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Localization and Odometry from Point Features

» Observation model: relates a feature observation z; obtained from
robot position p and orientation 6 or R with the position m; of the
point landmark that generated the feature z;:

> Position Sensor: z; = R (m; — p)

Range Sensor: z; = ||m; — p||2

Bearing Sensor: z; = arctan (W) -9

x

vyy

Camera Sensor: z; = K7 (RT(rh,- -p))

» Localization Problem: Given landmark positions {m;}; and
measurements {z;}; at one time instance, determine the global robot
position p and orientation 8 or R

» Odometry Problem: Given measurements z;;, z;y1; at two time
instances, determine the relative position {p;41 and orientation 01 or
+R¢y1 between the two robot frames at time t and t + 1



2-D Localization from Relative Position Measurements

» Goal: determine the robot position p € R? and orientation 6 € (-7, 7]
» Given: two landmark positions my, my € R? (world frame) and relative
position measurements (body frame):

zj=R'()(m; —p) eR? =12

0 -1
1 0]sothat.

[cosf) —sind cosf
ML= M2 = ging cosH} (21-22) = [52 J&] (sin 9)

» Let dz:=2z1 — 25 andJ;:[

> As long as det [0z Joz| = ||0z||3 = ||m1 — my|3 # 0, we can compute:

cos@\ 1 [z bz — ,
<sin0> = m sz, 52)(} (m1 — my) ‘9 = atan2(sin Q,COSQ)‘

» Given the orientation 0, we can then obtain the robot position:

p= % ((m1 +m2) — R(0)(z1 + 22))




3-D Localization from Relative Position Measurements

» Goal: determine the robot position p € R3 and orientation R € SO(3)
» Given: three landmark positions my, my, mz € R3 (world frame) and
relative position measurements (body frame):

zi=R'(mj—p)eR3 =123
» Let mj := m; —m; and z;; = z; — z; and compute:
m> X my3 = (Rz12) x (Rz13) = R(z12 X 213)

» The vector mi» X my3 provides orthogonal information to m; and my
and can be used to estimate the orientation R as long as the three
features are not all on the same line:

[mlz mi3 My X m13} =R [212 213 212 X 213]

R = [m12 miz mMjpp X m13] [212 Z13 Z12 X 213]_1

» Given the orientation R, we can then obtain the robot position:

pP= %Z?:l(mi — Rz;)




3-D Localization from Relative Position Measurements

>
>

Goal: determine the robot position p € R3 and orientation R € SO(3)

Given: n landmark positions m; € R3 (world frame) and relative
position measurements (body frame):

zi=R'(m;—p)eR3 i=1...,n

Define the landmark centroids in the world and body frames:

1 I - —
1= 1=

Let dm; := m; —m and 6z; := z; — Z so that dm; = Rdz; for
i=1,...,n

Estimate the orientation via least-squares:

i . — 112 = mi Tom, — TR6z; — 6z R' .
le’nZ]\ém, Réz;||5 mg}nZém, dm; — 26m; Réz; — 0z; R Rdz;

i=1 i=1 hx3



Point Cloud Registration

» 3-D localization from relative position measurements is also known as
the point cloud registration problem

> Given two sets {m;}?_; and {z;}; of 3-D points, find the
tranformation p € R3, R € SO(3) that aligns them

» The data association A : {1,...,n} — {0,1,..., m} that specifies

which point j = A(/) from the second set corresponds to any point i
from the first set might or might to be available




Known Data Association: Kabsch Algorithm

» Find the transformation p, R between sets {m;} and {z;} of associated
3-D points

» As before, define m and z as the point centroids and {ém;} and {0z;}
as the centered points

» Given the rotation R, the translation is:

» Need to solve an optimization problem in SO(3) to determine R:

max om; Réz; = tr (QTR) n
R ; where QT := Zéz;ém,T
st. RTR = l3y3, det(R) =1 =1

» This problem can be solved via the Kabsch algorithm



Known Data Association: Kabsch Algorithm

» Solve a linear optimization problem in SO(3):

max tr (QT R)

ReSO(3)
> SVD: let Q = ULV be the singular value decomposition of @
» The singular vectors U, V' and singular values ¥ satisfy:
Yi>0 U'U=1 det(U)==41 V'V =1 detV ==l
» Let W := U RV, which is orthogonal: WTW = [ and det(W) = £1
> tr(QTR) =tr(ZUTRV) = tr(ZW) = >, ;i W;
» Since ¥;; > 0 and det(W) = +1, the objective is maximized for:

10 0
W=1 = URV=I °2* gr=vulo 1 0 VT
reflection 0 0 det(UVT)



Unknown Data Association: lterative Closest Point (ICP)

> Find the transformation p, R between sets {m;}{_; and {z;}7"; of 3-D
points with unknown data association A : {1,...,n} — {0,1,...,m}

» The ICP algorithm iterates between finding associations based on
closest points and applying the Kabsch algorithm to determine p, R

» Initialize with pg, Ro (sensitive to initial guess) and iterate
1. Given pg, Rk, find correspondences i < j based on closest points:

A(i) = argmin |m; — (Rez; + i) |13, Vie{l,...,n}
jed{l1,...,m}

2. Given correspondences j = A(i), find pxt1, Ri+1 via Kabsch




Unknown Data Association: Probabilistic ICP

» A main challenge is determining the unknown data association. Many
variations and extensions for determining correspondences in ICP exist:
> data association via point-to-plane distance (Chen & Medioni, 1991)
> probabilistic data association (EM-ICP, Granger & Pennec, 2002)

» Place a probability density function 7 (e.g., Gaussian) at each m; to
define a mixture distribution for the data:

n n
:Zam(x;m;,a,-z/) a;j >0 Zoz,-zl
i=1 i=1

» Find parameters p, R to maximize the likelihood of {Rz; + p};:

maxZIogZomr Rz; + p;m;, o} 2/)
j=1 i=1

> Use EM to determine membership probabiliites (E step) and optimize
the parameters p, R (M step). ICP is a special case with 02 — 0

»> Robustness: use exp (—%) with 8 € (0,2) instead of exp( %)
1 1 10



2-D Odometry from Relative Position Measurements

» Goal: determine the relative transformation ;ps41 € R? and
t0t+1 € (—m, 7] between two robot frames at time t + 1 and t

> Given: relative position measurements z;1,2¢> € R? and
Zi411,Zt412 € R2 at consecutive time steps to two unknown landmarks

» |If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 2-D localization from relative position
measurements with m; :=z;;, z; == z¢11;, P := tPr+1, 0 := 041

11



3-D Odometry from Relative Position Measurements

» Goal: determine the relative transformation ;ps41 € R3 and
tRe+1 € SO(3) between two robot frames at time t + 1 and t

> Given: relative position measurements z;; € R3 and Ziy1, € R3 at
consecutive time steps to n unknown landmarks

» If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 3-D localization from relative position
measurements with m; :=z;;, z; ;== z¢11;, P := tPt+1, R = tRet1

12



Summary: Rel. Position Measurements z; = R'(m; — p)

» Localization

2
mi,mp,z;,2> € R

(m1 —my) = R(0)(z1 — 22)

2
1
p= 5 z_;(m, — RZ,‘)

mi,z; €R3, i=1,2,3

[m12 mi3 My X m13] =R [212 713 Z12 X 213}

1
mj:=m;—mj, 2z;:=2;—2; p= § Z(m, RZ,‘)
- i=1
m,z;eR3 i=1,...,n R:argmaxZémiTRéz,-
N ReSO(3) 14
1
e m — — . 10 0
om; :=m, n ;m-/’ Kabsch algorithm ulo 1 0 vT
n SVD(ZLl(Sm;(SzIT):UZVT 00 det(UVT)
1
52,‘:22,‘—722j 1 n
n
j=1 p= Z(m; — Rz;)

i=1

» Odometry: same with m; = z;;, z; ;= Z¢11, P := tPt+1, R = tRe1

13



2-D Localization from Range Measurements

» Goal: determine the robot position p € R? and orientation 6 € (-7, 7]
» Given: two landmark positions m;, my € R2 (world frame) and range
measurements (body frame):

zi=|m; —p|2 €R,

i=1,2

» Because all possible positions whose distance to my is z; is a circle, the
possible robot positions are given by the intersection of two circles

Y

my

P
PRl

Z




2-D Localization from Range Measurements

» Applying the law of cosines to the triangle gives:

73 =23 +[|mz — my 3 — 2z [[m; — my|2 cos ¢

» Solving for ¢ and then the circle intersection points provides the possible
robot positions:

m; —mop
p=my+ ZQR(iqb)iHml — m2||2

» The orientation of the robot 6 is not identifiable

15



2-D Localization from Range Measurements

» Pose disambiguation: the robot can make a move with known
translation pa (measured in the frame at time t) and take two new
range measurements

» There are 2 possible robot positions at each time frame for a total of 4
combinations but comparing ||p:+1 — pt||2 to the known ||pa||2 leaves
only two valid options (and we cannot distinguish between them)

» To obtain the orientation, we use geometric constraints:

. = cos 6
Per1 — Pt = R(0:)pa = [pA’ pA’y] [ t]

Pay  PAx sin 0
» As long as det [pA’X _pA’y} = |Ipall3 # 0, we can compute:
Pa,y  PAax
cosfr| 1 [ Pax PA,y:|
| R e roled S

0 = atan2(sin 0y, cos 0;)
16



3-D Localization from Range Measurements

>

| 2

Goal: determine the robot position p € R3 and orientation R € SO(3)

Given: three landmark positions m;, my, m3 € R® (world frame) and
range measurements (body frame):

Zi:Hmi_pH2€R7 I:1>273
All possible positions whose distance to my is z; is a sphere
The possible robot positions are the intersections of three spheres

To find the intersection of 3 spheres, we first find the intersection of
sphere one and two (a circle) and of sphere two and three (a circle).
The intersection of these two circles gives the possible robot positions.

Degenerate case: all landmarks are on the same line — the intersection
of the spheres is a circle with infinitely many possible robot positions

17



3-D Localization from Range Measurements

» Intersecting circle of spheres with radii z; and z: center 037, radius
ri2, normal vector nyz (perpendicular to the circle plane)

» Law of Cosines: z5 = z2 + |[my — my |3 — 2z ||my — my |2 cos 12

» Geometric relationships:

012 = My + 73 cos f1on12

o = 21‘ sin(912)\

my —my
N =

[m2 — my|2

» Intersecting circle of spheres with radii z; and z3: center 053, radius
r23, normal vector np3 (perpendicular to the circle plane):
m3 — mp

023 = My + 2pC0s023Mp3 3 = 2fsin(f3)] M3 = [[m3 — moljpg



3-D Localization from Range Measurements

» The intersecting points of the two circles can be obtained from the

geometric relationships:

T JE—
n:_l|,2(012 - 0) =0 nir2 nir2012
ny3(023 —0) =0 ngs - 0= N33023
(n12 x nx3) (012 —0) = 0 (n12 X nz3) (n12 x ng3) "

» As long as the three landmarks are not on the same line, we can

uniquely solve for o:
T
det ny3 . #0 <
(n12 X n23)
» The two possible robot positions are:
0 — 0712

p = 012 + r2R(n12, ig)m

ni> and ny3 not colinear

cosf =
rs

» As in the 2-D case, the robot orientation R is not identifiable

lo — 0122

012

19



3-D Localization from Range Measurements

» Pose disambiguation: the robot can make a move with known
translation pa € R® and rotation Ra € SO(3) and take three new range
measurements

» As in the 2-D case, after eliminating the impossible robot positions, we
should be left with only two options for p; and ps+1

» Given p¢, Pt+1, Pa, and Ra, we can now obtain R;
Pt+1 = Pt + RePa
» This is not sufficient because the rotation about pa is not identifiable

» The robot needs to move a second time to a third pose pt42, Rr42
with known translation pa > € R3 and take three more range
measurements to the three landmarks:

Pt12 = Pt+1 + Rey1Pa2 = Per1 + ReRapa2

20



3-D Localization from Range Measurements

» Putting the previous two equations together:

Pt+1 — Pt = RepPa
Pt+2 — Pt+1 = ReRapa2

» Taking a cross product between the two:
(Pt+1 — Pt) X (Pe+2 — Pt+1) = Re(pPa X Rapa2)
» As long as U := [pa, RaPa2, Pa X Rapa2)] is nonsingular, i.e., pa

and Rapa 2 are not co-linear or equivalently the three robot positions
are not on the same line, we can determine the robot orientation:

R: = [(Pt+1 - pt)v (Pt+2 - Pt+1), (Pt+1 - Pt) X (Pt+2 - Pt+1)] Ut

21



2-D Odometry from Range Measurements

>

>

Goal: determine the relative transformation ;p;41 € R? and
t0t+1 € (—m, 7] between two robot frames at time t + 1 and t

Given: range measurements z;; € R and z;41; € R at consecutive time
steps to n unknown landmarks

Let m, 1 ; be the relative position to the i-th landmark at t + 1 so that:

Zt41,i = ||mt+1,i||2
zi = [[tPe+1 + R(:0er1)mey1ill2

Squaring and combining these equations, we get:

T T T 2 2 .
[tPes1] tPey1 + 2mt+17,~R (t0t41)ePer1 = Zii — Zr+1is 1= 1,...,n

We have n equations with n+ 3 unknowns (3 for the relative pose and n
for the unknown directions to the landmarks at t + 1), which is not
solvable.

22



3-D Odometry from Range Measurements

» Goal: determine the relative transformation ;p:41 € R3 and
tRe+1 € SO(3) between two robot frames at time t + 1 and t

» Given: range measurements z;; € R and z;,1; € R at consecutive time
steps to n unknown landmarks

» Following the same derivation as in the 2-D case, we obtain:
T T T 2 2 .
[tPet1] ePes1 + 2mt+17,- [¢Ret1] tPty1 = Zei T Zry1,is 1= 1L,...,n

» We have n equations with 2n + 6 unknowns (6 for the relative pose and
2n for the unknown directions to the landmarks at t + 1), which is not
solvable.

23



Summary: Range Measurements z; = ||m; — p||>

» 2-D Localization: given m;,my € R? and z;,20 € R
1. Law of Cosines: z5 = zZ + ||my — my||3 — 2z ||my — my||2 cos O
2. Position: p=my + zﬂ?(i@)ﬁ
3. Move with known pa, 04 (in frame t)

4. Orientation: (pr+1 — Pt) = R(0:)pa

» 3-D Localization: given m;,my,m3 € R3 and z;, 2,3 € R
1. Intersection of 2 circles with centers 015, 003, radii ri2, 3, normals
N1y, N3 obtained via Law of Cosines and point o on intersecting line:

T T
ny, N;,012
n;—3 0= n2T3023
T T
("12 X "23) ("12 X "23) 012

2. Position: p = 012 + raR(n1o, £6) H;’:S;HZ, where cosf = %
Move twice with known pa, Ra,pa,2, Ra2

4. Orientation: as long as U := [pa, RapPa,2, Pa X Rapa,2)] is nonsingular:

Re = [(Per1— Pe), (Prs2 — Pet1)s (Prs1 — Pe) X (Per2 — Pes1)]U™}
» Odometry: not solvable

w

24



2-D Localization from Bearing Measurements

» Goal: determine the robot position p € R? and orientation 6 € (—m, 7]

» Given: two landmark positions my, my € R? (world frame) and bearing
measurements (body frame):

m;., — .

z; = arctan ("ypy>—9€R, i=1,2
mij x — Px

» The bearing constraints are equivalent to:

m;—p {cos(z,- +0)

= Isin(zi + 0)

mop . (o — ) — [ — pla [5)
= | =R oo = RTGm )= m ol [0

sin(0)
» To eliminate 0, the two constraints can be combined via:

0=|my—p|2[sind —cosb] [Z?:((gﬂ ma — pll

= ims s [S20] = (5) [58)] e —o

25



2-D Localization from Bearing Measurements

» The previous equation is quadratic in p:
(my —p) R(z)R (5) R (z2)(mz —p) = 0
» Letn:=2z — z+ 7/2, so that:
p R — (m] R(n) + m] R (3)) p+m] R(n)m =0

» Use the following to solve the quadratic equation:
> p R(n)p = cos(n)p'p
» p'p+2b'p+c=(p+b)T(p+b)+c—b'b
» As long as cos(n) # 0, i.e., the robot and the two landmarks are not
on the same line:

- 1
" 2cos(n)

(b~ o) (p — po) = (;»Jpo - ﬁ(n)mIR(n)mz) o (RT s + R(yms)

» The position p lies on one of the two circles containing m; and my
26



2-D Localization from Bearing Measurements

» Pose disambiguation: obtain a third bearing measurement:

R (@)m — 0) = m — plla | o) | 7=1.2.3

» Find 3 and 7 such that RT(z1) + BR"(z) + YR"(z3) = 0. Then:

RT(z)my + BRT (z2)ms + vR T (23)m3 — :RT(zl) +BR () + R (z3)| p

=u

0

0
~ (o 2 + lmz ~ pl 7 1ms — pl2) | oo
W ) [eos@] .
e can Compute as S|n(9) = Tullz and recover p rrom:

R () —0) = bl | Song) | 7= 1.2.3

27



3-D Localization from Bearing Measurements (P3P)

» Goal: determine the robot position p € R3 and orientation R € SO(3)

» Given: three landmark positions m; € R3 (world frame) and pixel
measurements z; € R3 (homogeneous coordinates, body frame) obtained
from a (calibrated pinhole) camera:

1
z; = yRT(m,- -p) Ai = ||[RT(m; — p)||2 = unknown scale

» If we determine A;, we can transform the P3P problem to 3-D
localization from relative position measurements

28



Find the depths \; via Grunert's method

» Cosines of the angles among the bearing vectors z;, z,, z3:

-
cos(7jj) = _EEH cos(vi) = 2
o) = D) =2zl z:
7 lzill2lizll v

> Let € := ||[m; — mj||2 be the lengths of the triangle formed in the world

frame by my, my, m3. Applying the law of cosines gives:
AP+ A —2Xi\jcos(vy) =€ for A= |[m; — p|2
» Let A = uM; and A3 = v)\; so that:

M (u? + v — 2uv cos(123)) = €35
M(14 v? —2vcos(y13)) = €25
M (u? +1—2ucos(y12)) = €2,
» Equivalently
2 €3 el el

A2 = _ _
V7 w24 v2 —2uvcos(23) 14 v2 —2vcos(yiz) w2 + 1 — 2ucos(v12)

29



Find the depths \; via Grunert's method

» Cross-multiplying the second fraction, with the first and the third:

2 2

2 6%3 “633 2 25, €3
u® 4+ =5—=v* — 2uvcos(y23) + —5=vcos(113) — 5 =0
€13 €13 €13
2 2 2 2
2 €12 2 €12 €13 — €12 _
u® — 5=v° +2v—5*=cos(113) — 2ucos(y12) + ——5—= =0

€13 €13 €13
» Substituting (1) into (2):
2 2 2 2 2 2
(_1 + E236%) v2—"9 (52362 612) cos('y13)v +1+ 62362 €12
1 13 13

u= 2

2(cos(v12) — v cos(7y23))

» Substituting (3) into (1), we get a fourth-order polynomial in v:

34V4 + 33V3 + 32V2 +av+a =0

30



Polynomial Coefficients

2 2 2 2
€ — € €
2 .2
as = (M _ 1> — 4-12 cos?(723)
1

2
€ €
13 3
2 2 2 2 2 2 2
€53 — € €5, — € €53 + € €
2 2 2 2 2 12 2 2
a3 =4 ( 2 (1 -2 > cos(713) — (1 -2 > cos(y23) cos(12) + 2-5% cos(723) c05(713))
€13 €13 €13 €13
2 2 \2 2 2 \2 2 2 2 2
€ — € € — € € — € € — €
2 12 2 2 2 1 2 2 1 2 20,
=2 ( 32 > 71+2< 32 > cos(713)+2< 32 >cos(q/23)+2( 32 3>cos(~,12)
€13 €13 €13 €13

s — 5%2
—4 (%) cos(723) cos(713) COS(“/12)>
13

2 2 2 2 2 2 2

€53 — € €53 — € €53+ € €

a=4(-(22 5 12) (1 4+ 812 5 12) cos(13) — <1 -1 > 12) cos(723) cos(v12) + 2%3 cos?(712) cos('y13)>
€13 €13 €13 €13

2 2 \2 2
€55 — € 4e
23 .2
ap = (1 + 2 5 12) — —5 cos(112)
€13 13

» We can obtain up to 4 real solutions for v, which we can substitute
in (3) to obtain u.

» We can recover A1 from u and v via the fractions relationship
» Having A1, Ao := uA1, and A3 := vA; we have converted the P3P

problem into 3-D localization from relative position measurements 31



3-D Localization from Bearing Measurements (PnP)

» Goal: determine the robot position p € R3 and orientation R € SO(3)

» Given: landmark positions m; € R3 (world frame) and pixel
measurements z; € R3 (homogeneous coordinates) obtained from a

(calibrated pinhole) camera for i =1,..., n:
1
z, = KRT(m,- - p) Ai = |[RT(m; — p)|l2 = unknown scale

1

» The PnP can be formulated as a constrained nonlinear least-squares
minimization:

32



Reformulation into a Polynomial System

» The constraints \;z; = R (m; — p) can be re-written in matrix form as:

z) ~1 A_l RT m;
: A\ = :

z, —I —RnTp 5 RT| |m,

A — w d

X

where A and d are known or measured, x are the unknowns we wish to
eliminate, and W is a block diagonal matrix of the unknown rotation R

» We can express p and JA; in terms of the other quantities as follows:

U

x=(ATA) AT Wd = [v

| wa

where (AT A)"YAT is partitioned so that the scale parameters are a
function of U and the translation —R"p is a function of V.

33



Reformulation into a Polynomial System

U

x=(ATA) AT Wd = [v

] wd
» Exploiting the sparse structure of A, the matrices U and V can be
computed in closed form
» Both A; and —RTp are linear functions of the unknown RT:
A =u] Wd —R"p=VvWd, i=1,....n
where u,-T is the /i-th row of U.
» We can rewrite the constraints \;z; = R (m; — p) as:

u/ Wdz; = R"m; + VWd
—— ~—~—
)\,’ _RTP

» We have reduced the number of unknowns from 6 +n to 3

34



Reformulation into a Polynomial System

» Cayley-Gibbs-Rodrigues Rotation Parameterization

RI— &
1+s's
» The CGR parameters automatically satisfy the rotation matrix

constraints, i.e., RT R = | and det(R) = 1 and allow us to formulate an
unconstrained least-squares minimization in s.

C=((1—s"s)k+28+2ss")

» Since R appears linearly in the equations, we can cancel the
denominator 1 +s's. This leads to the following formulation of the PnP

problem:
= = 2
n C C
min J(s) = Y _||u/ dz; — Cm; — V d
S _ —

i=1 C C

which contains all monomials up to degree four, i.e.,
4 4 4

{]-a S1, 52,53, 5152, 5153, 5253, .- -, S 52a53}'

35



Macaulay Matrix

>

Since J(s) is a fourth-order polynomial, the optimality conditions form a
system of three third-order polynomials (derivatives with respect to s,
sy and s3).

Use a Macaulay resultant matrix (matrix of polynomial coefficients)
to find the roots of the third-order polynomials and hence compute all
critical points of J(s)

Since the polynomial system is of constant degree (independent of n), it
is only necessary to compute the Macaulay matrix symbolically once.

Online, the elements of the Macaulay matrix are formed from the data
(linear operation in n) and the roots are determined via an
eigen-decomposition of the Schur complement (dense 27 x 27 matrix) of
the top block of the Macaulay matrix (sparse 120 x 120 matrix)

36



2-D Odometry from Bearing Measurements

» Goal: determine the relative transformation ;p:4+1 € R? and
t0t+1 € (—m, 7| between two robot frames at time t + 1 and t

> Given: bearing measurements z; ; € R? and Ziy1 € R? (unit vectors)
at consecutive time steps to n unknown landmarks

» The measurements are related as follows:
dibei = tPes1 + deg1,iR(:041)beti, i=1,...,n
where d; ;, di11,; are the unknown distances to m;.

» There are 2n equations and 2n + 3 unknowns, which means that this
problem is not solvable.

37



3-D Odometry from Bearing Measurements

» Goal: determine the relative transformation ;p:41 € R3 and
tRe+1 € SO(3) between two robot frames at time t + 1 and ¢

» Given: normalized pixel coordinates z, ; € R3 and Z,4; € R3 at
consecutive time steps to n unknown landmarks (n > 5)

» Essential matrix: E .= [tﬁt+1] [th+]_]
> Epipolar constraint: 0 =z, ;Fz,,,;, fori=1,...,n

» ldea: recover the essential matrix between the two views first

38



3-D Odometry from Bearing Measurements (8-Pt Alg)
» The epipolar constraint 0 = ZtT,iEthLl,i is linear in the elements of E:
0=2e
T
where e := [Ell E12 E13 E21 E22 E23 E31 E32 E33]

Z; 1= vec (gt+17,-;tT,-) € R? where vec(-) is a row-wise vectorization.

and

» Stacking z;'s from 8 point observations together, we obtain an 8 x 9
.35 - 1T . . .
matrix Z := [21 28] leading to the following equation for e:

Ze =0
> Thus, e is a singular vector of Z associated to a singular value that

equals zero.

> If at least 8 linearly independent vectors Z; are used to construct Z, then
the singular vector is unique (up to scalar multiplication) and e and E
can be determined.
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3-D Odometry from Bearing Measurements (5-Pt Alg)

» The essential matrix E can be recovered from Ze = 0, even if only 5
linearly independent vectors Z; are available using the fact that:

1
0=EE"E - 5tr(EET).E
> Stacking Z;'s together, we obtain a 5 x 9 matrix Z := [z - -- 25]T

» The right nullspace of Z has dimension 4 and the vectors that span the
nullspace (obtained from SVD or QR decomposition) correspond to
3 x 3 matrices N;, i =1,...,4 so that

E =ai1Ni + asNy + azN3 + agNg, aj € R
» Since the measurements are scale-invariant, we can arbitrarily fix ag = 1

» Substituting E = a1 Ny + apNo 4+ asN3 + Ny, we obtain 9 cubic-in-¢;
equations and can recover up to 10 solutions for E
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3-D Odometry from Bearing Measurements (5-Pt Alg)

» Once E is recovered, {ps+1 and ¢Ryy1 can be computed from the
singular value decomposition of E

» Pose recovery from the essential matrix: There are exactly two
relative poses corresponding to a non-zero essential matrix
E = Udiag(o,0,0)VT:
B ™\ di T T (T yT
(ePests cRes1) = <URZ (5) diag(c,0,0)UT, UR] (§> vV )

(ePests eRes1) = <URZ (—g) diag(c,0,0)UT, URJ (—%) VT)

» Only one of these will place the points in front of both cameras

» The ambiguity can be resolved by intersecting the measurements of a
single point and verifying which solution places it on the positive optical
z-axis of both cameras
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Summary: Bearing Measurements z; = + R" (m; — p)

» 2-D Localization: given my,my € R? and z, 2 € [~7, 7]

1.
2.

5.

2-D bearing: )\%RT(H)(m; —p) = R(z)e1
Eliminate 6:
0= \e] R(O)R (g) R(0)e1 )2 = (my — p) T R(z1)R (g) RT (2,)(m; — p)

The position p in on one of two circles containing m; and m, and we
need a third bearing measurement z; to disambiguate it
Find 3,7 such that RT(z;) + SR (z) + YR (z3) = 0 and combine

R™(z)(m; —p) = \; [COS(G)} to solve for

sin(6)
Orientation: [Z?ns((g))} =qup, foru= RT(z1)my + BRT (z2)m;y + YR (z3)m3

» 3-D Localization (P3P): m; € R3, z; € R3 (homogeneous), i = 1,2,3

1.

2.

3.

Convert P3P to relative position localization by determining the depths
A1, A2, A3 via Grunert's method

Define the angles vj;; among z,,z,,2; and apply the law of cosines:

X2 42— 20\, cos(y;) = [lmy — my 3

Let A2 = u); and A3 = v); and combine the 3 equations to get a fourth
order polynomial: asv* + azv3 + av? +aiv+a39 =0 49



Summary: Bearing Measurements z; = %RT(m,- - p)
» 3-D Localization (PnP)

1. Rewrite \;z; = RT(m; — p) in matrix form and solve for
x:=(A,..., A\, —RTp)T in terms of R

2. The equations for A; and —RTp turn out to be linear in R so we are left
with one equation with 3 unknowns (the 3 degrees of freedom of R)

3. Obtain a fourth order polynomial J(s) in terms of the
Cayley-Gibbs-Rodrigues rotation parameterization s

4. Compute a Macaulay matrix of the coefficients of J(s) symbolically once.
Online, determine the roots of J(s) via an eigen-decomposition of the
Schur complement of the Macaulay matrix.

» 2-D Odometry: not solvable

» 3-D Odometry: 5-point or 8-point algorithm:
1. Obtain E from the epipolar constraint: 0 = vec (;HL,-;I,)T vec (E),
i=1,...,5 and the property 0 = EETE — %tr(EET)E
2. Recover two possible camera poses based on
SVD(E) = Udiag(o,0,0)V " and choose the one that places the
measurements in front of both cameras
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