ECE276A: Sensing & Estimation in Robotics Lecture 2: Probability Theory (Review)

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Mo Shan: moshan@eng.ucsd.edu

Arash Asgharivaskasi: aasghari@eng.ucsd.edu

Events

- **Experiment**: any procedure that can be repeated infinitely and has a well-defined set of possible outcomes.
- **Sample space** Ω : the set of possible outcomes of an experiment.
 - \triangleright $\Omega = \{HH, HT, TH, TT\}$
- **Event** A: a subset of the possible outcomes Ω
 - $ightharpoonup A = \{HH\}, B = \{HT, TH\}$
- ▶ Probability of an event: $\mathbb{P}(A) = \frac{\text{volume of } A}{\text{volume of all possible outcomes } \Omega}$

Measure and Probability Space

- $ightharpoonup \sigma$ -algebra: a collection of subsets of Ω closed under complementation and countable unions.
- ▶ Borel σ -algebra \mathcal{B} : the smallest σ -algebra containing all open sets from a topological space. Necessary because there is no valid translation invariant way to assign a finite measure to all subsets of [0,1).
- ▶ Measurable space: a tuple $(Ω, \mathcal{F})$, where Ω is a sample space and \mathcal{F} is a σ-algebra.
- ▶ **Measure**: a function $\mu : \mathcal{F} \to \mathbb{R}$ satisfying $\mu(A) \geq 0$ for all $A \in \mathcal{F}$ and countable additivity $\mu(\cup_i A_i) = \sum_i \mu(A_i)$ for disjoint A_i .
- **Probability measure**: a measure that satisfies $\mu(\Omega) = 1$.
- **Probability space**: a triple $(Ω, \mathcal{F}, \mathbb{P})$, where Ω is a sample space, \mathcal{F} is a σ-algebra, and $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure.

Probability Axioms

Probability Axioms:

- $ightharpoonup \mathbb{P}(A) > 0$
- $\triangleright \mathbb{P}(\Omega) = 1$
- ▶ If $\{A_i\}$ are disjoint, i.e., $A_i \cap A_j = \emptyset$, $\forall i \neq j$, then $\mathbb{P}(\bigcup_i A_i) = \sum_i \mathbb{P}(A_i)$

► Corollary:

- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $\max\{\mathbb{P}(A), \mathbb{P}(B)\} \leq \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B) \leq \mathbb{P}(A) + \mathbb{P}(B)$
- $ightharpoonup A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$

Events Example

- An experiment consists of randomly selecting one chip among ten chips marked 1, 2, 2, 3, 3, 3, 4, 4, 4, 4.
 - ▶ What is a reasonable sample space for this experiment? $\Omega = \{1, 2, 3, 4\}$
 - What is the probability of observing a chip marked with an even number?

$$\mathbb{P}(\{2,4\}) = \mathbb{P}(\{2\} \cup \{4\}) = \mathbb{P}(\{2\}) + \mathbb{P}(\{4\}) = \frac{6}{10}$$

What is the probability of observing a chip marked with a prime number?

$$\mathbb{P}(\{2,3\}) = \mathbb{P}(\{2\} \cup \{3\}) = \mathbb{P}(\{2\}) + \mathbb{P}(\{3\}) = \frac{5}{10}$$

Set of Events

- **Conditional Probability**: $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B)$
- **Bayes Theorem**: assume $\mathbb{P}(B) > 0$

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

▶ **Total Probability**: If $\{A_1, ..., A_n\}$ is a partition of Ω, i.e., $\Omega = \bigcup_i A_i$ and $A_i \cap A_i = \emptyset$, $\forall i \neq i$, then:

$$\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B \cap A_i)$$
 Corollary: If $\{A_1, \dots, A_n\}$ is a partition of Ω , then:

 $\mathbb{P}(A_i \mid B) = \frac{\mathbb{P}(B \mid A_i)\mathbb{P}(A_i)}{\sum_{i=1}^{n} \mathbb{P}(B \mid A_i)\mathbb{P}(A_i)}$

$$\mathbb{P}(A_i \mid B) = \frac{1}{\sum_{j=1}^n \mathbb{P}(B \mid A_j)}$$

- Independent events: $\mathbb{P}(\bigcap_i A_i) = \prod_i \mathbb{P}(A_i)$ observing one does not give any information about another
 - in contrast, disjoint events never occur together: one occuring tells you that others will not occur and hence, disjoint events are always dependent

Independent Events Example

- ► A box contains 7 green and 3 red chips.
- ► Experiment: select one chip, replace the drawn chip, and repeat until the color red has been observed four times
- Assuming that no draw affects or is affected by any other draw, what is the probability that the experiment terminates on the ninth draw?

Independent Events Example

 \triangleright Let the sample space Ω be a countably infinite set of all ordered tuples with elements from $\{r, g\}$:

$$\Omega = \{(r), (g), (r, r), (r, g), (g, r), (g, g), (r, r, r), \ldots\}$$

- ▶ Let $E \subset \Omega$ be such that:
 - ightharpoonup Each tuple $e \in E$ has 9 components e_1, \ldots, e_9
 - ▶ The last component e_0 of each tuple $e \in E$ is r
 - ▶ There are exactly four components of r in each tuple $e \in E$

Example:
$$(g, r, g, r, g, r, g, g, r) \in E$$

- Idea:
 - Show that every singleton subset $\{e\}$ of E has the same probability p_e ▶ Determine the cardinality of E so that $\mathbb{P}(E) = \sum_{e \in F} \mathbb{P}(e) = |E|p_e$
- Due to independence, for any element $e \in E$ we have:

$$\mathbb{P}(\{e\}) = \mathbb{P}\left(\{e_1\} \cap \{e_2\} \cap \dots \cap \{e_9\}\right) = \prod^9 \mathbb{P}(\{e_i\}) = \left(\frac{3}{10}\right)^4 \left(\frac{7}{10}\right)^5$$

 \triangleright Since $e_0 = r$ for all $e \in E$, the cardinality of E is the number of ways to distribute 3 red chips among 8 slots, i.e., $|E| = {8 \choose 2}$

Random Variable

- ▶ Random variable X: an \mathcal{F} -measurable $\underline{\text{function}}$ from (Ω, \mathcal{F}) to $(\mathbb{R}^n, \mathcal{B})$, i.e., a function $X : \Omega \to \mathbb{R}^n$ s.t. the preimage of every set in \mathcal{B} is in \mathcal{F} .
- ▶ The cumulative distribution function (CDF) $F(x) := \mathbb{P}(X \le x)$ of a random variable X is non-decreasing, right-continuous, and $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to\infty} F(x) = 0$.

Random Variable

$$F_X(b) = \mathbb{P}(X \le b) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in (-\infty, b_1] \times \dots \times (-\infty, b_n]\})$$
$$= \int_{-\infty}^{b_n} \dots \int_{-\infty}^{b_1} p_X(x_1, \dots, x_n) dx_1 \dots dx_n$$

CDF Examples

$$ightharpoonup X \sim \mathcal{U}([a,b])$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$X \sim \mathcal{U}(\{a,b\})$$

$$F(x) = \begin{cases} 0 & x < a \\ 1/2 & a \le x < b \\ 1 & x \ge b \end{cases}$$

•
$$X \sim Exp(\lambda)$$
 with $\lambda > 0$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$$

 $X \sim \mathcal{N}(\mu, \sigma^2)$

$$F(x) = \begin{cases} 1/2 & a \le x < b \\ 1 & x \ge b \end{cases}$$
ith $\lambda > 0$

Probability Mass Function

- ► The **probability mass function** (pmf) p(i) of a discrete random variable $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{Z}, 2^{\mathbb{Z}}, \mathbb{P} \circ X^{-1})$ satisfies:
 - $ightharpoonup p(i) \geq 0$

 - $F(i) = \mathbb{P}(X \le i) = \sum_{i \le i} p(j)$
 - ▶ $\mathbb{P}(X = i) = p(i) \in [0, 1]$
 - $P(a < X \le b) = F(b) F(a) = \sum_{a < j \le b} p(j)$

Probability Density Function

- ► The **probability density function** (pdf) p(x) of a continuous random variable $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}, \mathbb{P} \circ X^{-1})$ satisfies:
 - p(x) > 0
 - $ightharpoonup \int p(y)dy = 1$
 - $F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} p(y) dy$
 - $\mathbb{P}(X=x) = \lim_{\epsilon \to 0} \int_{x}^{x+\epsilon} p(y) dy = 0$
 - ▶ $\mathbb{P}(a < X \le b) = F(b) F(a) = \int_{a}^{b} p(y) dy$
- Intuition:
 - ▶ The pdf p(x) of X behaves like a derivative of the CDF F(x)
 - The values p(a), p(b) measure the relative likelihood of X being a or b
 - A discrete random variable $X \in \mathbb{Z}$ with pmf m(i) can be viewed as continuous by defining its pdf as $p(x) := \sum_{i \in \mathbb{Z}} m(i)\delta(x-i)$, where δ is the Dirac delta function:

$$\delta(x) := \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases} \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1$$

pmf/pdf Examples

$$ightharpoonup X \sim \mathcal{U}([a,b])$$

$$p(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

$$ightharpoonup X \sim \mathcal{U}(\{a,b\})$$

$$p(i) = \begin{cases} \frac{1}{2} & i \in \{a, b\} \\ 0 & \text{else} \end{cases}$$

$$\blacktriangleright$$
 $X \sim Exp(\lambda)$ with $\lambda > 0$

$$p(x) = \begin{cases} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{cases}$$

$$\rightarrow X \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$

Expectation and Variance

▶ Given a random variable X with pdf p and a measurable function g, the **expectation** of g(X) is:

$$\mathbb{E}\left[g(X)\right] = \int g(x)p(x)dx$$

▶ The variance of g(X) is:

$$Var[g(X)] = \mathbb{E}\left[\left(g(X) - \mathbb{E}[g(X)]\right)\left(g(X) - \mathbb{E}[g(X)]\right)^{\top}\right]$$
$$= \mathbb{E}\left[g(X)g(X)^{\top}\right] - \mathbb{E}[g(X)]\mathbb{E}[g(X)]^{\top}$$

► The variance of a sum of random variables is:

$$Var\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} Var[X_{i}] + \sum_{i=1}^{n} \sum_{j \neq i} Cov[X_{i}, X_{j}]$$

$$Cov[X_{i}, X_{j}] = \mathbb{E}\left[(X_{i} - \mathbb{E}[X_{i}])(X_{j} - \mathbb{E}[X_{j}])^{\top}\right] = \mathbb{E}\left[X_{i}X_{j}^{\top}\right] - \mathbb{E}[X_{i}]\mathbb{E}[X_{j}]^{\top}$$

Expectation and Variance Examples

 $ightharpoonup X \sim \mathcal{U}([a,b])$

$$\mathbb{E}[X] = \int yp(y)dy = \frac{1}{b-a} \int_{a}^{b} ydy = \frac{b^2 - a^2}{2(b-a)} = \frac{1}{2}(a+b)$$

$$Var[X] = \int y^2 p(y)dy - \mathbb{E}[X]^2 = \frac{b^3 - a^3}{3(b-a)} - \frac{1}{4}(a+b)^2 = \frac{1}{12}(b-a)^2$$

$$ightharpoonup X \sim \mathcal{U}(\{a,b\})$$

$$\mathbb{E}[X] = \sum_{i \in \{a,b\}} i \ p(i) = \frac{1}{2}(a+b)$$

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{1}{2}(a^2 + b^2) - \frac{1}{4}(a + b)^2 = \frac{1}{4}(b - a)^2$$

Expectation and Variance Examples

$$\blacktriangleright$$
 $X \sim Exp(\lambda)$ with $\lambda > 0$

$$\mathbb{E}[X] = \int_0^\infty y \lambda e^{-\lambda y} dy \xrightarrow{z = \lambda y, \, dz = \lambda dy} \frac{1}{\lambda} \int_0^\infty z e^{-z} dz$$

$$\mathbb{E}[X] = \int_0^{\infty} y \lambda e^{-xy} dy \xrightarrow{y} \frac{1}{\lambda} \int_0^{\infty} z e^{-z} dz$$

$$\frac{u=z, dv=e^{-z}dz}{du=dz, v=-e^{-z}} \frac{1}{\lambda} \left(\left(-ze^{-z} \right) \Big|_0^{\infty} + \int_0^{\infty} e^{-z} dz dz dz dz \right)$$

$$\frac{u=z, dv=e^{-z}dz}{du=dz, v=-e^{-z}} \frac{1}{\lambda} \left(\left(-ze^{-z} \right) \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-z}dz \right) = \frac{1}{\lambda} \left(0+1 \right) = \frac{1}{\lambda}$$

$$Var[X] = \int_0^\infty y^2 \lambda e^{-\lambda y} dy - \frac{1}{\lambda^2} \frac{z = \lambda y, \, dz = \lambda dy}{\frac{z}{dz}} \frac{1}{\lambda^2} \left(\int_0^\infty z^2 e^{-z} dz - 1 \right)$$

$$\frac{u = z^2, \, dv = e^{-z} dz}{\frac{z}{dz}} \frac{1}{\lambda^2} \left(\left(-z^2 e^{-z} \right) \Big|_0^\infty + 2 \int_0^\infty e^{-z} dz - 1 \right) = \frac{1}{\lambda^2}$$

$$\mathbb{E}[X - \mu] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{(y - \mu)}{(y - \mu)} \exp\left(-\frac{1}{2}\frac{(y - \mu)}{(y - \mu)}\right)$$

$$\mathbb{E}[X - \mu] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{(y - \mu)}{\sigma} \exp\left(-\frac{1}{2} \frac{(y - \mu)^2}{\sigma^2}\right) dy$$

$$\frac{z = \frac{(y - \mu)^2}{2\sigma}}{dz = \frac{(y - \mu)}{\sigma} dy} \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\mu^2/2\sigma} e^{-z/\sigma} dz + \int_{\mu^2/2\sigma}^{\infty} e^{-z/\sigma} dz\right) = 0$$

Set of Random Variables

- ▶ The **joint distribution** of random variables $\{X_i\}_{i=1}^n$ on $(\Omega, \mathcal{F}, \mathbb{P})$ defines their simultaneous behavior and is associated with a cumulative distribution function $F(x_1, \ldots, x_n) := \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n)$
- ▶ The CDF $F_i(x_i)$ of X_i defines its marginal distribution
- ▶ The random variables $\{X_i\}_{i=1}^n$ are **jointly independent** iff for all $\{A_i\}_{i=1}^n \subset \mathcal{F}$, $\mathbb{P}(\cap_{i=1}^n \{X_i \in A_i\}) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$
- Let X and Y be random variables and suppose $\mathbb{E}[X]$, $\mathbb{E}[Y]$, and $\mathbb{E}[XY]$ exist. Then, X and Y are **uncorrelated** iff $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ or equivalently Cov[X,Y] = 0.
- Independence implies uncorrelatedness

Gaussian Distribution

- ▶ Gaussian random vector $X \sim \mathcal{N}(\mu, \Sigma)$
 - ▶ parameters: **mean** $\mu \in \mathbb{R}^n$, **covariance** $\Sigma \in \mathbb{S}^n_{\succ 0}$ (symmetric positive definite $n \times n$ matrix)

 - expectation: $\mathbb{E}[X] = \int \mathbf{x} \phi(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\mu}$
 - ▶ variance: $Var[X] = \mathbb{E}\left[(X \mathbb{E}[X])(X \mathbb{E}[X])^{\top} \right] = \Sigma$
- ▶ Gaussian mixture $X \sim \mathcal{NM}(\{\alpha_k\}, \{\mu_k\}, \{\Sigma_k\})$
 - ▶ parameters: weights $\alpha_k \ge 0$, $\sum_k \alpha_k = 1$, means $\mu_k \in \mathbb{R}^n$, covariances $\Sigma_k \in \mathbb{S}^n_{\succ 0}$
 - ightharpoonup pdf: $p(\mathbf{x}) := \sum_{k} \alpha_{k} \phi(\mathbf{x}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$
 - expectation: $\mathbb{E}[X] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x} = \sum_k \alpha_k \boldsymbol{\mu}_k =: \bar{\boldsymbol{\mu}}$
 - lacktriangledown variance: $Var[X] = \mathbb{E}[XX^{\top}] \mathbb{E}[X]\mathbb{E}[X]^{\top} = \sum_k \alpha_k \left(\Sigma_k + \mu_k \mu_k^{\top}\right) \bar{\mu}\bar{\mu}^{\top}$

pdf of a Mixture of Two 2-D Gaussians

Example

- Suppose V = (X, Y) is a continuous random vector with density $p_V(x, y) = 8xy$ for 0 < y < x and 0 < x < 1
- ▶ Let g(x, y) := 2x + y

- ▶ Determine $\mathbb{E}[g(V)]$
- ▶ Evaluate $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ by finding the marginal densities of X and Y and then evaluating the appropriate univariate integrals
- ▶ Determine Var[g(V)]

Example

$$\mathbb{E}[2X + Y] = \int_0^1 \int_0^x (2x + y) 8xy \ dy dx = \frac{32}{15}$$

$$p_X(x) = \int_0^x 8xy \ dy = 4x^3 \text{ for } 0 \le x \le 1$$

$$\mathbb{E}[X] = \int_0^1 x p_X(x) dx = \int_0^1 4x^4 dx = \frac{4}{5}$$

$$p_Y(y) = \int_y^1 8xy \ dx = 4y - 4y^3 \text{ for } 0 \le y \le 1$$

$$\mathbb{E}[Y] = \int_0^1 y p_Y(y) dy = \int_0^1 4y^2 - 4y^4 dy = \frac{8}{15}$$

$$Var[g(V)] = \mathbb{E}[(g(V) - \mathbb{E}[g(V)])^2] = \mathbb{E}\left[\left(2X + Y - \frac{32}{15}\right)^2\right]$$

$$= \int_0^1 \int_0^x \left(2x + y - \frac{32}{15}\right)^2 8xy \ dy dx = \frac{17}{75}$$

Change of Density

Convolution: Let X and Y be independent random variables with pdfs p and q, respectively. Then, the pdf of Z = X + Y is given by the convolution of p and q:

$$[p*q](z) := \int p(z-y)q(y)dy = \int p(x)q(z-x)dx$$

▶ Change of Density: Let Y = f(X). Then, with $dy = \left| \det \left(\frac{df}{dx}(x) \right) \right| dx$:

$$\mathbb{P}(Y \in A) = \mathbb{P}(X \in f^{-1}(A)) = \int_{f^{-1}(A)} p_X(x) dx$$
$$= \int_A \underbrace{\frac{1}{\left| \det \left(\frac{df}{dx} (f^{-1}(y)) \right) \right|} p_X(f^{-1}(y))}_{p_Y(y)} dy$$

Change of Density Example

- ▶ Let $X \sim \mathcal{N}(0, \sigma^2)$ and $Y = f(X) = \exp(X)$
- Note that f(x) is invertible $f^{-1}(y) = \log(y)$
- ▶ The infinitesimal integration volumes for y and x are related by:

$$dy = \left| \det \left(\frac{df}{dx}(x) \right) \right| dx = \exp(x) dx$$

▶ Using change of density with $A = [0, \infty)$ and $f^{-1}(A) = (-\infty, \infty)$:

$$\mathbb{P}(Y \in [0, \infty)) = \int_{-\infty}^{\infty} \phi(x; 0, \sigma^2) dx = \int_{0}^{\infty} \frac{1}{\exp(\log(y))} \phi(\log(y); 0, \sigma^2) dy$$
$$= \int_{0}^{\infty} \frac{1}{y} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{\log^2(y)}{\sigma^2}\right) dy$$

Change of Density Example

Let V := (X, Y) be a random vector with pdf:

$$p_V(x,y) := \begin{cases} 2y - x & x < y < 2x \text{ and } 1 < x < 2\\ 0 & \text{else} \end{cases}$$

- ▶ Let $T := (M, N) = g(V) := \left(\frac{2X Y}{3}, \frac{X + Y}{3}\right)$ be a function of V
- Note that X = M + N and Y = 2N M and, hence, the pdf of V is non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

$$\det\left(\frac{dg}{dv}\right) = \det\begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix} = \frac{1}{3}$$

ightharpoonup The pdf T is:

$$p_T(m,n) = egin{cases} rac{1}{\left| \det \left(rac{dg}{dv}(m+n,2n-m)
ight)
ight|} p_V(m+n,2n-m), & 0 < m < n/2 ext{ and} \ 1 < m+n < 2, \ 0, & ext{else}. \end{cases}$$

Conditional and Total Probability

▶ **Total Probability**: If two random variables X, Y have a joint pdf p(x, y), the marginal pdf p(x) of X is:

$$p(x) = \int p(x, y) dy$$

▶ **Conditional Distribution**: If two random variables X, Y have a joint pdf p(x,y), the pdf p(x|y) of X conditioned on Y=y and the pdf p(y|x) of Y conditioned on X=x satisfy

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

▶ Bayes Theorem: The pdf p(x|y) of X conditioned on Y = y can be expressed in terms of the pdf p(y|x) of Y conditioned on X = x and the marginal pdf p(x) of X:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\int p(y|x')p(x')dx'}$$

Conditional Probability Example

Suppose that V = (X, Y) is a discrete random vector with probability mass function:

$$p_V(x,y) = \begin{cases} 0.10 & \text{if } (x,y) = (0,0) \\ 0.20 & \text{if } (x,y) = (0,1) \\ 0.30 & \text{if } (x,y) = (1,0) \\ 0.15 & \text{if } (x,y) = (1,1) \\ 0.25 & \text{if } (x,y) = (2,2) \\ 0 & \text{elsewhere} \end{cases}$$

- What is the conditional probability that V is (0,0) given that V is (0,0) or (1,1)?
- ▶ What is the conditional probability that *X* is 1 or 2 given that Y is 0 or 1?
- ▶ What is the probability that *X* is 1 or 2?
- ▶ What is the probability mass function of $X \mid Y = 0$?
- ▶ What is the expected value of $X \mid Y = 0$?

Conditional Probability Example

$$\mathbb{P}(V \in \{(0,0)\} \mid V \in \{(0,0),(1,1)\}) = \frac{\mathbb{P}(V \in \{(0,0)\} \cap \{(0,0),(1,1)\})}{\mathbb{P}(V \in \{(0,0),(1,1)\})}$$
$$= \frac{0.10}{0.25} = 0.4$$

$$\mathbb{P}(X \in \{1,2\} \mid Y \in \{0,1\}) = \mathbb{P}(V \in \{1,2\} \times \mathbb{R} \mid V \in \mathbb{R} \times \{0,1\}) \\
= \frac{\mathbb{P}(V \in \{(1,0),(1,1)\})}{\mathbb{P}(V \in \{(0,0),(0,1),(1,0),(1,1)\})} = \frac{0.45}{0.75} = 0.6$$

$$\mathbb{P}(X \in \{1,2\}) = \mathbb{P}(V \in \{1,2\} \times \mathbb{R}) = 0.7$$

$$p_{X|Y=0}(x) = \frac{p_V(x,0)}{\sum_{x'\in\{0,1\}} p_V(x',0)} = \frac{1}{0.4} p_V(x,0) = \begin{cases} 0.25 & \text{if } x=0\\ 0.75 & \text{if } x=1 \end{cases}$$

$$\mathbb{E}[X \mid Y = 0] = \sum_{x \in \{0.1\}} x p_{X|Y=0}(x) = p_{X|Y=0}(1) = 0.75$$