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From Photometry to Geometry

» Suppose that instead of a lidar (measures 3-D point positions), we
would like to use a camera to localize our robot and build a map

» Image: an array of positive numbers that measure the amount of light
incident on the sensor

» How do we go from measurements of light (photometry) to
measurements of 2-D point projections (features)?

» This lecture

» How do we go from 2-D point projections (features) to 3-D point
positions (landmarks)?

» We can use the visual-inertial SLAM approach of the previous lecture.



Correspondence

» Corresponding points in two views are image projections of the same
geometric point in space

» Correspondence problem: establish which point zo € R? in the second
image corresponds to a given point z; € R? in the first image in the
sense of being the same point m € R3 in 3-D physical space

» Idea: look for a pixel z; in the second image such that h(zp) =~ h(z1)
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Correspondence

» Matching windows: a robust process for establishing correspondence is
to compare not the brightness of individual pixels but that of small pixel
windows W(z;), W(zy) around the points

» Aperture problem: the brightness profile within the selected windows
may not be rich enough to allow us to recover the transformation of the
pixel z; uniquely (e.g., blank wall)

» Features: points whose local regions are rich enough to allow solving
the correspondence problem. Features establish a link between
photometric measurements and geometric primitives.

» The window shape W(z1) and image values 1(y), y € W(z;),
associated with a pixel z; in the first image undergo a nonlinear
transformation as a consequence of the change of viewpoint



Brightness constancy constraint

» Suppose we are imaging a point m € R3 that emits light with the same
energy in all directions (Lambertian) and radiance distribution R(m)

» Suppose the camera is calibrated (i.e., K = /343) and the two camera
frames are related by a rigid-body transformation (R, p) € SE(3).

» Let /; and / be two images and z1,z> € R? be the two pixels
corresponding to m:

/2(22) = /1(21) X R(m)

» From the projection equations, the point z; in image /; corresponds to
the point z5 in image b if:

1
z; = g(z1) = 3 (MRz1 +p)

2
where A1, > are the unknown depths of the observed point m.

> Brightness constancy constraint: ‘ll(zl) = Iz(g(zl))‘




Local Deformation Models
» The transformation g undergone by the entire image is determined by
the depths A1, A2 of the visible surface and hence estimating g is as
difficult as estimating the shape of the visible objects
» Instead, model the transformation g(z) only locally in a region W(z):
> Translation model: each point in the window W/(z) undergoes the exact
same translational motion d € R?:
gly)~y+d, VyeW(z)
This model is valid only in small windows and over short time durations
but it is at the core of many feature matching and tracking algorithms.

> Affine model: each point in the window W(z) undergoes an affine
transformation with parameters A € R?*? and d € R%:

gly) = Ay +d, Vye W(z)

Az (4.d)

W) W)




Matching Point Features

» Requiring that /1(z1) = h(g(z1)) is too strict due to the approximation
of g and the presence of noise and occlusions

» Correspondence problem: an optimization problem that aims to
determine the (translation or affine) parameters of the local
transformation model of g(y) for y € W(z):

min Y lh(y) =Ly +d)I3 OR min Y k() — (Ay +d)]3

)

yeW(z) yeW(z)

» Qur approximations of g are valid only locally in space and time so
consider the continuous version of the brightness constancy constraint:

h(z) = 1(z(t), t) & h(g(2)) P I(Az(t) +vr, t+7)
brightness constancy approximation model

where 7 is small and v € R? is the velocity of z



Continuous-Time Brightness Constancy

» Linearizing the right-hand side around (z, t):

/
I(Az+vr, t+7)~ I(z,t) + V,I(z,t) " (Az + v7 — 2) + %(z, t)T

» To ensure brightness constancy: /(z,t) ~ I[(Az + vT,t + 7), choose
A and v such that:

> Affi
ine model: m’lg Z
yEW(2)

2

1,07 (20A- Dyt v) + 0e)

2

2

ol
» Translation model: min Z V. l(y, t) v+ a(y7 t)

yEW(2)

2

» Aperture problem: the equation %u + % = 0 provides only one
constraint for two unknowns v € R?.

» There are enough constraints on v only when the brightness constancy
constraint is applied to each y in a region W/(z) that contains “sufficient
texture” and the velocity v is assumed constant over the region.



Feature Tracking and Optical Flow

» The translation model optimization is used for optical flow or feature
tracking in a sequence of images

» Optical flow: computes the velocity v of a fixed image location z

> Feature tracking: computes the velocity v of a feature z(t) moving in
time such that: z(t + 7) = z(t) + v7

» The only difference between optical flow and feature tracking is at the
conceptual level, whether the vector v is computed at fixed locations z
in the image or at moving points z(t)



Feature Tracking and Optical Flow

» To compute the velocity v we need to solve:

m|n Z

yeW(z)

2

ol
V.I(y,t) V+a(y,)

2

» Letting z = (v, v) and setting the gradient to zero results in:

0-2 % (Vally, 07w+ 5100.0)) Yl

yeW(2)
2
A (anitn "2 [E0)

_ S Iiy) X ()(Y) >y lu(¥)1e(y)
=2 [Ey Lu(y) I (y) g I(y)? } * [Z I (y )lt(y)}

6(2) b(2)

» The optimal estimate of the image velocity at z is |v* = —G(z)*lb(z)l




Point Feature Selection

» For G(z) to be invertible, the region W(z) must have nontrivial
gradients along independent directions, therefore resembling a “corner”

» Corner: a pixel z such that the smallest eigenvalue of G(z) is larger
than some threshold p

» Harris corner: a variation of the corner detector that thresholds:
M2 — k(A1 + X2)? = det(G) — ktr’(G) > p

where k € [0.04,0.06] is a small scalar and A1, A2 are the eigenvalues of
G. Since k is small, both eigenvalues of G need to be sufficiently large
to pass the threshold.

» More sophisticated techniques that utilize contours or edges and search
for high curvature points in the detected contours are used in practice

11



Point Feature Selection

» Description of W(z) as a function of the eigenvalues \; and A, of

I3 (y) L.(y)1,(y)
G(z) = Z
yYEW(2) [’”(Y)’V(Y) h(y)?

A2

Edges

Corners

Flat Edges

Al



Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow

1. Input: Image / at time ¢t

3: Compute the image gradient (/u, /)

Syewn B0 Xyew (¥ (Y)

at every pixel z = (u, v
e MO Lyewe E) (& v)

: Compute G(z) := {

4
5:
6: (Feature tracking) select point features zi, 2y, ... such that G(z;) is invertible
7: (Optical flow) select z; on a fixed grid

8

Zye W(z) Lu(y)Ie(y)
Zye W(z) L. (y)1(y)

11: If G(z) is invertible, compute v(z) = —G(z) ' b(2)
12: Else v(z) = 0.

9: Compute b(z) := {

14: (Feature tracking) at time t + 1, repeat the operation at z + v(z)7
15: (Optical flow) at time t + 1, repeat the operation at z

13



Feature Tracking and Optical Flow
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Feature Tracking and Optical Flow

>

>

The feature tracking/optical flow algorithm is very efficient when we use
the translation model

When features are tracked over extended periods of time, however, the
approximation error accumulates

Instead of matching image regions between adjacent frames, one could
match image regions between an initial frame and the current frame

The simple translation model is no longer accurate and we should use
the affine model

Further reading about the Kanade-Lucas-Tomasi (KLT) feature tracker:
» B. Lucas and T. Kanade, “An lterative Image Registration Technique with an

Application to Stereo Vision,” International Joint Conference on Artificial
Intelligence (1JCAI), 1981.

» C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,” CMU
Technical Report CMU-CS-91-132, 1991.

» J. Shi and C. Tomasi, “Good Features to Track,” IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 1994. 15



Image Gradients

» How do we compute the gradients /,(u, v, t), I,(u, v, t), and It(u, v,t)
needed for feature tracking/optical flow?

» We could approximate the derivatives using finite differences, e.g.,:
Te(u, v, ) z%(l(u, Vi) I(uv,t—1) OR h(u,v,t) ~ %(/(m vt 1) — I(u, v, t— 1))

» To derive a more accurate approximation, we need to understand the
relationship between a continuous signal f(x) and its sampled version
with period 7:

flx] =f(xT), x€Z
f(z) fla]

]
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Nyquist-Shannon Sampling Theorem

» If f(x) is band limited, i.e., its Fourier transform satisfies |F(w)| = 0 for
all w > w, (Nyquist frequency), it can be reconstructed exactly from a
set of discrete samples at sampling frequency ws := 27” > 2wy,

» The continuous signal f(x) can be reconstructed by multiplying its
sampled version f[x] in the frequency domain with an ideal
reconstruction filter h(x) with Fourier transform:

f1 owe-n) (X
H(w)—{o, clse h(x) = sinc (7>, x€eR

» Multiplication in the frequency domain corresponds to convolution in the
spatial domain, thus as long as w, < Z:

f(x)=flx]xh(x)= Y flklh(x—k), x€eR

k=—o00
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Derivative of a Sampled Signal
» Differentiating f(x) = f[x] x h(x):

d - d dh
—f(x) = flkl——h(x — k) = f —
/()= 3 Mg hGx— k) = = 100
» Sampling the above result shows that the derivative of the sampled
function f’[x] can be computed as a convolution of the sampled signal
f[x] with the sampled derivative of the sync function A'[x]:

f'[x] = f[x] = h'[x]
K (x) =

(72x/72) cos(mx/T) — m /7 sin(nx/T)
(mx/7)?

h(z) h'(x)

, X€ER

hx) [ Hix)
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Five-tap Gaussian Filter

» The sync function has infinite support and falls off very slowly away
from the origin. Hence, simple truncation of sync convolution yields
undesirable artifacts and is not practically feasible

» The derivative can be approximated by convolving with a Gaussian
instead of a sync since it drops to zero much faster:

2 2
()= et gx) =~
V2mo? 02/ 272

gl2] g'[7]

g[x] = [0.1353 0.6065 1.0000 0.6065 0.1353] g'[x] =[0.2707 0.6065 0 —0.6065 —0.2707)



Image Gradients

» In the case of images (2-D functions) the result is the same:

_ sin(mu/7)sin(wv/7)

m2uv /T2

» Note that h(u, v) = h(u)h(v) is separable which leads to:

luu, v] = Iu, v] * h'[u] * h[v] I,(u,v) = Iu, v] * h[u] * K'[v]

» The computation of the image derivatives is then accomplished as a pair
of 1-D convolutions with filters obtained by sampling a continuous
Gaussian probability density function and its derivative:

w/?2 w/?2
Lluvl = 1u s gl <gll= S S 1k Ng'lu— Kelv — 1]
k=—w/2 |=—w/2
w/2 w/2
W] = o vl eglol wg'd = 3 S Ik fglu— Kg'lv —

k=—w/2 |=—w/2

I(u,v) = u,v] * h(u,v) h(u,v) = h(u)h(v)

» The number of samples is typically chosen as w = 50, imposing the fact
that the window covers 98.76% of the area under the Gaussian curve 20



Image Gradients
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Other Derivative Filters, Features, and Descriptors

» Other commonly used derivative filters:
> Interpolation filter: h[x] = 1[1, 1] with derivative h'[x] = 3[1, —1]
> Sobel filter: h[x] = ﬁ[l, V/2,1] with derivative h'[x] = £[1,0, —1]
» Gabor filter: used for texture analysis
» Other features and descriptors (describe feature shape, color, texture):
> SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David
Lowe, is one of the most successful local image features/descriptors in the
past decade. It makes the Harris corner scale invariant by using
scale-space filtering via a Laplacian of Gaussian kernel (blob detector)

» SUREF: the Speeded-Up Robust Feature is a speeded-up version of SIFT
which applies an approximate 2" derivative Gaussian filter at many scales
along the axes and at 45° (more robust to rotation than Harris corners)

> FAST: a Feature from Accelerated Segment Test detects corners by
considering 16 pixels around the pixel y being tested and is several times
faster than other corner detectors

» BRIEF: a Binary Robust Independent Elementary Features speed up
descriptor calculation and matching

» ORB: Oriented FAST and Rotated BRIEF 22



