R = \exp(\hat{oldsymbol{ heta}})$
SE(3)	$\mathcal{T} = \exp(\hat{m{\epsilon}}) m{\mu}$	$\epsilon \sim \mathcal{N}(0,\Sigma)$
$\mathfrak{se}(3)$	$oldsymbol{\xi} pprox \log(oldsymbol{\mu})^ee + \mathcal{J}_{L}^{-1}(\log(oldsymbol{\mu})^ee) oldsymbol{\epsilon}$	$\mathcal{T} = \exp(\hat{oldsymbol{\xi}})$

Lie Group Probability and Statistics

▶ SO(3) and SE(3) Random Variables:

$$R = \exp(\hat{\epsilon}) \mu$$
 $T = \exp(\hat{\epsilon}) \mu$ $\epsilon \sim \mathcal{N}(0, \Sigma)$

where μ is a 'large' noise-free nominal rotation/pose and ϵ is a 'small' noisy component in \mathbb{R}^3 or \mathbb{R}^6

- $lackbox{lack}$ Note that $\epsilon = \log \left(R oldsymbol{\mu}^ op
 ight)^ee$ and $\epsilon = \log \left(T oldsymbol{\mu}^{-1}
 ight)^ee$
- Assuming ϵ has most of its mass on $\|\epsilon\| < \pi$, the pdf of R can be obtained using **Change of Density** with $dR = |det(J_L(\log(\mu)^{\vee}))|d\epsilon$:

$$p(R) = \frac{1}{\sqrt{(2\pi)^3 \det(\Sigma)}} \exp\left(-\frac{1}{2} \left(\log\left(R\boldsymbol{\mu}^\top\right)^\vee\right)^\top \Sigma^{-1} \log\left(R\boldsymbol{\mu}^\top\right)^\vee\right) \frac{1}{|\det(J_L(\log(\boldsymbol{\mu})^\vee))|}$$

▶ The choice of μ and Σ as the mean and variance of R are justified:

$$\int \log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} p(R) dR = 0$$

$$\int \log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} \left(\log \left(R \boldsymbol{\mu}^{\top} \right)^{\vee} \right)^{\top} p(R) dR = \mathbb{E}[\epsilon \epsilon^{\top}] = \Sigma$$

Example: Rotation of a Random Rotation Variable

▶ Let $Q \in SO(3)$ and $\theta \in \mathbb{R}^3$. Then:

$$Q \exp(\hat{\boldsymbol{\theta}}) Q^{ op} = \exp\left(Q\hat{\boldsymbol{\theta}} Q^{ op}\right) = \exp\left((Q\boldsymbol{\theta})^{\wedge}\right)$$

- Let $R \in SO(3)$ be a random rotation with mean $\mu \in SO(3)$ and covariance $\Sigma \in \mathbb{R}^{3\times 3}$.
- ▶ The random variable $Y = QR \in SO(3)$ satisfies:

$$egin{aligned} Y &= QR = Q \exp(\hat{oldsymbol{\epsilon}}) \mu = \exp\left((Qoldsymbol{\epsilon})^{\wedge}
ight) Q \mu \ \mathbb{E}[Y] &= Q \mu \ \mathbf{Var}[Y] &= \mathbf{Var}[Qoldsymbol{\epsilon}] = Q \Sigma Q^{ op} \end{aligned}$$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- ► We will simplify the prediction step by using kinematic rather than dynamic equations
- ▶ **Assumption**: linear velocity $\mathbf{v}_t \in \mathbb{R}^3$ instead of linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ measurements are available
- **Assumption**: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ **Assumption**: the data association Δ_t : $\{1,\ldots,M\} \rightarrow \{1,\ldots,N_t\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t,i} \in \mathbb{R}^4$ with $i = \Delta_t(j)$ at time t is known or provided by an external algorithm
- **Objective**: given IMU measurements $\mathbf{u}_{0:T}$ with $\mathbf{u}_t := [\mathbf{v}_t^\top, \ \boldsymbol{\omega}_t^\top]^\top \in \mathbb{R}^6$ and feature observations $\mathbf{z}_{0:T}$, estimate the pose $T_t := {}_W T_{I,t} \in SE(3)$ of the IMU over time

Pose Kinematics with Perturbation

▶ **Motion Model** for the continuous-time IMU pose T(t) with noise $\mathbf{w}(t)$:

$$\dot{\mathcal{T}} = \mathcal{T}\left(\hat{\mathbf{u}} + \hat{\mathbf{w}}
ight) \qquad \qquad \mathbf{u}(t) := egin{bmatrix} \mathbf{v}(t) \ \omega(t) \end{bmatrix} \in \mathbb{R}^6$$

▶ To consider a Gaussian distribution over T, express it as a nominal pose $\mu \in SE(3)$ with small perturbation $\hat{\delta \mu} \in \mathfrak{se}(3)$:

$$T = \boldsymbol{\mu} \exp(\hat{\delta \boldsymbol{\mu}}) pprox \boldsymbol{\mu} \left(I + \hat{\delta \boldsymbol{\mu}}
ight)$$

▶ Substitute the nominal + perturbed pose in the kinematic equations:

$$\begin{split} \dot{\mu}\left(\mathbf{I}+\hat{\delta\mu}\right)+\mu\left(\hat{\delta\mu}\right)&=\mu\left(\mathbf{I}+\hat{\delta\mu}\right)(\hat{\mathbf{u}}+\hat{\mathbf{w}})\\ \dot{\mu}+\dot{\mu}\hat{\delta\mu}+\mu\left(\hat{\delta\mu}\right)&=\mu\hat{\mathbf{u}}+\mu\hat{\mathbf{w}}+\mu\hat{\delta\mu}\hat{\mathbf{u}}+\mu\hat{\delta\mu}\hat{\mathbf{w}}\\ \dot{\mu}&=\mu\hat{\mathbf{u}}\qquad\mu\hat{\mathbf{u}}\hat{\delta\mu}+\mu\left(\hat{\delta\mu}\right)&=\mu\hat{\mathbf{w}}+\mu\hat{\delta\mu}\hat{\mathbf{u}}\\ \dot{\mu}&=\mu\hat{\mathbf{u}}\qquad\hat{\delta\mu}&=\hat{\delta\mu}\hat{\mathbf{u}}-\hat{\mathbf{u}}\hat{\delta\mu}+\hat{\mathbf{w}}&=\left(-\dot{\mathbf{u}}\delta\mu\right)^{\wedge}+\hat{\mathbf{w}} \end{split}$$

Pose Kinematics with Perturbation

Using $T = \mu \exp(\hat{\delta \mu}) \approx \mu \left(I + \hat{\delta \mu}\right)$, the pose kinematics $\dot{T} = T(\hat{\mathbf{u}} + \hat{\mathbf{w}})$ can be split into nominal and perturbation kinematics:

$$\begin{array}{ll} \text{nominal}: & \dot{\boldsymbol{\mu}} = \boldsymbol{\mu} \hat{\mathbf{u}} \\ \text{perturbation}: & \dot{\delta} \boldsymbol{\mu} = - \overset{\downarrow}{\mathbf{u}} \delta \boldsymbol{\mu} + \mathbf{w} \end{array} \qquad \overset{\downarrow}{\mathbf{u}}:= \begin{bmatrix} \hat{\boldsymbol{\omega}} & \hat{\mathbf{v}} \\ 0 & \hat{\boldsymbol{\omega}} \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

▶ In discrete-time with discretization τ , the above becomes:

$$\begin{aligned} & \text{nominal}: & & \boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t \exp\left(\tau \hat{\mathbf{u}}_t\right) \\ & \text{perturbation}: & & \delta \boldsymbol{\mu}_{t+1} = \exp\left(-\tau \dot{\hat{\mathbf{u}}}_t\right) \delta \boldsymbol{\mu}_t + \mathbf{w}_t \end{aligned}$$

▶ This is useful to separate the effect of the noise \mathbf{w}_t from the motion of the deterministic part of T_t . See Barfoot Ch. 7.2 for details.

EKF Prediction Step

▶ Prior:
$$T_t | \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{t|t}, \boldsymbol{\Sigma}_{t|t})$$
 with $\boldsymbol{\mu}_{t|t} \in SE(3)$ and $\boldsymbol{\Sigma}_{t|t} \in \mathbb{R}^{6 \times 6}$

$$lacksquare$$
 This means that $T_t = m{\mu}_{t|t} \exp(\hat{\delta m{\mu}}_{t|t})$ with $\delta m{\mu}_{t|t} \sim \mathcal{N}(0, \Sigma_{t|t})$

 $ightharpoonup \Sigma_{t|t}$ is 6 × 6 because only the 6 degrees of freedom of T_t are changing

$$egin{aligned} oldsymbol{\mu}_{t+1|t} &= oldsymbol{\mu}_{t|t} \exp\left(au\hat{oldsymbol{\mathfrak{u}}}_{t}
ight) \ \deltaoldsymbol{\mu}_{t+1|t} &= \exp\left(- au\hat{oldsymbol{\mathfrak{u}}}_{t}
ight) \deltaoldsymbol{\mu}_{t|t} + oldsymbol{\mathsf{w}}_{t} \end{aligned}$$

$$\mu_{t+1} = \mu_{t+1} \exp(\tau \hat{\mathbf{u}}_t)$$

$$oldsymbol{\mu}_{t+1|t} = oldsymbol{\mu}_{t|t} \exp\left(au \hat{oldsymbol{u}}_t
ight)$$

$$\Sigma_{t+1|t} = \mathbb{E}[\delta \mu_{t+1|t} \delta \mu_{t+1|t}^{\top}] = \exp\left(-\tau \dot{\hat{\mathbf{u}}}_{t}\right) \Sigma_{t|t} \exp\left(-\tau \dot{\hat{\mathbf{u}}}_{t}\right)^{\top} + W$$

 $egin{aligned} \mathbf{u}_t := egin{bmatrix} \mathbf{v}_t \ \omega_t \end{bmatrix} \in \mathbb{R}^6 \quad \hat{\mathbf{u}}_t := egin{bmatrix} \hat{oldsymbol{\omega}}_t & \mathbf{v}_t \ \mathbf{0}^{ op} & 0 \end{bmatrix} \in \mathbb{R}^{4 imes4} \quad \dot{\hat{\mathbf{u}}}_t := egin{bmatrix} \hat{oldsymbol{\omega}}_t & \hat{\mathbf{v}}_t \ 0 & \hat{oldsymbol{\omega}}_t \end{bmatrix} \in \mathbb{R}^{6 imes6} \end{aligned}$

EKF Prediction Step with $\mathbf{w}_t \sim \mathcal{N}(0, W)$:

Motion Model: nominal kinematics of $\mu_{t|t}$ and perturbation kinematics of $\delta \mu_{t|t}$ with time discretization τ :

EKF Update Step

- ▶ Prior: $T_{t+1}|_{z_{0:t}}, u_{0:t} \sim \mathcal{N}(\mu_{t+1|t}, \Sigma_{t+1|t})$ with $\mu_{t+1|t} \in SE(3)$ and $\Sigma_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- **Description Model**: with measurement noise $\mathbf{v}_t \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t+1,i} = h(T_{t+1}, \mathbf{m}_j) + \mathbf{v}_{t+1,i} := M\pi \left({}_{O}T_{I}T_{t+1}^{-1}\underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

- ▶ The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose $T_{t+1} \in SE(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3M}$
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$ with respect to the IMU pose T_{t+1} , evaluated at $\mu_{t+1|t}$

EKF Update Step

- ▶ Let the elements of $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$ corresponding to different observations i be $H_{t+1,i} \in \mathbb{R}^{4 \times 6}$
- ▶ The first-order Taylor series approximation of observation i at time t+1 using an IMU pose perturbation $\delta \mu$ is:

$$\mathbf{z}_{t+1,i} = M\pi \left({}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t} \exp \left(\hat{\delta \boldsymbol{\mu}} \right) \right)^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$\approx M\pi \left({}_{O}T_{I} \left(I - \hat{\delta \boldsymbol{\mu}} \right) \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$= M\pi \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} - {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot} \delta \boldsymbol{\mu} \right) + \mathbf{v}_{t+1,i}$$

$$\approx \underbrace{M\pi \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) - M \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot}} \delta \boldsymbol{\mu} + \mathbf{v}_{t+1,i}$$

$$\underbrace{\tilde{\mathbf{z}}_{t+1,i}}_{\tilde{\mathbf{z}}_{t+1,i}} \underbrace{M\pi_{i}}_{H_{t+1,i}} \underbrace{M\pi_{i}$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^4$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{se}(3)$:

$$\hat{\boldsymbol{\xi}}\underline{\mathbf{s}} = \underline{\mathbf{s}}^{\odot}\boldsymbol{\xi} \qquad \begin{bmatrix} \mathbf{s} \\ 1 \end{bmatrix}^{\odot} := \begin{bmatrix} \mathbf{I} & -\hat{\mathbf{s}} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 6}$$

EKF Update Step

- ▶ Prior: $\mu_{t+1|t} \in SE(3)$ and $\Sigma_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- ▶ Known: calibration matrix M, extrinsics $_{O}T_{I} \in SE(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3M}$, new observations $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$
- lacktriangle Predicted observation based on $\mu_{t+1|t}$ and known correspondences Δ_t :

$$\tilde{\mathbf{z}}_{t+1,i} := M\pi\left({}_{O}T_{I}\boldsymbol{\mu}_{t+1|t}^{-1}\underline{\mathbf{m}}_{j}\right) \qquad \text{for } i=1,\ldots,N_{t+1}$$

▶ Jacobian of $\tilde{\mathbf{z}}_{t+1,i}$ with respect to T_{t+1} evaluated at $\mu_{t+1|t}$:

$$H_{t+1,i} = -M \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I}\boldsymbol{\mu}_{t+1|t}^{-1}\underline{\mathbf{m}}_{j} \right) {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1}\underline{\mathbf{m}}_{j} \right)^{\odot} \in \mathbb{R}^{4 \times 6}$$

▶ Perform the EKF update:

$$K_{t+1} = \Sigma_{t+1|t} H_{t+1}^{\top} \left(H_{t+1} \Sigma_{t+1|t} H_{t+1}^{\top} + I \otimes V \right)^{-1}$$

$$\mu_{t+1|t+1} = \mu_{t+1|t} \exp\left(\left(K_{t+1} (\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1}) \right)^{\wedge} \right) \qquad H_{t+1} = \begin{bmatrix} H_{t+1,1} \\ \vdots \\ H_{t+1,N_{t+1}} \end{bmatrix}$$

$$\Sigma_{t+1|t+1} = \left(I - K_{t+1} H_{t+1} \right) \Sigma_{t+1|t}$$