ECE276A: Sensing \& Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Visual-Inertial Localization and Mapping

- Input:
- IMU: linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ and rotational velocity $\omega_{t} \in \mathbb{R}^{3}$
- Camera: features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ (left and right image pixels) for $i=1, \ldots, N_{t}$

- Assumption: The transformation $o T_{I} \in S E(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix M (intrinsic parameters) are known.

$$
M:=\left[\begin{array}{cccc}
f s_{u} & 0 & c_{u} & 0 \\
0 & f s_{V} & c_{V} & 0 \\
f s_{u} & 0 & c_{U} & -f_{S_{u}} b \\
0 & f s_{V} & c_{V} & 0
\end{array}\right] \quad \begin{aligned}
f & =\text { focal length }[\mathrm{m}] \\
s_{u}, s_{V} & =\text { pixel scaling [pixels } / \mathrm{m}] \\
c_{u}, c_{V} & =\text { principal point [pixels] } \\
b & =\text { stereo baseline }[\mathrm{m}]
\end{aligned}
$$

Visual-Inertial Localization and Mapping

- Output:
- World-frame IMU pose $w T_{\text {I }} \in S E(3)$ over time (green)
- World-frame coordinates $\mathbf{m}_{j} \in \mathbb{R}^{3}$ of the $j=1, \ldots, M$ point landmarks (black) that generated the visual features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$

Visual Mapping

- Consider the mapping-only problem first
- Assumption: the IMU pose $T_{t}:={ }_{w} T_{I, t} \in S E(3)$ is known
- Objective: given the observations $\mathbf{z}_{t}:=\left[\begin{array}{lll}\mathbf{z}_{t, 1}^{\top} & \cdots & \mathbf{z}_{t, N_{t}}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{4 N_{t}}$ for $t=0, \ldots, T$, estimate the coordinates $\mathbf{m}:=\left[\begin{array}{lll}\mathbf{m}_{1}^{\top} & \cdots & \mathbf{m}_{M}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{3 M}$ of the landmarks that generated them
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Assumption: the landmarks \mathbf{m}_{i} are static, ie., it is not necessary to consider a motion model or a prediction step

Visual Mapping via the EKF

- Observation Model: with measurement noise $\mathbf{v}_{t, i} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t, i}=h\left(T_{t}, \mathbf{m}_{j}\right)+\mathbf{v}_{t, i}:=M \pi\left(o T_{l} T_{t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t, i}
$$

- Homogeneous coordinates: $\underline{\mathbf{m}}_{j}:=\left[\begin{array}{c}\mathbf{m}_{j} \\ 1\end{array}\right]$
- Projection function and its derivative:

$$
\pi(\mathbf{q}):=\frac{1}{q_{3}} \mathbf{q} \in \mathbb{R}^{4} \quad \frac{d \pi}{d \mathbf{q}}(\mathbf{q})=\frac{1}{q_{3}}\left[\begin{array}{cccc}
1 & 0 & -\frac{q_{1}}{q_{3}} & 0 \\
0 & 1 & -\frac{q_{2}}{q_{3}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{q_{4}}{q_{3}} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

- All observations, stacked as a $4 N_{t}$ vector, at time t with notation abuse:

$$
\mathbf{z}_{t}=M \pi\left(o T_{l} T_{t}^{-1} \underline{\mathbf{m}}\right)+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, I \otimes V) \quad I \otimes V:=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

Visual Mapping via the EKF

- Prior: $\mathbf{m} \mid \mathbf{z}_{0: t} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$ with $\boldsymbol{\mu}_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- EKF Update: given a new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$:

$$
\begin{aligned}
& K_{t+1}=\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
& \mu_{t+1}=\mu_{t}+K_{t+1}(\mathbf{z}_{t+1}-\underbrace{M \pi\left(o T_{I} T_{t+1}^{-1} \underline{\mu}_{t}\right)}_{\tilde{\mathbf{z}}_{t+1}}) \\
& \Sigma_{t+1}=\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{aligned}
$$

- $\tilde{\mathbf{z}}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$ is the predicted observation based on the landmark position estimates μ_{t} at time t
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t} \times 3 M}$ evaluated at μ_{t} with block elements $H_{t+1, i, j} \in \mathbb{R}^{4 \times 3}$:

$$
H_{t+1, i, j}:= \begin{cases}\left.\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right)\right|_{\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}}, & \text { if } \Delta_{t}(j)=i \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

Stereo Camera Jacobian

- Consider a perturbation $\delta \boldsymbol{\mu}_{t, j} \in \mathbb{R}^{3}$ for the position of landmark j :

$$
\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}
$$

- Projection Matrix: $P=\left[\begin{array}{ll}1 & 0\end{array}\right] \in \mathbb{R}^{3 \times 4}$ such that $\mathbf{m}_{j}=P \underline{\mathbf{m}}_{j}$
- The first-order Taylor series approximation to observation i at time t using the perturbation $\delta \boldsymbol{\mu}_{t, j}$ is:

$$
\begin{aligned}
\mathbf{z}_{t+1, i} & =M \pi\left(o T_{l} T_{t+1}^{-1}\left(\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}\right)\right)+\mathbf{v}_{t+1, i} \\
& =M \pi\left(o T_{l} T_{t+1}^{-1}\left(\underline{\boldsymbol{\mu}}_{t, j}+P^{\top} \delta \boldsymbol{\mu}_{t, j}\right)\right)+\mathbf{v}_{t+1, i} \\
& \approx \underbrace{M \pi\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right)}_{\tilde{z}_{t+1, i}}+\underbrace{M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} T_{t+1}^{-1} P^{\top}}_{H_{t+1, i, j}} \delta \boldsymbol{\mu}_{t, j}+\mathbf{v}_{t+1, i}
\end{aligned}
$$

Visual Mapping via the EKF (Summary)

- Prior: $\mu_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- Known: calibration matrix M, extrinsics $o T_{I} \in S E(3)$, IMU pose $T_{t+1} \in S E(3)$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observations based on μ_{t} and known correspondences Δ_{t+1} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=M \pi\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right) \in \mathbb{R}^{4} \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to \mathbf{m}_{j} evaluated at $\boldsymbol{\mu}_{t, j}$:

$$
H_{t+1, i, j}= \begin{cases}M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} T_{t+1}^{-1} P^{\top} & \text { if } \Delta_{t}(j)=i \\ \mathbf{0}, \in \mathbb{R}^{4 \times 3} & \text { otherwise }\end{cases}
$$

- EKF update:

$$
\begin{align*}
& K_{t+1}=\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \tag{array}\\
& \mu_{t+1}=\mu_{t}+K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right) \\
& \Sigma_{t+1}=\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{align*}
$$

Lie Group Probability and Statistics

- The elements of matrix Lie groups do not satisfy some basic operations that we normally take for granted
- We need a different way to define random variables because matrix Lie groups are not closed under the usual addition operation:

$$
\mathbf{x}=\boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

- Idea: define random variables over the Lie algebra, exploiting its vector space characteristics:
perturbation
SO (3)
$\mathfrak{s o}(3)$
$\boldsymbol{\theta} \approx \log (\boldsymbol{\mu})^{\vee}+J_{L}^{-1}\left(\log (\boldsymbol{\mu})^{\vee}\right) \boldsymbol{\epsilon}$
$R=\exp (\hat{\boldsymbol{\theta}})$
$S E(3)$

$$
T=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}
$$

$$
\epsilon \sim \mathcal{N}(0, \Sigma)
$$

$\mathfrak{s e}(3)$
$\boldsymbol{\xi} \approx \log (\boldsymbol{\mu})^{\vee}+\mathcal{J}_{L}^{-1}\left(\log (\boldsymbol{\mu})^{\vee}\right) \boldsymbol{\epsilon}$
$T=\exp (\hat{\boldsymbol{\xi}})$

Lie Group Probability and Statistics

- $S O(3)$ and $S E(3)$ Random Variables:

$$
R=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu} \quad T=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \Sigma)
$$

where $\boldsymbol{\mu}$ is a 'large' noise-free nominal rotation/pose and $\boldsymbol{\epsilon}$ is a 'small' noisy component in \mathbb{R}^{3} or \mathbb{R}^{6}

- Note that $\boldsymbol{\epsilon}=\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}$ and $\boldsymbol{\epsilon}=\log \left(T \mu^{-1}\right)^{\vee}$
- Assuming $\boldsymbol{\epsilon}$ has most of its mass on $\|\boldsymbol{\epsilon}\|<\pi$, the pdf of R can be obtained using Change of Density with $d R=\left|\operatorname{det}\left(J_{L}\left(\log (\boldsymbol{\mu})^{\vee}\right)\right)\right| d \epsilon$:

$$
p(R)=\frac{1}{\sqrt{(2 \pi)^{3} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}\left(\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right)^{\top} \Sigma^{-1} \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right) \frac{1}{\left|\operatorname{det}\left(J_{L}\left(\log (\boldsymbol{\mu})^{\vee}\right)\right)\right|}
$$

- The choice of $\boldsymbol{\mu}$ and Σ as the mean and variance of R are justified:

$$
\begin{aligned}
& \int \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee} p(R) d R=0 \\
& \int \log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\left(\log \left(R \boldsymbol{\mu}^{\top}\right)^{\vee}\right)^{\top} p(R) d R=\mathbb{E}\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right]=\Sigma
\end{aligned}
$$

Example: Rotation of a Random Rotation Variable

- Let $Q \in S O(3)$ and $\boldsymbol{\theta} \in \mathbb{R}^{3}$. Then:

$$
Q \exp (\hat{\boldsymbol{\theta}}) Q^{\top}=\exp \left(Q \hat{\boldsymbol{\theta}} Q^{\top}\right)=\exp \left((Q \boldsymbol{\theta})^{\wedge}\right)
$$

- Let $R \in S O$ (3) be a random rotation with mean $\mu \in S O$ (3) and covariance $\Sigma \in \mathbb{R}^{3 \times 3}$.
- The random variable $Y=Q R \in S O(3)$ satisfies:

$$
\begin{aligned}
Y & =Q R=Q \exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}=\exp \left((Q \boldsymbol{\epsilon})^{\wedge}\right) Q \boldsymbol{\mu} \\
\mathbb{E}[Y] & =Q \boldsymbol{\mu} \\
\operatorname{Var}[Y] & =\operatorname{Var}[Q \boldsymbol{\epsilon}]=Q \Sigma Q^{\top}
\end{aligned}
$$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 M}$
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Objective: given IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top} \in \mathbb{R}^{6}$ and feature observations $\mathbf{z}_{0: T}$, estimate the pose $T_{t}:={ }_{w} T_{l, t} \in S E(3)$ of the IMU over time

Pose Kinematics with Perturbation

- Motion Model for the continuous-time IMU pose $T(t)$ with noise $\mathbf{w}(t)$:

$$
\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \quad \mathbf{u}(t):=\left[\begin{array}{c}
\mathbf{v}(t) \\
\boldsymbol{\omega}(t)
\end{array}\right] \in \mathbb{R}^{6}
$$

- To consider a Gaussian distribution over T, express it as a nominal pose $\boldsymbol{\mu} \in S E(3)$ with small perturbation $\hat{\delta \boldsymbol{\mu}} \in \mathfrak{s e}(3)$:

$$
T=\boldsymbol{\mu} \exp (\hat{\delta \boldsymbol{\mu}}) \approx \boldsymbol{\mu}(I+\hat{\delta \boldsymbol{\mu}})
$$

- Substitute the nominal + perturbed pose in the kinematic equations:

$$
\begin{gathered}
\dot{\boldsymbol{\mu}}(I+\hat{\delta \boldsymbol{\mu}})+\boldsymbol{\mu}(\hat{\delta \dot{\delta}} \boldsymbol{\mu})=\boldsymbol{\mu}(I+\hat{\delta \mu})(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \\
\dot{\boldsymbol{\mu}}+\dot{\boldsymbol{\mu}} \hat{\delta} \hat{\boldsymbol{\mu}}+\boldsymbol{\mu}(\hat{\delta} \hat{\boldsymbol{\mu}})=\boldsymbol{\mu} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta} \hat{\boldsymbol{\mu}} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\delta \boldsymbol{\mu}} \hat{\mathbf{w}} \\
\dot{\boldsymbol{\mu}}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \boldsymbol{\mu} \hat{\mathbf{u}} \hat{\delta} \hat{\boldsymbol{\mu}}+\boldsymbol{\mu}(\hat{\delta \dot{\boldsymbol{\mu}}} \boldsymbol{\mu})=\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta} \hat{\boldsymbol{\mu}} \hat{\mathbf{u}} \\
\dot{\boldsymbol{\mu}}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \hat{\delta} \boldsymbol{\dot { \mu }}=\hat{\delta \boldsymbol{\mu}} \hat{\mathbf{u}}-\hat{\mathbf{u}} \hat{\delta} \boldsymbol{\mu}+\hat{\mathbf{w}}=(-\hat{\mathbf{u}} \delta \boldsymbol{\mu})^{\wedge}+\hat{\mathbf{w}}
\end{gathered}
$$

Pose Kinematics with Perturbation

- Using $T=\mu \exp (\hat{\boldsymbol{\mu}}) \approx \mu(I+\hat{\delta \mu})$, the pose kinematics $\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}})$ can be split into nominal and perturbation kinematics:

$$
\text { nominal : } \dot{\mu}=\mu \hat{u}
$$

$$
\text { perturbation: } \dot{\delta} \boldsymbol{\mu}=-\hat{\mathbf{u}} \delta \boldsymbol{\mu}+\mathbf{w} \quad \hat{\mathbf{u}}:=\left[\begin{array}{ll}
0 & \dot{\omega}
\end{array}\right] \in \mathbb{R}^{0 \times 0}
$$

- In discrete-time with discretization τ, the above becomes:

$$
\begin{aligned}
\text { nominal : } & \boldsymbol{\mu}_{t+1} & =\boldsymbol{\mu}_{t} \exp \left(\tau \hat{\mathbf{u}}_{t}\right) \\
\text { perturbation : } & \delta \boldsymbol{\mu}_{t+1} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t}+\mathbf{w}_{t}
\end{aligned}
$$

- This is useful to separate the effect of the noise \mathbf{w}_{t} from the motion of the deterministic part of T_{t}. See Barfoot Ch. 7.2 for details.

EKF Prediction Step

- Prior: $T_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\mu_{t \mid t}, \Sigma_{t \mid t}\right)$ with $\mu_{t \mid t} \in S E(3)$ and $\Sigma_{t \mid t} \in \mathbb{R}^{6 \times 6}$
- This means that $T_{t}=\boldsymbol{\mu}_{t \mid t} \exp \left(\hat{\delta \boldsymbol{\mu}_{t \mid t}}\right)$ with $\delta \boldsymbol{\mu}_{t \mid t} \sim \mathcal{N}\left(0, \Sigma_{t \mid t}\right)$
- $\Sigma_{t \mid t}$ is 6×6 because only the 6 degrees of freedom of T_{t} are changing
- Motion Model: nominal kinematics of $\boldsymbol{\mu}_{t \mid t}$ and perturbation kinematics of $\delta \boldsymbol{\mu}_{t \mid t}$ with time discretization τ :

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\boldsymbol{\mu}_{t \mid t} \exp \left(\tau \hat{\mathbf{u}}_{t}\right) \\
\delta \boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t \mid t}+\mathbf{w}_{t}
\end{aligned}
$$

- EKF Prediction Step with $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$:

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\boldsymbol{\mu}_{t \mid t} \exp \left(\tau \hat{\mathbf{u}}_{t}\right) \\
\Sigma_{t+1 \mid t} & =\mathbb{E}\left[\delta \boldsymbol{\mu}_{t+1 \mid t} \delta \boldsymbol{\mu}_{t+1 \mid t}^{\top}\right]=\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t \mid t} \exp \left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top}+W
\end{aligned}
$$

where

$$
\mathbf{u}_{t}:=\left[\begin{array}{c}
\mathbf{v}_{t} \\
\boldsymbol{\omega}_{t}
\end{array}\right] \in \mathbb{R}^{6} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \mathbf{v}_{t} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \hat{\mathbf{v}}_{t} \\
0 & \hat{\boldsymbol{\omega}}_{t}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

EKF Update Step

 $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$

- Observation Model: with measurement noise $\mathbf{v}_{t} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t+1, i}=h\left(T_{t+1}, \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}:=M \pi\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i}
$$

- The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose $T_{t+1} \in S E(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ with respect to the IMU pose T_{t+1}, evaluated at $\boldsymbol{\mu}_{t+1 \mid t}$

EKF Update Step

- Let the elements of $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ corresponding to different observations i be $H_{t+1, i} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time $t+1$ using an IMU pose perturbation $\delta \boldsymbol{\mu}$ is:

$$
\begin{aligned}
\mathbf{z}_{t+1, i} & =M \pi\left(o T_{I}\left(\boldsymbol{\mu}_{t+1 \mid t} \exp (\hat{\boldsymbol{\mu}})\right)^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& \approx M \pi\left(o T_{I}(I-\delta \hat{\boldsymbol{\mu}}) \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& =M \pi\left(o T_{I} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}-o T_{I}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot} \delta \boldsymbol{\mu}\right)+\mathbf{v}_{t+1, i} \\
& \approx \underbrace{M \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)}_{\tilde{\mathbf{z}}_{t+1, i}} \underbrace{-M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{I}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \mathbf{m}_{j}\right)^{\odot}}_{H_{t+1, i}} \delta \boldsymbol{\mu}+\mathbf{v}_{t+1, i}
\end{aligned}
$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^{4}$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$:

$$
\hat{\boldsymbol{\xi}} \underline{\mathbf{s}}=\underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \quad\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right]^{\odot}:=\left[\begin{array}{cc}
I & -\hat{\mathbf{s}} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 6}
$$

EKF Update Step

- Prior: $\mu_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Known: calibration matrix M, extrinsics $o T_{I} \in S E(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$, new observations $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observation based on $\boldsymbol{\mu}_{t+1 \mid t}$ and known correspondences Δ_{t} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=M \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to T_{t+1} evaluated at $\boldsymbol{\mu}_{t+1 \mid t}$:

$$
H_{t+1, i}=-M \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot} \in \mathbb{R}^{4 \times 6}
$$

- Perform the EKF update:

$$
\begin{aligned}
K_{t+1} & =\Sigma_{t+1 \mid t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t+1 \mid t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
+1 \mid t+1 & =\mu_{t+1 \mid t} \exp \left(\left(K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right)\right)^{\wedge}\right) \\
+1 \mid t+1 & =\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t+1 \mid t}
\end{aligned} \quad H_{t+1}=\left[\begin{array}{c}
H_{t+1,1} \\
\vdots \\
H_{t+1, N_{t+1}}
\end{array}\right]
$$

