
ECE276A: Sensing & Estimation in Robotics
Lecture 15: Localization and Odometry from Point Features
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Localization and Odometry from Point Features

I Observation model: relates a feature observation zi obtained from
robot position p and orientation θ or R with the position mi of the
point landmark that generated the feature zi :
I Position Sensor: zi = R>(mi − p)
I Range Sensor: zi = ‖mi − p‖2

I Bearing Sensor: zi = arctan
(

mi,y−py
mi,x−px

)
− θ

I Camera Sensor: zi = Kπ
(
R>(mi − p)

)
I Localization Problem: Given landmark positions {mi}i and

measurements {zi}i at one time instance, determine the global robot
position p and orientation θ or R

I Odometry Problem: Given measurements zt,i , zt+1,i at two time
instances, determine the relative position tpt+1 and orientation tθt+1 or

tRt+1 between the two robot frames at time t and t + 1
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2-D Localization from Relative Position Measurements
I Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]
I Given: two landmark positions m1,m2 ∈ R2 (world frame) and relative

position measurements (body frame):

zi = R>(θ)(mi − p) ∈ R2, i = 1, 2

I Let δz := z1 − z2 and J :=

[
0 −1
1 0

]
so that:

m1 −m2 =

[
cos θ − sin θ
sin θ cos θ

]
(z1 − z2) =

[
δz Jδz

](cos θ
sin θ

)
I As long as det

[
δz Jδz

]
= ‖δz‖2

2 = ‖m1 −m2‖2
2 6= 0, we can compute:(

cos θ
sin θ

)
=

1

‖δz‖2
2

[
δzx δzy
−δzy δzx

]
(m1 −m2) θ = atan2(sin θ, cos θ)

I Given the orientation θ, we can then obtain the robot position:

p =
1

2
((m1 + m2)− R(θ)(z1 + z2))
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3-D Localization from Relative Position Measurements
I Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)
I Given: three landmark positions m1,m2,m3 ∈ R3 (world frame) and

relative position measurements (body frame):

zi = R>(mi − p) ∈ R3, i = 1, 2, 3

I Let mij := mi −mj and zij = zi − zj and compute:

m12 ×m13 = (Rz12)× (Rz13) = R(z12 × z13)

I The vector m12 ×m13 provides orthogonal information to m1 and m2

and can be used to estimate the orientation R as long as the three
features are not all on the same line:[

m12 m13 m12 ×m13

]
= R

[
z12 z13 z12 × z13

]
R =

[
m12 m13 m12 ×m13

] [
z12 z13 z12 × z13

]−1

I Given the orientation R, we can then obtain the robot position:

p = 1
3

∑3
i=1(mi − Rzi )
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3-D Localization from Relative Position Measurements

I Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

I Given: n landmark positions mi ∈ R3 (world frame) and relative
position measurements (body frame):

zi = R>(mi − p) ∈ R3, i = 1, . . . , n

I Define the landmark centroids in the world and body frames:

m̄ :=
1

n

n∑
i=1

mi z̄ :=
1

n

n∑
i=1

zi m̄ = p + R z̄

I Let δmi := mi − m̄ and δzi := zi − z̄ so that δmi = Rδzi for
i = 1, . . . , n

I Estimate the orientation via least-squares:

min
R

n∑
i=1

‖δmi − Rδzi‖2
2 = min

R

n∑
i=1

δm>i δmi − 2δm>i Rδzi − δz>i R>R︸ ︷︷ ︸
I3×3

δzi
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Point Cloud Registration
I 3-D localization from relative position measurements is also known as

the point cloud registration problem

I Given two sets {mi}ni=1 and {zj}mj=1 of 3-D points, find the

tranformation p ∈ R3, R ∈ SO(3) that aligns them

I The data association ∆ : {1, . . . , n} 7→ {0, 1, . . . ,m} that specifies
which point j = ∆(i) from the second set corresponds to any point i
from the first set might or might to be available
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Known Data Association: Kabsch Algorithm

I Find the transformation p, R between sets {mi} and {zi} of associated
3-D points

I As before, define m̄ and z̄ as the point centroids and {δmi} and {δzi}
as the centered points

I Given the rotation R, the translation is: p = m̄− R z̄

I Need to solve an optimization problem in SO(3) to determine R:

max
R

n∑
i=1

δm>i Rδzi = tr
(
Q>R

)
s.t. R>R = I3×3, det(R) = 1

where Q> :=
n∑

i=1

δziδm
>
i

I This problem can be solved via the Kabsch algorithm
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Known Data Association: Kabsch Algorithm
I Solve a linear optimization problem in SO(3):

max
R∈SO(3)

tr
(
Q>R

)
I SVD: let Q = UΣV> be the singular value decomposition of Q

I The singular vectors U,V and singular values Σ satisfy:

Σii ≥ 0 U>U = I det(U) = ±1 V>V = I detV = ±1

I Let W := U>RV , which is orthogonal: W>W = I and det(W ) = ±1

I tr(Q>R) = tr(ΣU>RV ) = tr(ΣW ) =
∑

i ΣiiWii

I Since Σii ≥ 0 and det(W ) = ±1, the objective is maximized for:

W = I ⇒ U>RV = I
avoids⇒

reflection
R = U

1 0 0
0 1 0
0 0 det(UV>)

V>
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Unknown Data Association: Iterative Closest Point (ICP)

I Find the transformation p, R between sets {mi}ni=1 and {zj}mj=1 of 3-D
points with unknown data association ∆ : {1, . . . , n} 7→ {0, 1, . . . ,m}

I The ICP algorithm iterates between finding associations based on
closest points and applying the Kabsch algorithm to determine p, R

I Initialize with p0, R0 (sensitive to initial guess) and iterate

1. Given pk , Rk , find correspondences i ↔ j based on closest points:

∆(i) = arg min
j∈{1,...,m}

‖mi − (Rkzj + pk)‖2
2, ∀i ∈ {1, . . . , n}

2. Given correspondences j = ∆(i), find pk+1, Rk+1 via Kabsch
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Unknown Data Association: Probabilistic ICP
I A main challenge is determining the unknown data association. Many

variations and extensions for determining correspondences in ICP exist:
I data association via point-to-plane distance (Chen & Medioni, 1991)
I probabilistic data association (EM-ICP, Granger & Pennec, 2002)

I Place a probability density function π (e.g., Gaussian) at each mi to
define a mixture distribution for the data:

p(x) =
n∑

i=1

αiπ(x; mi , σ
2
i I ) αi ≥ 0

n∑
i=1

αi = 1

I Find parameters p, R to maximize the likelihood of {Rzj + p}j :

max
p,R

m∑
j=1

log
n∑

i=1

αiπ(Rzj + p; mi , σ
2
i I )

I Use EM to determine membership probabiliites (E step) and optimize
the parameters p, R (M step). ICP is a special case with σ2

i → 0

I Robustness: use exp
(
− |x−mi |β

2σ2
i

)
with β ∈ (0, 2) instead of exp

(
− |x−mi |2

2σ2
i

)
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2-D Odometry from Relative Position Measurements

I Goal: determine the relative transformation tpt+1 ∈ R2 and

tθt+1 ∈ (−π, π] between two robot frames at time t + 1 and t

I Given: relative position measurements zt,1, zt,2 ∈ R2 and
zt+1,1, zt+1,2 ∈ R2 at consecutive time steps to two unknown landmarks

I If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 2-D localization from relative position
measurements with mi := zt,i , zi := zt+1,i , p := tpt+1, θ := tθt+1
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3-D Odometry from Relative Position Measurements

I Goal: determine the relative transformation tpt+1 ∈ R3 and

tRt+1 ∈ SO(3) between two robot frames at time t + 1 and t

I Given: relative position measurements zt,i ∈ R3 and zt+1,i ∈ R3 at
consecutive time steps to n unknown landmarks

I If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 3-D localization from relative position
measurements with mi := zt,i , zi := zt+1,i , p := tpt+1, R := tRt+1
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Summary: Rel. Position Measurements zi = R>(mi − p)

I Localization

m1,m2, z1, z2 ∈ R2

(m1 −m2) = R(θ)(z1 − z2)

p =
1

2

2∑
i=1

(mi − Rzi )

m1, zi ∈ R3, i = 1, 2, 3

mij := mi −mj , zij := zi − zj

[
m12 m13 m12 ×m13

]
= R

[
z12 z13 z12 × z13

]
p =

1

3

3∑
i=1

(mi − Rzi )

mi , zi ∈ R3, i = 1, . . . , n

δmi := mi −
1

n

n∑
j=1

mj ,

δzi := zi −
1

n

n∑
j=1

zj

R = arg max
R∈SO(3)

n∑
i=1

δm>i Rδzi

Kabsch algorithm
===================
SVD(

∑n
i=1 δmiδz>i )=UΣV>

U

1 0 0
0 1 0
0 0 det(UV>)

V>

p =
1

n

n∑
i=1

(mi − Rzi )

I Odometry: same with mi = zt,i , zi := zt+1,i , p := tpt+1, R := tRt+1
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2-D Localization from Range Measurements
I Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]
I Given: two landmark positions m1,m2 ∈ R2 (world frame) and range

measurements (body frame):

zi = ‖mi − p‖2 ∈ R, i = 1, 2

I Because all possible positions whose distance to m1 is z1 is a circle, the
possible robot positions are given by the intersection of two circles
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2-D Localization from Range Measurements

I Applying the law of cosines to the triangle gives:

z2
2 = z2

1 + ‖m2 −m1‖2
2 − 2z1‖m2 −m1‖2 cosφ

I Solving for φ and then the circle intersection points provides the possible
robot positions:

p = m2 + z2R(±φ)
m1 −m2

‖m1 −m2‖2

I The orientation of the robot θ is not identifiable
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2-D Localization from Range Measurements
I Pose disambiguation: the robot can make a move with known

translation p∆ (measured in the frame at time t) and take two new
range measurements

I There are 2 possible robot positions at each time frame for a total of 4
combinations but comparing ‖pt+1 − pt‖2 to the known ‖p∆‖2 leaves
only two valid options (and we cannot distinguish between them)

I To obtain the orientation, we use geometric constraints:

pt+1 − pt = R(θt)p∆ =

[
p∆,x −p∆,y

p∆,y p∆,x

] [
cos θt
sin θt

]
I As long as det

[
p∆,x −p∆,y

p∆,y p∆,x

]
= ‖p∆‖2

2 6= 0, we can compute:[
cos θt
sin θt

]
=

1

‖p∆‖2
2

[
p∆,x p∆,y

−p∆,y p∆,x

]
(pt+1 − pt)

θt = atan2(sin θt , cos θt)
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3-D Localization from Range Measurements

I Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

I Given: three landmark positions m1,m2,m3 ∈ R3 (world frame) and
range measurements (body frame):

zi = ‖mi − p‖2 ∈ R, i = 1, 2, 3

I All possible positions whose distance to m1 is z1 is a sphere

I The possible robot positions are the intersections of three spheres

I To find the intersection of 3 spheres, we first find the intersection of
sphere one and two (a circle) and of sphere two and three (a circle).
The intersection of these two circles gives the possible robot positions.

I Degenerate case: all landmarks are on the same line – the intersection
of the spheres is a circle with infinitely many possible robot positions
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3-D Localization from Range Measurements
I Intersecting circle of spheres with radii z1 and z2: center o12, radius

r12, normal vector n12 (perpendicular to the circle plane)

I Law of Cosines: z2
2 = z2

1 + ‖m2 −m1‖2
2 − 2z1‖m2 −m1‖2 cos θ12

I Geometric relationships:

o12 = m1 + z1 cos θ12n12

r12 = z1| sin(θ12)|

n12 =
m2 −m1

‖m2 −m1‖2

I Intersecting circle of spheres with radii z2 and z3: center o23, radius
r23, normal vector n23 (perpendicular to the circle plane):

o23 = m2 + z2 cos θ23n23 r23 = z2| sin(θ23)| n23 =
m3 −m2

‖m3 −m2‖218



3-D Localization from Range Measurements
I The intersecting points of the two circles can be obtained from the

geometric relationships:

n>12(o12 − o) = 0

n>23(o23 − o) = 0

(n12 × n23)>(o12 − o) = 0

 n>12

n>23

(n12 × n23)>

 o =

 n>12o12

n>23o23

(n12 × n23)>o12


I As long as the three landmarks are not on the same line, we can

uniquely solve for o:

det

 n>12

n>23

(n12 × n23)>

 6= 0 ⇔ n12 and n23 not colinear

I The two possible robot positions are:

p = o12 + r12R(n12,±θ)
o− o12

‖o− o12‖2
cos θ =

‖o− o12‖2

r12

I As in the 2-D case, the robot orientation R is not identifiable
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3-D Localization from Range Measurements

I Pose disambiguation: the robot can make a move with known
translation p∆ ∈ R3 and rotation R∆ ∈ SO(3) and take three new range
measurements

I As in the 2-D case, after eliminating the impossible robot positions, we
should be left with only two options for pt and pt+1

I Given pt , pt+1, p∆, and R∆, we can now obtain Rt

pt+1 = pt + Rtp∆

I This is not sufficient because the rotation about p∆ is not identifiable

I The robot needs to move a second time to a third pose pt+2,Rt+2

with known translation p∆,2 ∈ R3 and take three more range
measurements to the three landmarks:

pt+2 = pt+1 + Rt+1p∆,2 = pt+1 + RtR∆p∆,2
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3-D Localization from Range Measurements

I Putting the previous two equations together:

pt+1 − pt = Rtp∆

pt+2 − pt+1 = RtR∆p∆,2

I Taking a cross product between the two:

(pt+1 − pt)× (pt+2 − pt+1) = Rt(p∆ × R∆p∆,2)

I As long as U := [p∆, R∆p∆,2, p∆ × R∆p∆,2)] is nonsingular, i.e., p∆

and R∆p∆,2 are not co-linear or equivalently the three robot positions
are not on the same line, we can determine the robot orientation:

Rt = [(pt+1 − pt), (pt+2 − pt+1), (pt+1 − pt)× (pt+2 − pt+1)]U−1
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2-D Odometry from Range Measurements

I Goal: determine the relative transformation tpt+1 ∈ R2 and

tθt+1 ∈ (−π, π] between two robot frames at time t + 1 and t

I Given: range measurements zt,i ∈ R and zt+1,i ∈ R at consecutive time
steps to n unknown landmarks

I Let mt+1,i be the relative position to the i-th landmark at t + 1 so that:

zt+1,i = ‖mt+1,i‖2

zt,i = ‖tpt+1 + R(tθt+1)mt+1,i‖2

I Squaring and combining these equations, we get:

[tpt+1]> tpt+1 + 2m>t+1,iR
>(tθt+1)tpt+1 = z2

t,i − z2
t+1,i , i = 1, . . . , n

I We have n equations with n + 3 unknowns (3 for the relative pose and n
for the unknown directions to the landmarks at t + 1), which is not
solvable.
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3-D Odometry from Range Measurements

I Goal: determine the relative transformation tpt+1 ∈ R3 and

tRt+1 ∈ SO(3) between two robot frames at time t + 1 and t

I Given: range measurements zt,i ∈ R and zt+1,i ∈ R at consecutive time
steps to n unknown landmarks

I Following the same derivation as in the 2-D case, we obtain:

[tpt+1]> tpt+1 + 2m>t+1,i [tRt+1]> tpt+1 = z2
t,i − z2

t+1,i , i = 1, . . . , n

I We have n equations with 2n + 6 unknowns (6 for the relative pose and
2n for the unknown directions to the landmarks at t + 1), which is not
solvable.
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Summary: Range Measurements zi = ‖mi − p‖2

I 2-D Localization: given m1,m2 ∈ R2 and z1, z2 ∈ R
1. Law of Cosines: z2

2 = z2
1 + ‖m2 −m1‖2

2 − 2z1‖m2 −m1‖2 cos θ
2. Position: p = m2 + z2R(±θ) m1−m2

‖m1−m2‖2

3. Move with known p∆, θ∆ (in frame t)
4. Orientation: (pt+1 − pt) = R(θt)p∆

I 3-D Localization: given m1,m2,m3 ∈ R3 and z1, z2, z3 ∈ R
1. Intersection of 2 circles with centers o12, o23, radii r12, r23, normals

n12,n23 obtained via Law of Cosines and point o on intersecting line: n>12

n>23

(n12 × n23)>

 o =

 n>12o12

n>23o23

(n12 × n23)>o12


2. Position: p = o12 + r12R(n12,±θ) o−o12

‖o−o12‖2
, where cos θ = ‖o−o12‖2

r12

3. Move twice with known p∆,R∆,p∆,2,R∆,2

4. Orientation: as long as U := [p∆, R∆p∆,2, p∆ × R∆p∆,2)] is nonsingular:

Rt = [(pt+1 − pt), (pt+2 − pt+1), (pt+1 − pt)× (pt+2 − pt+1)]U−1

I Odometry: not solvable
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2-D Localization from Bearing Measurements

I Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]

I Given: two landmark positions m1,m2 ∈ R2 (world frame) and bearing
measurements (body frame):

zi = arctan

(
mi ,y − py
mi ,x − px

)
− θ ∈ R, i = 1, 2

I The bearing constraints are equivalent to:

mi − p

‖mi − p‖2
=

[
cos(zi + θ)
sin(zi + θ)

]
= R(zi + θ)e1 ⇒ R>(zi )(mi − p) = ‖mi − p‖2

[
cos(θ)
sin(θ)

]
I To eliminate θ, the two constraints can be combined via:

0 = ‖m1 − p‖2

[
sin θ − cos θ

] [cos(θ)
sin(θ)

]
‖m2 − p‖2

= ‖m1 − p‖2

[
cos(θ)
sin(θ)

]>
R
(π

2

)[cos(θ)
sin(θ)

]
‖m2 − p‖2
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2-D Localization from Bearing Measurements

I The previous equation is quadratic in p:

(m1 − p)>R(z1)R
(π

2

)
R>(z2)(m2 − p) = 0

I Let η := z1 − z2 + π/2, so that:

p>R(η)p−
(

m>1 R(η) + m>2 R
>(η)

)
p + m>1 R(η)m2 = 0

I Use the following to solve the quadratic equation:
I p>R(η)p = cos(η)p>p
I p>p + 2b>p + c = (p + b)>(p + b) + c − b>b

I As long as cos(η) 6= 0, i.e., the robot and the two landmarks are not
on the same line:

(p− p0)>(p− p0) =

(
p>0 p0 −

1

cos(η)
m>1 R(η)m2

)
p0 :=

1

2 cos(η)

(
R>(η)m1 + R(η)m2

)
I The position p lies on one of the two circles containing m1 and m2
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2-D Localization from Bearing Measurements

I Pose disambiguation: obtain a third bearing measurement:

R>(zi )(mi − p) = ‖mi − p‖2

[
cos(θ)
sin(θ)

]
, i = 1, 2, 3

I Find β and γ such that R>(z1) + βR>(z2) + γR>(z3) = 0. Then:

R>(z1)m1 + βR>(z2)m2 + γR>(z3)m3︸ ︷︷ ︸
:=u

−
[
R>(z1) + βR>(z2) + γR>(z3)

]
︸ ︷︷ ︸

0

p

= (‖m1 − p‖2 + β‖m2 − p‖2 + γ‖m3 − p‖2)

[
cos(θ)
sin(θ)

]

I We can compute θ as

[
cos(θ)
sin(θ)

]
= u
‖u‖2

and recover p from:

R>(zi )(mi − p) = ‖mi − p‖2

[
cos(θ)
sin(θ)

]
, i = 1, 2, 3

27



3-D Localization from Bearing Measurements (P3P)

I Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

I Given: three landmark positions mi ∈ R3 (world frame) and pixel
measurements zi ∈ R3 (homogeneous coordinates, body frame) obtained
from a (calibrated pinhole) camera:

zi =
1

λi
R>(mi − p) λi = ‖R>(mi − p)‖2 = unknown scale

I If we determine λi , we can transform the P3P problem to 3-D
localization from relative position measurements
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Find the depths λi via Grunert’s method
I Cosines of the angles among the bearing vectors z1, z2, z3:

cos(γij) =
z>i zj

‖zi‖2‖zj‖2
⇒ cos(γij) = z>i zj

I Let εij := ‖mi −mj‖2 be the lengths of the triangle formed in the world
frame by m1,m2,m3. Applying the law of cosines gives:

λ2
i + λ2

j − 2λiλj cos(γij) = ε2
ij for λi := ‖mi − p‖2

I Let λ2 = uλ1 and λ3 = vλ1 so that:

λ2
1(u2 + v2 − 2uv cos(γ23)) = ε2

23

λ2
1(1 + v2 − 2v cos(γ13)) = ε2

13

λ2
1(u2 + 1− 2u cos(γ12)) = ε2

12

I Equivalently

λ2
1 =

ε2
23

u2 + v2 − 2uv cos(γ23)
=

ε2
13

1 + v2 − 2v cos(γ13)
=

ε2
12

u2 + 1− 2u cos(γ12)
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Find the depths λi via Grunert’s method

I Cross-multiplying the second fraction, with the first and the third:

u2 +
ε2

13 − ε2
23

ε2
13

v2 − 2uv cos(γ23) +
2ε2

23

ε2
13

v cos(γ13)− ε2
23

ε2
13

= 0 (1)

u2 − ε2
12

ε2
13

v2 + 2v
ε2

12

ε2
13

cos(γ13)− 2u cos(γ12) +
ε2

13 − ε2
12

ε2
13

= 0 (2)

I Substituting (1) into (2):

u =

(
−1 +

ε2
23−ε2

12

ε2
13

)
v2 − 2

(
ε2

23−ε2
12

ε2
13

)
cos(γ13)v + 1 +

ε2
23−ε2

12

ε2
13

2(cos(γ12)− v cos(γ23))
(3)

I Substituting (3) into (1), we get a fourth-order polynomial in v :

a4v
4 + a3v

3 + a2v
2 + a1v + a0 = 0
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Polynomial Coefficients

a4 =

(
ε2

23 − ε2
12

ε2
13

− 1

)2

− 4
ε2

12

ε2
13

cos2(γ23)

a3 = 4

(
ε2

23 − ε2
12

ε2
13

(
1− ε2

23 − ε2
12

ε2
13

)
cos(γ13)−

(
1− ε2

23 + ε2
12

ε2
13

)
cos(γ23) cos(γ12) + 2

ε2
12

ε2
13

cos2(γ23) cos(γ13)

)
a2 = 2

((
ε2

23 − ε2
12

ε2
13

)2

− 1 + 2

(
ε2

23 − ε2
12

ε2
13

)2

cos2(γ13) + 2

(
ε2

13 − ε2
12

ε2
13

)
cos2(γ23) + 2

(
ε2

13 − ε2
23

ε2
13

)
cos2(γ12)

−4

(
ε2

23 − ε2
12

ε2
13

)
cos(γ23) cos(γ13) cos(γ12)

)
a1 = 4

(
−
(
ε2

23 − ε2
12

ε2
13

)(
1 +

ε2
23 − ε2

12

ε2
13

)
cos(γ13)−

(
1− ε2

23 + ε2
12

ε2
13

)
cos(γ23) cos(γ12) + 2

ε2
23

ε2
13

cos2(γ12) cos(γ13)

)
a0 =

(
1 +

ε2
23 − ε2

12

ε2
13

)2

− 4ε2
23

ε2
13

cos2(γ12)

I We can obtain up to 4 real solutions for v , which we can substitute
in (3) to obtain u.

I We can recover λ1 from u and v via the fractions relationship

I Having λ1, λ2 := uλ1, and λ3 := vλ1 we have converted the P3P
problem into 3-D localization from relative position measurements
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3-D Localization from Bearing Measurements (PnP)

I Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

I Given: landmark positions mi ∈ R3 (world frame) and pixel
measurements zi ∈ R3 (homogeneous coordinates) obtained from a
(calibrated pinhole) camera for i = 1, . . . , n:

zi =
1

λi
R>(mi − p) λi = ‖R>(mi − p)‖2 = unknown scale

I The PnP can be formulated as a constrained nonlinear least-squares
minimization:

min
λi ,R,p

n∑
i=1

‖zi −
1

λi
R>(mi − p)‖2

2

s.t. R>R = I , detR = 1, λi = ‖R>(mi − p)‖2
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Reformulation into a Polynomial System

I The constraints λizi = R>(mi − p) can be re-written in matrix form as:z1 −I
. . .

...
zn −I


︸ ︷︷ ︸

A


λ1
...
λn
−R>p


︸ ︷︷ ︸

x

=

R
>

. . .

R>


︸ ︷︷ ︸

W

m1
...

mn


︸ ︷︷ ︸

d

where A and d are known or measured, x are the unknowns we wish to
eliminate, and W is a block diagonal matrix of the unknown rotation R

I We can express p and λi in terms of the other quantities as follows:

x = (A>A)−1A>Wd =

[
U
V

]
Wd

where (A>A)−1A> is partitioned so that the scale parameters are a
function of U and the translation −R>p is a function of V .
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Reformulation into a Polynomial System

x = (A>A)−1A>Wd =

[
U
V

]
Wd

I Exploiting the sparse structure of A, the matrices U and V can be
computed in closed form

I Both λi and −R>p are linear functions of the unknown R>:

λi = u>i Wd − R>p = VWd, i = 1, . . . , n

where u>i is the i-th row of U.

I We can rewrite the constraints λizi = R>(mi − p) as:

u>i Wd︸ ︷︷ ︸
λi

zi = R>mi + VWd︸ ︷︷ ︸
−R>p

I We have reduced the number of unknowns from 6 + n to 3
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Reformulation into a Polynomial System
I Cayley-Gibbs-Rodrigues Rotation Parameterization

R> =
C̄

1 + s>s
C̄ = ((1− s>s)I3 + 2ŝ + 2ss>)

I The CGR parameters automatically satisfy the rotation matrix
constraints, i.e., R>R = I and det(R) = 1 and allow us to formulate an
unconstrained least-squares minimization in s.

I Since R> appears linearly in the equations, we can cancel the
denominator 1 + s>s. This leads to the following formulation of the PnP
problem:

min
s

J(s) =
n∑

i=1

∥∥∥∥∥∥∥u>i

C̄ . . .

C̄

dzi − C̄mi − V

C̄ . . .

C̄

d

∥∥∥∥∥∥∥
2

which contains all monomials up to degree four, i.e.,
{1, s1, s2, s3, s1s2, s1s3, s2s3, . . . , s

4
1 , s

4
2 , s

4
3}.
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Macaulay Matrix

I Since J(s) is a fourth-order polynomial, the optimality conditions form a
system of three third-order polynomials (derivatives with respect to s1,
s2 and s3).

I Use a Macaulay resultant matrix (matrix of polynomial coefficients)
to find the roots of the third-order polynomials and hence compute all
critical points of J(s)

I Since the polynomial system is of constant degree (independent of n), it
is only necessary to compute the Macaulay matrix symbolically once.

I Online, the elements of the Macaulay matrix are formed from the data
(linear operation in n) and the roots are determined via an
eigen-decomposition of the Schur complement (dense 27× 27 matrix) of
the top block of the Macaulay matrix (sparse 120× 120 matrix)
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2-D Odometry from Bearing Measurements

I Goal: determine the relative transformation tpt+1 ∈ R2 and

tθt+1 ∈ (−π, π] between two robot frames at time t + 1 and t

I Given: bearing measurements zt,i ∈ R2 and zt+1,i ∈ R2 (unit vectors)
at consecutive time steps to n unknown landmarks

I The measurements are related as follows:

dt,ibt,i = tpt+1 + dt+1,iR(tθt+1)bt+1,i , i = 1, . . . , n

where dt,i , dt+1,i are the unknown distances to mi .

I There are 2n equations and 2n + 3 unknowns, which means that this
problem is not solvable.
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3-D Odometry from Bearing Measurements

I Goal: determine the relative transformation tpt+1 ∈ R3 and

tRt+1 ∈ SO(3) between two robot frames at time t + 1 and t

I Given: normalized pixel coordinates zt,i ∈ R3 and zt+1,i ∈ R3 at
consecutive time steps to n unknown landmarks (n ≥ 5)

I Essential matrix: E := [t p̂t+1] [tRt+1]

I Epipolar constraint: 0 = z>t,iEzt+1,i , for i = 1, . . . , n

I Idea: recover the essential matrix between the two views first
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3-D Odometry from Bearing Measurements (8-Pt Alg)

I The epipolar constraint 0 = z>t,iEzt+1,i is linear in the elements of E :

0 = z̄>i e

where e :=
[
E11 E12 E13 E21 E22 E23 E31 E32 E33

]>
and

z̄i := vec
(

zt+1,iz
>
t,i

)
∈ R9 where vec(·) is a row-wise vectorization.

I Stacking z̄i ’s from 8 point observations together, we obtain an 8× 9

matrix Z̄ :=
[
z̄1 · · · z̄8

]>
leading to the following equation for e:

Z̄e = 0

I Thus, e is a singular vector of Z̄ associated to a singular value that
equals zero.

I If at least 8 linearly independent vectors z̄i are used to construct Z̄ , then
the singular vector is unique (up to scalar multiplication) and e and E
can be determined.
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3-D Odometry from Bearing Measurements (5-Pt Alg)

I The essential matrix E can be recovered from Z̄e = 0, even if only 5
linearly independent vectors z̄i are available using the fact that:

0 = EE>E − 1

2
tr(EE>)E

I Stacking z̄i ’s together, we obtain a 5× 9 matrix Z̄ :=
[
z̄1 · · · z̄5

]>
I The right nullspace of Z̄ has dimension 4 and the vectors that span the

nullspace (obtained from SVD or QR decomposition) correspond to
3× 3 matrices Ni , i = 1, . . . , 4 so that

E = α1N1 + α2N2 + α3N3 + α4N4, αi ∈ R

I Since the measurements are scale-invariant, we can arbitrarily fix α4 = 1

I Substituting E = α1N1 + α2N2 + α3N3 + N4, we obtain 9 cubic-in-αi

equations and can recover up to 10 solutions for E
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3-D Odometry from Bearing Measurements (5-Pt Alg)

I Once E is recovered, tpt+1 and tRt+1 can be computed from the
singular value decomposition of E

I Pose recovery from the essential matrix: There are exactly two
relative poses corresponding to a non-zero essential matrix
E = Udiag(σ, σ, 0)V>:

(t p̂t+1, tRt+1) =
(
URz

(π
2

)
diag(σ, σ, 0)U>,UR>z

(π
2

)
V>
)

(t p̂t+1, tRt+1) =
(
URz

(
−π

2

)
diag(σ, σ, 0)U>,UR>z

(
−π

2

)
V>
)

I Only one of these will place the points in front of both cameras

I The ambiguity can be resolved by intersecting the measurements of a
single point and verifying which solution places it on the positive optical
z-axis of both cameras
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Summary: Bearing Measurements zi = 1
λi
R>(mi − p)

I 2-D Localization: given m1,m2 ∈ R2 and z1, z2 ∈ [−π, π]
1. 2-D bearing: 1

λi
R>(θ)(mi − p) = R(zi )e1

2. Eliminate θ:

0 = λ1e>1 R(θ)R
(π

2

)
R(θ)e1λ2 = (m1 − p)>R(z1)R

(π
2

)
R>(z2)(m2 − p)

3. The position p in on one of two circles containing m1 and m2 and we
need a third bearing measurement z3 to disambiguate it

4. Find β, γ such that R>(z1) + βR>(z2) + γR>(z3) = 0 and combine

R>(zi )(mi − p) = λi

[
cos(θ)
sin(θ)

]
to solve for θ

5. Orientation:

[
cos(θ)
sin(θ)

]
= u
‖u‖2

for u = R>(z1)m1 + βR>(z2)m2 + γR>(z3)m3

I 3-D Localization (P3P): mi ∈ R3, zi ∈ R3 (homogeneous), i = 1, 2, 3
1. Convert P3P to relative position localization by determining the depths

λ1, λ2, λ3 via Grunert’s method
2. Define the angles γij among z1, z2, z3 and apply the law of cosines:

λ2
i + λ2

j − 2λiλj cos(γij) = ‖m1 −mj‖2
2

3. Let λ2 = uλ1 and λ3 = vλ1 and combine the 3 equations to get a fourth
order polynomial: a4v

4 + a3v
3 + a2v

2 + a1v + a0 = 0
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Summary: Bearing Measurements zi = 1
λi
R>(mi − p)

I 3-D Localization (PnP)
1. Rewrite λizi = R>(mi − p) in matrix form and solve for

x := (λ1, . . . , λn,−R>p)> in terms of R
2. The equations for λi and −R>p turn out to be linear in R so we are left

with one equation with 3 unknowns (the 3 degrees of freedom of R)
3. Obtain a fourth order polynomial J(s) in terms of the

Cayley-Gibbs-Rodrigues rotation parameterization s
4. Compute a Macaulay matrix of the coefficients of J(s) symbolically once.

Online, determine the roots of J(s) via an eigen-decomposition of the
Schur complement of the Macaulay matrix.

I 2-D Odometry: not solvable

I 3-D Odometry: 5-point or 8-point algorithm:

1. Obtain E from the epipolar constraint: 0 = vec
(
zt+1,iz

>
t,i

)>
vec (E ),

i = 1, . . . , 5 and the property 0 = EE>E − 1
2 tr(EE>)E

2. Recover two possible camera poses based on
SVD(E ) = Udiag(σ, σ, 0)V> and choose the one that places the
measurements in front of both cameras
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