ECE276A: Sensing \& Estimation in Robotics

 Lecture 2: Probability Theory (Review)Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Events

- Experiment: any procedure that can be repeated infinitely and has a well-defined set of possible outcomes.
- Sample space Ω : the set of possible outcomes of an experiment.
- $\Omega=\{H H, H T, T H, T T\}$

- Event A : a subset of the possible outcomes Ω
- $A=\{H H\}, B=\{H T, T H\}$
- Probability of an event: $\mathbb{P}(A)=\frac{\text { volume of } A}{\text { volume of all possible outcomes } \Omega}$

Measure and Probability Space

- σ-algebra: a collection of subsets of Ω closed under complementation and countable unions.
- Bore σ-algebra \mathcal{B} : the smallest σ-algebra containing all open sets from a topological space. Necessary because there is no valid translation invariant way to assign a finite measure to all subsets of $[0,1)$.
- Measurable space: a tuple (Ω, \mathcal{F}), where Ω is a sample space and \mathcal{F} is a σ-algebra.
- Measure: a function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq 0$ for all $A \in \mathcal{F}$ and countable additivity $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Probability measure: a measure that satisfies $\mu(\Omega)=1$.
- Probability space: a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is a sample space, \mathcal{F} is a σ-algebra, and $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure.

Probability Axioms

- Probability Axioms:
- $\mathbb{P}(A) \geq 0$
- $\mathbb{P}(\Omega)=1$
- If $\left\{A_{i}\right\}$ are disjoint, i.e., $A_{i} \cap A_{j}=\emptyset, \forall i \neq j$, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$
- Corollary:
- $\mathbb{P}(\emptyset)=0$
- $\max \{\mathbb{P}(A), \mathbb{P}(B)\} \leq \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \leq \mathbb{P}(A)+\mathbb{P}(B)$
- $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$

Events Example

- An experiment consists of randomly selecting one chip among ten chips marked $1,2,2,3,3,3,4,4,4,4$.
- What is a reasonable sample space for this experiment? $\Omega=\{1,2,3,4\}$
- What is the probability of observing a chip marked with an even number?

$$
\mathbb{P}(\{2,4\})=\mathbb{P}(\{2\} \cup\{4\})=\mathbb{P}(\{2\})+\mathbb{P}(\{4\})=\frac{6}{10}
$$

- What is the probability of observing a chip marked with a prime number?

$$
\mathbb{P}(\{2,3\})=\mathbb{P}(\{2\} \cup\{3\})=\mathbb{P}(\{2\})+\mathbb{P}(\{3\})=\frac{5}{10}
$$

Set of Events

- Conditional Probability: $\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$
- Bayes Theorem: assume $\mathbb{P}(B)>0$

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- Total Probability: If $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, i.e., $\Omega=\bigcup_{i} A_{i}$ and $A_{i} \cap A_{j}=\emptyset, \forall i \neq j$, then:

$$
\mathbb{P}(B)=\sum_{i=1}^{n} \mathbb{P}\left(B \cap A_{i}\right)
$$

- Corollary: If $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, then:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

- Independent events: $\mathbb{P}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \mathbb{P}\left(A_{i}\right)$
- observing one does not give any information about another
- in contrast, disjoint events never occur together: one occuring tells you that others will not occur and hence, disjoint events are always dependent

Independent Events Example

- A box contains 7 green and 3 red chips.
- Experiment: select one chip, replace the drawn chip, and repeat until the color red has been observed four times
- Assuming that no draw affects or is affected by any other draw, what is the probability that the experiment terminates on the ninth draw?

Independent Events Example

- Let the sample space Ω be a countably infinite set of all ordered tuples with elements from $\{r, g\}$:

$$
\Omega=\{(r),(g),(r, r),(r, g),(g, r),(g, g),(r, r, r), \ldots\}
$$

- Let $E \subset \Omega$ be such that:
- Each tuple $e \in E$ has 9 components e_{1}, \ldots, e_{9}
- The last component e_{9} of each tuple $e \in E$ is r
- There are exactly four components of r in each tuple $e \in E$

$$
\text { Example: }(g, r, g, r, g, r, g, g, r) \in E
$$

- Idea:
- Show that every singleton subset $\{e\}$ of E has the same probability p_{e}
- Determine the cardinality of E so that $\mathbb{P}(E)=\sum_{e \in E} \mathbb{P}(e)=|E| p_{e}$
- Due to independence, for any element $e \in E$ we have:

$$
\mathbb{P}(\{e\})=\mathbb{P}\left(\left\{e_{1}\right\} \cap\left\{e_{2}\right\} \cap \cdots \cap\left\{e_{9}\right\}\right)=\prod_{i=1}^{9} \mathbb{P}\left(\left\{e_{i}\right\}\right)=\left(\frac{3}{10}\right)^{4}\left(\frac{7}{10}\right)^{5}
$$

- Since $e_{9}=r$ for all $e \in E$, the cardinality of E is the number of ways to distribute 3 red chips among 8 slots, i.e., $|E|=\binom{8}{3}$

Random Variable

- Random variable X : an \mathcal{F}-measurable function from (Ω, \mathcal{F}) to $\left(\mathbb{R}^{n}, \mathcal{B}\right)$, ie., a function $X: \Omega \rightarrow \mathbb{R}^{n}$ s.t. the preimage of every set in \mathcal{B} is in \mathcal{F}.
- The cumulative distribution function (CDF) $F(x):=\mathbb{P}(X \leq x)$ of a random variable X is non-decreasing, right-continuous, and $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.

(a) Discrete CDF

(b) Continuous CDF

(c) Mixed CDF

Random Variable

CDF Examples

- $X \sim \mathcal{U}([a, b])$

$$
F(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
F(x)= \begin{cases}0 & x<a \\ 1 / 2 & a \leq x<b \\ 1 & x \geq b\end{cases}
$$

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
F(x)= \begin{cases}0 & x<0 \\ 1-e^{-\lambda x} & x \geq 0\end{cases}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
F(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right) d y
$$

Probability Mass Function

- The probability mass function (pmf) $p(i)$ of a discrete random variable $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{Z}, 2^{\mathbb{Z}}, \mathbb{P} \circ X^{-1}\right)$ satisfies:
- $p(i) \geq 0$
- $\sum_{i \in \mathbb{Z}} p(i)=1$
- $F(i)=\mathbb{P}(X \leq i)=\sum_{j \leq i} p(j)$
- $\mathbb{P}(X=i)=p(i) \in[0,1]$
- $\mathbb{P}(a<X \leq b)=F(b)-F(a)=\sum_{a<j \leq b} p(j)$

Probability Density Function

- The probability density function (pdf) $p(x)$ of a continuous random variable $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{R}, \mathcal{B}, \mathbb{P} \circ X^{-1}\right)$ satisfies:
- $p(x) \geq 0$
- $\int p(y) d y=1$
- $F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p(y) d y$
- $\mathbb{P}(X=x)=\lim _{\epsilon \rightarrow 0} \int_{x}^{x+\epsilon} p(y) d y=0$
- $\mathbb{P}(a<X \leq b)=F(b)-F(a)=\int_{a}^{b} p(y) d y$
- Intuition:
- The pdf $p(x)$ of X behaves like a derivative of the CDF $F(x)$
- The values $p(a), p(b)$ measure the relative likelihood of X being a or b
- A discrete random variable $X \in \mathbb{Z}$ with pmf $m(i)$ can be viewed as continuous by defining its pdf as $p(x):=\sum_{i \in \mathbb{Z}} m(i) \delta(x-i)$, where δ is the Dirac delta function:

$$
\delta(x):=\left\{\begin{array}{ll}
\infty & x=0 \\
0 & x \neq 0
\end{array} \quad \int_{-\infty}^{\infty} \delta(x) d x=1\right.
$$

pmf/pdf Examples

- $X \sim \mathcal{U}([a, b])$

$$
p(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
p(i)= \begin{cases}\frac{1}{2} & i \in\{a, b\} \\ 0 & \text { else }\end{cases}
$$

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
p(x)= \begin{cases}0 & x<0 \\ \lambda e^{-\lambda x} & x \geq 0\end{cases}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Expectation and Variance

- Given a random variable X with pdf p and a measurable function g, the expectation of $g(X)$ is:

$$
\mathbb{E}[g(X)]=\int g(x) p(x) d x
$$

- The variance of $g(X)$ is:

$$
\begin{aligned}
\operatorname{Var}[g(X)] & =\mathbb{E}\left[(g(X)-\mathbb{E}[g(X)])(g(X)-\mathbb{E}[g(X)])^{\top}\right] \\
& =\mathbb{E}\left[g(X) g(X)^{\top}\right]-\mathbb{E}[g(X)] \mathbb{E}[g(X)]^{\top}
\end{aligned}
$$

- The variance of a sum of random variables is:

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] & =\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
\operatorname{Cov}\left[X_{i}, X_{j}\right] & =\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)^{\top}\right]=\mathbb{E}\left[X_{i} X_{j}^{\top}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]^{\top}
\end{aligned}
$$

Expectation and Variance Examples

- $X \sim \mathcal{U}([a, b])$

$$
\begin{aligned}
\mathbb{E}[X] & =\int y p(y) d y=\frac{1}{b-a} \int_{a}^{b} y d y=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{1}{2}(a+b) \\
\operatorname{Var}[X] & =\int y^{2} p(y) d y-\mathbb{E}[X]^{2}=\frac{b^{3}-a^{3}}{3(b-a)}-\frac{1}{4}(a+b)^{2}=\frac{1}{12}(b-a)^{2}
\end{aligned}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i \in\{a, b\}} i p(i)=\frac{1}{2}(a+b) \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{1}{2}\left(a^{2}+b^{2}\right)-\frac{1}{4}(a+b)^{2}=\frac{1}{4}(b-a)^{2}
\end{aligned}
$$

Expectation and Variance Examples

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} y \lambda e^{-\lambda y} d y \xlongequal{z=\lambda y, d z=\lambda d y} \frac{1}{\lambda} \int_{0}^{\infty} z e^{-z} d z \\
& \xlongequal[d u=d z, v=-e^{-z}]{u=z, d v=e^{-z} d z} \frac{1}{\lambda}\left(\left.\left(-z e^{-z}\right)\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-z} d z\right)=\frac{1}{\lambda}(0+1)=\frac{1}{\lambda} \\
\operatorname{Var}[X] & =\int_{0}^{\infty} y^{2} \lambda e^{-\lambda y} d y-\frac{1}{\lambda^{2}} \xlongequal{z=\lambda y, d z=\lambda d y} \frac{1}{\lambda^{2}}\left(\int_{0}^{\infty} z^{2} e^{-z} d z-1\right) \\
& \xlongequal[d u=2 z d z, v=-e^{-z}]{u=z^{2}, d v=e^{-z} d z} \frac{1}{\lambda^{2}}\left(\left.\left(-z^{2} e^{-z}\right)\right|_{0} ^{\infty}+2 \int_{0}^{\infty} e^{-z} d z-1\right)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
\mathbb{E}[X-\mu] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{(y-\mu)}{\sigma} \exp \left(-\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right) d y \\
& \xlongequal[d z=\frac{(y-\mu)}{\sigma} d y]{z=\frac{(y-\mu)^{2}}{2 \sigma}} \frac{1}{\sqrt{2 \pi}}\left(\int_{\infty}^{\mu^{2} / 2 \sigma} e^{-z / \sigma} d z+\int_{\mu^{2} / 2 \sigma}^{\infty} e^{-z / \sigma} d z\right)=0
\end{aligned}
$$

Set of Random Variables

- The joint distribution of random variables $\left\{X_{i}\right\}_{i=1}^{n}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ defines their simultaneous behavior and is associated with a cumulative distribution function $F\left(x_{1}, \ldots, x_{n}\right):=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)$
- The CDF $F_{i}\left(x_{i}\right)$ of X_{i} defines its marginal distribution
- The random variables $\left\{X_{i}\right\}_{i=1}^{n}$ are jointly independent iff for all $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{F}, \mathbb{P}\left(\cap_{i=1}^{n}\left\{X_{i} \in A_{i}\right\}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \in A_{i}\right)$
- Let X and Y be random variables and suppose $\mathbb{E}[X], \mathbb{E}[Y]$, and $\mathbb{E}[X Y]$ exist. Then, X and Y are uncorrelated iff $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ or equivalently $\operatorname{Cov}[X, Y]=0$.
- Independence implies uncorrelatedness

Gaussian Distribution

- Gaussian random vector $X \sim \mathcal{N}(\mu, \Sigma)$
- parameters: mean $\mu \in \mathbb{R}^{n}$, covariance $\Sigma \in \mathbb{S}_{\succ 0}^{n}$ (symmetric positive definite $n \times n$ matrix)
- pdf: $\phi(\mathbf{x} ; \boldsymbol{\mu}, \Sigma):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$
- expectation: $\mathbb{E}[X]=\int \mathbf{x} \phi(\mathbf{x} ; \boldsymbol{\mu}, \Sigma) d \mathbf{x}=\boldsymbol{\mu}$
- variance: $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\top}\right]=\Sigma$
- Gaussian mixture $X \sim \mathcal{N} \mathcal{M}\left(\left\{\alpha_{k}\right\},\left\{\boldsymbol{\mu}_{k}\right\},\left\{\Sigma_{k}\right\}\right)$
- parameters: weights $\alpha_{k} \geq 0, \sum_{k} \alpha_{k}=1$, means $\mu_{k} \in \mathbb{R}^{n}$, covariances $\Sigma_{k} \in \mathbb{S}_{\succeq 0}^{n}$
- pdf: $p(\mathbf{x}):=\sum_{k} \alpha_{k} \phi\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$
- expectation: $\mathbb{E}[X]=\int \mathbf{x p}(\mathbf{x}) d \mathbf{x}=\sum_{k} \alpha_{k} \boldsymbol{\mu}_{k}=: \overline{\boldsymbol{\mu}}$
- variance: $\operatorname{Var}[X]=\mathbb{E}\left[X X^{\top}\right]-\mathbb{E}[X] \mathbb{E}[X]^{\top}=\sum_{k} \alpha_{k}\left(\Sigma_{k}+\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}\right)-\overline{\boldsymbol{\mu}} \overline{\boldsymbol{\mu}}^{\top}$

pdf of a Mixture of Two 2-D Gaussians

Example

- Suppose $V=(X, Y)$ is a continuous random vector with density $p_{V}(x, y)=8 x y$ for $0<y<x$ and $0<x<1$
- Let $g(x, y):=2 x+y$
- Determine $\mathbb{E}[g(V)]$
- Evaluate $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ by finding the marginal densities of X and Y and then evaluating the appropriate univariate integrals
- Determine Var $[g(V)]$

Example

$$
\begin{aligned}
\mathbb{E}[2 X+Y] & =\int_{0}^{1} \int_{0}^{x}(2 x+y) 8 x y d y d x=\frac{32}{15} \\
p_{X}(x) & =\int_{0}^{x} 8 x y d y=4 x^{3} \text { for } 0 \leq x \leq 1 \\
\mathbb{E}[X] & =\int_{0}^{1} x p_{X}(x) d x=\int_{0}^{1} 4 x^{4} d x=\frac{4}{5} \\
p_{Y}(y) & =\int_{y}^{1} 8 x y d x=4 y-4 y^{3} \text { for } 0 \leq y \leq 1 \\
\mathbb{E}[Y] & =\int_{0}^{1} y p_{Y}(y) d y=\int_{0}^{1} 4 y^{2}-4 y^{4} d y=\frac{8}{15} \\
\operatorname{Var}[g(V)] & =\mathbb{E}\left[(g(V)-\mathbb{E}[g(V)])^{2}\right]=\mathbb{E}\left[\left(2 X+Y-\frac{32}{15}\right)^{2}\right] \\
& =\int_{0}^{1} \int_{0}^{x}\left(2 x+y-\frac{32}{15}\right)^{2} 8 x y d y d x=\frac{17}{75}
\end{aligned}
$$

Change of Density

- Convolution: Let X and Y be independent random variables with pdfs p and q, respectively. Then, the pdf of $Z=X+Y$ is given by the convolution of p and q :

$$
[p * q](z):=\int p(z-y) q(y) d y=\int p(x) q(z-x) d x
$$

- Change of Density: Let $Y=f(X)$. Then, with $d y=\left|\operatorname{det}\left(\frac{d f}{d x}(x)\right)\right| d x$:

$$
\begin{aligned}
\mathbb{P}(Y \in A) & =\mathbb{P}\left(X \in f^{-1}(A)\right)=\int_{f^{-1}(A)} p_{x}(x) d x \\
& =\int_{A} \underbrace{\frac{1}{\left.\operatorname{det}\left(\frac{d f}{d x}\left(f^{-1}(y)\right)\right) \right\rvert\,} p_{x}\left(f^{-1}(y)\right)}_{p_{y}(y)} d y
\end{aligned}
$$

Change of Density Example

- Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $Y=f(X)=\exp (X)$
- Note that $f(x)$ is invertible $f^{-1}(y)=\log (y)$
- The infinitesimal integration volumes for y and x are related by:

$$
d y=\left|\operatorname{det}\left(\frac{d f}{d x}(x)\right)\right| d x=\exp (x) d x
$$

- Using change of density with $A=[0, \infty)$ and $f^{-1}(A)=(-\infty, \infty)$:

$$
\begin{aligned}
\mathbb{P}(Y \in[0, \infty)) & =\int_{-\infty}^{\infty} \phi\left(x ; 0, \sigma^{2}\right) d x=\int_{0}^{\infty} \frac{1}{\exp (\log (y))} \phi\left(\log (y) ; 0, \sigma^{2}\right) d y \\
& =\int_{0}^{\infty} \underbrace{\frac{1}{y} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{\log ^{2}(y)}{\sigma^{2}}\right)}_{p(y)} d y
\end{aligned}
$$

Change of Density Example

- Let $V:=(X, Y)$ be a random vector with pdf:

$$
p_{V}(x, y):= \begin{cases}2 y-x & x<y<2 x \text { and } 1<x<2 \\ 0 & \text { else }\end{cases}
$$

- Let $T:=(M, N)=g(V):=\left(\frac{2 X-Y}{3}, \frac{X+Y}{3}\right)$ be a function of V
- Note that $X=M+N$ and $Y=2 N-M$ and, hence, the pdf of V is non-zero for $0<m<n / 2$ and $1<m+n<2$. Also:

$$
\operatorname{det}\left(\frac{d g}{d v}\right)=\operatorname{det}\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]=\frac{1}{3}
$$

- The pdf T is:

$$
p_{T}(m, n)= \begin{cases}\frac{1}{\left|\operatorname{det}\left(\frac{d g}{d v}(m+n, 2 n-m)\right)\right|} p_{V}(m+n, 2 n-m), & 0<m<n / 2 \text { and } \\ 0, & 1<m+n<2, \\ \text { else } .\end{cases}
$$

Conditional and Total Probability

- Total Probability: If two random variables X, Y have a joint pdf $p(x, y)$, the marginal pdf $p(x)$ of X is:

$$
p(x)=\int p(x, y) d y
$$

- Conditional Distribution: If two random variables X, Y have a joint pdf $p(x, y)$, the pdf $p(x \mid y)$ of X conditioned on $Y=y$ and the pdf $p(y \mid x)$ of Y conditioned on $X=x$ satisfy

$$
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)
$$

- Bayes Theorem: The pdf $p(x \mid y)$ of X conditioned on $Y=y$ can be expressed in terms of the pdf $p(y \mid x)$ of Y conditioned on $X=x$ and the marginal pdf $p(x)$ of X :

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\int p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime}}
$$

Conditional Probability Example

- Suppose that $V=(X, Y)$ is a discrete random vector with probability mass function:

$$
p_{V}(x, y)= \begin{cases}0.10 & \text { if }(x, y)=(0,0) \\ 0.20 & \text { if }(x, y)=(0,1) \\ 0.30 & \text { if }(x, y)=(1,0) \\ 0.15 & \text { if }(x, y)=(1,1) \\ 0.25 & \text { if }(x, y)=(2,2) \\ 0 & \text { elsewhere }\end{cases}
$$

- What is the conditional probability that V is $(0,0)$ given that V is $(0,0)$ or $(1,1)$?
- What is the conditional probability that X is 1 or 2 given that Y is 0 or 1 ?
- What is the probability that X is 1 or 2 ?
- What is the probability mass function of $X \mid Y=0$?
- What is the expected value of $X \mid Y=0$?

Conditional Probability Example

$$
\begin{aligned}
& \mathbb{P}(V \in\{(0,0)\} \mid V \in\{(0,0),(1,1)\})=\frac{\mathbb{P}(V \in\{(0,0)\} \cap\{(0,0),(1,1)\})}{\mathbb{P}(V \in\{(0,0),(1,1)\})} \\
& \quad=\frac{0.10}{0.25}=0.4
\end{aligned}
$$

$$
\mathbb{P}(X \in\{1,2\} \mid Y \in\{0,1\})=\mathbb{P}(V \in\{1,2\} \times \mathbb{R} \mid V \in \mathbb{R} \times\{0,1\})
$$

$$
=\frac{\mathbb{P}(V \in\{(1,0),(1,1)\})}{\mathbb{P}(V \in\{(0,0),(0,1),(1,0),(1,1)\})}=\frac{0.45}{0.75}=0.6
$$

$$
\mathbb{P}(X \in\{1,2\})=\mathbb{P}(V \in\{1,2\} \times \mathbb{R})=0.7
$$

$$
p_{X \mid Y=0}(x)=\frac{p_{V}(x, 0)}{\sum_{x^{\prime} \in\{0,1\}} p_{V}\left(x^{\prime}, 0\right)}=\frac{1}{0.4} p_{V}(x, 0)= \begin{cases}0.25 & \text { if } x=0 \\ 0.75 & \text { if } x=1\end{cases}
$$

$$
\mathbb{E}[X \mid Y=0]=\sum_{x \in\{0,1\}} x p_{X \mid Y=0}(x)=p_{X \mid Y=0}(1)=0.75
$$

