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Field

> A field is a set F with two binary operations, + : F x F — F (addition)
and - : F x F — F (multiplication), which satisfy the following axioms:
> Associativity: a+ (b+ c) = (a+ b) + ¢ and a(bc) = (ab)c, Va, b,c € F
» Commutativity: a+ b= b+ aand ab= ba, Va,b € F
> Identity: 31,0 € F such that a+ 0 =aand al =a, Vae F
> Inverse: Va€ F,3—a€ F such that a+(—a) =0
Vae F\{0},3a"t € F\ {0} such that aa=! =1

» Distributivity: a(b+ c¢) = (ab) + (ac), Va, b,c € F

» Examples: real numbers R, complex numbers C, rational numbers Q



Vector Space

» A vector space over a field F is a set V with two binary operations,
+:V x V= V (addition) and - : F x V +— V (scalar multiplication),
which satisfy the following axioms:

> Associativity: x+ (y +2z) = (x+y) +z Vx,y,z€ V

» Compatibility: a(bx) = (ab)x, Va,b € F and Vx € V

> Commutativity: x+y=x+y, Vx,y € V

» Identity: 30<€ V and 1€ F suchthat x+0=xand Ix=x, V¥x € V

> Inverse: Vx € V,3—x € V such that x + (—x) =0

» Distributivity: a(x +y) = ax+ by and (a+ b)x = ax + bx, Va,b € F
and Vx,y € V

» Examples: real vectors R?, complex vectors C9, rational vectors Q9,
functions RY — R



Basis and Dimension

» A basis of a vector space V over a field F is a set B C V that satisfies:

> linear independence: for all finite {x1,...,xn} C B,
if a1x1 + -+ amXm = 0 for some a;,...,an, € F,thena; =---=a, =0

> Bspans V: Vx € V, 3x;1,...,x4 € B and unique a1,...,aq € F such
that x = a;x; + - - - + agXy

» The dimension d of a vector space V is the cardinality of its bases



Inner Product and Norm

» An inner product on a vector space V over a field F is a function
(-,-) : V x V= F such that for all a € F and all x,y,z € V:

> (ax,y) = a(x,y) (homogeneity)
> (x+y,z)=(x,z)+(y,z) (additivity)
> (x,y) = < X) (conjugate symmetry)
> (x,x) > (non-negativity)
> (x,x)=0iffx=0 (definiteness)
» A norm on a vector space V over a field F is a function || - || : V = R

such that for all a € F and all x,y € V:

> |lax|| = |a|||x| (absolute homogeneity)
> x-+yll < x| + [yl (triangle inequality)

> |x||>0 (non-negativity)

> [x||=0iffx=0 (definiteness)



Euclidean Vector Space

» A Euclidean vector space R is a vector space with finite dimension d
over the real numbers R

» A Euclidean vector x € R? is a collection of scalars x; € R for

i=1,...,d organized as a column:
X1
X =
Xd
> The transpose of x € R is organized as a row: x' = [x; -+ x4

» The Euclidean inner product between two vectors x,y € R? is:
d
T
y) =xTy =3 xiyi
i=1

» The Euclidean norm of a vector x € R9 is ||x|2 := vx x and satisfies:
> max |xi| < x|l < V/d max |xj|
1<i<d 1<i<d

> |xTy| < |Ix|l2]lyll2 (Cauchy-Schwarz Inequality) 6



Matrices

» A matrix A € R™*" is a rectangular array of scalars A;; € R for
i=1...,mandj=1,...,n

» The entries of the transpose AT € R™™ of a matrix A € R™*" are
A; = Aji. The transpose satisfies: (AB)T = BTAT

» The trace of a matrix A € R"™" is the sum of its diagonal entries:
n
tr(A) =) A tr(ABC) = tr(BCA) = tr(CAB)
i=1
» The Frobenius inner product between two matrices X, Y € R™*" is:

(X,Y) =tr(X"Y)

» The Frobenius norm of a matrix X € R™" is: || X||r := /tr(XTX)



Matrix Determinant and Inverse

» The determinant of a matrix A € R™*" is:

det(A) = Z Ajjcof;(A) det(AB) = det(A) det(B) = det(BA)
j=1

where cofj;(A) is the cofactor of the entry A; and is equal to (—1)'*/
times the determinant of the (n — 1) x (n — 1) submatrix that results
when the it"-row and jt"-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.

» The adjugate is the transpose of the cofactor matrix:
adj(A) := cof(A)"
> The inverse A~! of A exists iff det(A) # 0 and satisfies:

1_ adj(A)

" det(A) (AB) ™ = BTAT

A




Matrix Inversion Lemma

» Square completion:

%XTAx+ b'x+c= % (x+ A1) A(x+ A1) +c— %bTA‘lb

» Woodbury matrix identity:
(A+BDC) ' =Al—A1B(CA'B+D 1) A

» Block matrix inversion:

A Bl [ 1 o '[A-BDlC o] '[I BD Y
c pb| T |bpic i 0 D| o 1
[ 1 oftA-BDC)" o |[I —-BD
~|-ptc 0 p-iflo 1
[ (a-BD0) —(A-BD71C) ' BD!
- |-pc(A-BDC)TN D1+ DIC(A-BDIC) T BD




Eigenvalue Decomposition
» For any A € R"*", if there exists q € C" \ {0} and A € C such that:
Aq = \q
then q is an eigenvector corresponding to the eigenvalue .

» A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs.

» Eigenvectors are not unique since for any ¢ € C\ {0}, cq is an
eigenvector corresponding to the same eigenvalue.

» The n eigenvalues of A € R"™" are precisely the n roots of the
characteristic polynomial of A:

p(A) := det(Al — A)

» We can put all n equations Aq; = A;q; to obtain the eigen
decomposition of A:
A=QAQ!
10



Eigenvalue Decomposition

» The roots of a polynomial are continuous functions of its coefficients and
hence the eigenvalues of a matrix are continuous functions of its entries.

n
=> X det(A H by
i=1
» AT has the same eigenvalues and eigenvectors as A

» AT A has the same eigenvectors as A but its eigenvalues are \2

» A for k =1,2,... has the same eigenvectors as A but its eigenvalues
are \K

» A~! has the same eigenvectors as A but its eigenvalues are A1

» The eigenvalues of A are invariant under any unitary transform U*AU
for U*U =UU" =1

> If Ais symmetric (AT = A), then all its eigenvalues are real and all its
eigenvectors are orthogonal (@~ = Q)
11



Singular Value Decomposition
» An eigen-decomposition does not exist for A € R™*"
> A e R™" with rank r < min{m, n} can be diagonalized by two

orthogonal matrices U € R™*™ and V € R"™" via singular value
decomposition: o1

A=UsVT ¥ = € R™¥"

Or

» U contains the m orthogonal eigenvectors of the symmetric matrix
AAT € R™*™ and satisfies UTU = UUT = |

» V contains the n orthogonal eigenvectors of the symmetric matrix
ATA € R™" and satisfies VIV = W T = |

» Y contains the singular values o; = v/, equal to the square roots of
the r non-zero eigenvalues \; of AAT or AT A, on its diagonal

» If Ais normal (ATA = AAT), its singular values are related to its
eigenvalues via o; = |\

12



Matrix Pseudo Inverse

» The pseudo-inverse AT € R™™ of A € R™*" can be obtained from its
SVDA=UZV':

1/01

A = ystyT st = € R<™
1/o,

» The pseudo-inverse AT € R™*™ satisfies the Moore-Penrose conditions:
> AATA=A
> ATAAT = Af
> (AAT)T = AAf
> (ATA)T = ATA

13



Linear System of Equations

» Consider the linear system of equations Ax = b for x € R"”, b € R™, and
A€ R™" with SVD A= UZVT and rank r

» The column space or image of A is im(A) C R™ and is spanned by the
r columns of U corresponding to non-zero singular values

» The null space or kernel of A is ker(A) C R" and is spanned by the
n — r columns of V corresponding to zero singular values

» The row space or co-image of A is im(A") C R" and is spanned by
the r columns of V corresponding to non-zero singular values

» The left null space or co-kernel of A is ker(AT) C R™ and is spanned
by the m — r columns of U corresponding to zero singular values

» The domain of A is R" = ker(A) @ im(A")

» The co-domain of A is R™ = ker(A") @ im(A)
14



Solution of Linear System of Equations

» Consider the linear system of equations Ax = b for x € R”, b € R™, and
A€ R™M with SVD A= UXVT and rank r

» If b € im(A), i.e., bTv =0 for all v € ker(A"), then Ax = b has one or
infinitely many solutions x = A'b + (/ — ATA)y for any y € R”

» If b ¢ im(A), then no solution exists and x = Afb is an approximate
solution with minimum ||x|| and ||Ax — b|| norms

» If m=n=r, then Ax = b has a unique solution x = ATb = A~1b

15



Positive Semidefinite Matrices

» The product x" Ax for A € R"" and x € R” is called a quadratic form
and A can be assumed symmetric, A = AT because:

1
EXT(A + AT)x = x" Ax, Vx € R"

» A symmetric matrix A € R"™" is positive semidefinite if xT Ax > 0 for
all x e R".

» A symmetric matrix A € R"*" is positive definite if it is positive
semidefinite and if x' Ax = 0 implies x = 0.

» All eigenvalues of a symmetric positive semidefinite matrix are
non-negative.

» All eigenvalues of a symmetric positive definite matrix are positive.

16



Schur Complement

» The Schur complement of block D of M = [

» The Schur complement of block A of M = [A

> LetM:[

>
>
>
>

BT D
M~-0sA~0,S4=D—-B"A'B>0
M>~0sD>0,Sp=A—BD BT ~0
M=0s A=0,540,(/ — AAHB =0
M=0« D=0,50,(/ — DDT)BT =0

A B] be symmetric. Then:

B

. _A_Rpp-1
D} is Sp=A—BD~C

B].
D} is SA=D—CA~ B

17



Derivatives (numerator layout)

» Derivatives of y € R™ and Y € R™*" by scalar x € R:

dyr dvy aYi,
dx dx dx
ﬂ — . c Rmxl ﬂ — : : - Ran
dx % dx aY Yo
dx dx dx
» Derivatives of y € R and y € R by vector x € RP:
% %
X1 Xp
L I P E TR A € RM*P
dx da & dx ; '
[Vxy]" (gradient transpose) dx dxp
Jacobian
» Derivative of y € R by matrix X € RP*9:
Ay Ly
dXi; dXo1
Q — : : c RI*P
aX dy ... _d
X Xog

18



Matrix Derivatives Example

d ¥ _aal
> dTUX—e,ej

> %XTAX =x'(A+AT)

> SM(x) = M) DM (x)

> L tr(AXT1B) = —X"1BAX!

> & logdet X = X!

19



Matrix Derivatives Example

| 2

d s i e

g Zj:l A1jXj dxn ZJ 1 A1jx; Ain - A
d ae _ . I .
9 Ax = : y : =

dx1 Z_/ 1AmJXJ dx,,z_[ lAmJXJ Ami - Amn
TAX—XTATdX+XTd£(X—X (AT—{—A)

M(x)/\/l’l(x) =1 = 0=[LMx)]M(x)+ M(x)[LM(x)]

d tr(AX!B) :tr(Adi X7'B) = —tr(AX 'eie/ X"!B)

dXjj ij
- —ejTX_lBAX_le,- = ¢/ (Xx7'BAXY)'
9 logdet X = — ZX cof i (X)
dX; ¢ det(X) dx; £ KOk
1 1
fi(X) = ———adj;(X)=e¢' X T
= der() Fi ) = Gy 24 (X) = e

20



Unconstrained Optimization

» Many problems we encounter in this course, lead to an unconstrained
optimization problem over the Euclidean vector space RY:
min f(x
xR ( )
> A global minimizer x* € R satisfies f(x*) < f(x) for all x € R?. The
value f(x*) is called global minimum.
> A local minimizer x* € RY satisfies f(x*) < f(x) for all x € N'(x*),
where NV'(x*) C R9 is a neighborhood around x* (e.g., an open ball with
small radius centered at x*). The value f(x*) is called local minimum.
» The objective function f : R? — R is differentiable if the gradient:
V()= [0 ... 2] e g

aXl 8xd

exists at each x € R

> A critical point X € R satisfies V£(X) = 0 or Vf(X) = undefined

» All minimizers are critical points but not all critical points are
minimizers. A critical point is either a local maximizer, a local
minimizer, or neither (saddle point). 1



Convexity

>

>

A set D C R? is convex if Ax + (1 — \)y € D for all x,y € D, X € [0,

A convex set contains the line segment between any two points in it
Convex set Non - convex set

A function f : D — R with D C R? is convex if:
» D is a convex set
> F(x+ (1= N)y) < AM(x)+ (1= N)f(y) for all x,y € D, A € [0,1]

First-order convexity condition: a differentiable f : D +— R with
convex D is convex iff f(y) > f(x) + VF(x)" (y — x) for all x,y € D

Second-order convexity condition: a twice-differentiable f : D — R
with convex D is convex iff V2f(x) = 0 for all x € D

1]

22



Descent Direction

» Consider the unconstrained optimization problem:

min f(x)

xcRd

Descent Direction Theorem

Suppose f is differentiable at x. If 3 6x such that V£(x)"dx < 0, then
J e > 0 such that f(x + adx) < f(x) for all a € (0,¢).

» The vector dx is called a descent direction

» The theorem states that if a descent direction exists at X, then it is
possible to move to a new point that has a lower f value

» Steepest descent direction: ix := —%

» Based on this theorem, we can derive conditions for determining the
optimality of X

23



Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at X. If X is a local minimizer, then Vf(x) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at X. If X is a local minimizer, then
V£(X) = 0 and V2f(x) = 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at X. If V£(X) = 0 and V?f(X) > 0, then X
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x. If f is convex, then X is a global minimizer
if and only if Vf(x) =0.

24



Descent Optimization Methods

» A critical point of f can be obtained by solving Vf(x) = 0 but an
explicit solution may be difficult to derive

» Descent methods: iterative methods to obtain a solution of Vf(x) =0

> Given an initial guess x(k), take a step of size (k) > 0 along a descent
direction ¢x(k):
x(K+1) — (k) 4 oK) gx(K)

> Different methods differ in the way 6x(%) and a(¥) are chosen
> 6x(%) needs to be a descent direction: V£ (x(K)Tox(kK) < 0, wx(k) £ x*

» (k) needs to ensure sufficient decrease in f to guarantee convergence:

> The best step size choice is (%) € argmin f(x() + adx(¥)
a>0

k

» In practice, a(¥) is obtained via approximate line search methods

25



Gradient Descent (First-Order Method)

> Idea: —V£(x(¥)) points in the direction of steepest local descent
> Gradient descent: let 0x(¥) := —Vf(x(K) and iterate:

K+ — (K)o £(x(K))

> Step size: a good choice for a(¥) is % where L > 0 is the Lipschitz
constant of V£ (x):

[VF(x) — VA(X)|| < Lllx — X vx, x' € RY

26



Newton's Method (Second-Order Method)

» Newton’s method: iteratively approximates f by a quadratic function

> Since dx is a ‘small change to the initial guess x(¥), we can approximate
f using a Taylor-series expansion:

Of (x) 1 0?f(x)

(k) ~ £(x(0) 17

f(xY + 0x) ~ f(x\")) + ( . x:x(k)> ox + 2(5x <8x8xT e dx
Gradient Transpose Hessian

g(dx, x")
N——

quadratic function in dx

» The symmetric Hessian matrix V2f(x(k)) needs to be positive-definite
for this method to work.

27



Newton's Method (Second-Order Method)

A q(6x,xV)  q(5x,x) f(x)

f(x) = q(0,x)

q (52, x(0))

f(x®) = q(0,xM)

q(gx*.(l)’ x(l)) '
L ] e — X

x* x@) x() 4(0)

A\ 4

28



Newton's Method (Second-Order Method)

» Find dx that minimizes the quadratic approximation to f(x(k) + 0x)

» Since this is an unconstrained optimization problem, dx can be
determined by setting the derivative with respect to dx to zero:

~0q(6x,x(K) 7 9f(x) T (0*f(x)
0= N x=x(k) T 0% OxOx T ()

0dx ox
T
oo (1)
x=x(k) Ox x=x(k)

0f(x)
OxoxT

» The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., V2f(x(k)) > 0:

-1
Sx = — [VQf(x(k))} Vi (x¥)
» Newton’s method:
-1
x(kH1) — (k) _ (k) {Vz f(x(k))} V(x50

29



Newton's Method (Comments)

» Newton's method, like any other descent method, converges only to a
local minimum

» Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes a(¥) are small

» Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e., «(k) = 1, and
the function value converges quadratically to the optimum

» A disadvantage of Newton's method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high-dimensional problems
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Gauss-Newton’'s Method

» Gauss-Newton is an approximation to Newton's method that avoids
computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f(x) = %e(x)Te(x) e(x) e R™

» The Jacobian and Hessian matrices are:

o 0f(x) oy T ((9e(x)

Jacobian: Ox X:X(k)_e(x ) Ox |0
PN (de(x) ' (0e(x)
Hessian: axox" | 0 < Ox x—x(k)) ( ox x—x(k>>
- Pe(x)

(xUy [ 221
+;e,(x )(8x8xT x_x(k)>
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Gauss-Newton’'s Method

» Near the minimum of f, the second term in the Hessian is small relative

to the first and the Hessian can be approximated according to:
N <ae(x) )T <8e(x) >
xex(h) X |y X |yt
» The above does not involve any second derivatives
» Setting the gradient of this new quadratic approximation of f with
respect to dx to zero, leads to the system:
T
) e(x(k))

() (e (5

ox
» Gauss-Newton’s method:

O2f (x)
OxOx T

x=x(k)
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Gauss-Newton's Method (Alternative Derivation)

» Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f(x):
> ox
x=x(k)

ce) ) (e (5] ) )

» Minimizing this with respect to dx leads to the same system as before:

(L) (L) (L) e

de(x)

e(x() + 6x) ~ e(x(F)) + < Ix

» Substituting into f leads to:

1

(x5 4+ ox) ~ 3 <e(x(k)) + (

de(x)
ox

x=x(k)
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Levenberg-Marquardt's Method

» The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian

approximation:
) +AD | ox = — <8e(x)
x—x(k) ox

T T
<<8e(x) > <ae(x) ) o)
6x x=x(K) 8X
» When A > 0 is large, the descent vector dx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

x=x(k)
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Levenberg-Marquardt's Method (Summary)

» An iterative optimization approach for the unconstrained problem:

m|n f(x Zej x) " ej(x ej(x) e R™, x e R"

> Given an initial guess x(K), determine a descent direction dx by solving:

2SN THED) 20 0w = 30 Tex)
J
where J;j(x) := a%(x) e RM*" X>0, D€ R™"is a positive diagonal

matrix, e.g., D = diag (ZJ Ji(xU)T J;(x( k)))
» Obtain an updated estimate according to:
xUFD) = x() 4 oK) x
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Unconstrained Optimization Example
> Let f(x):=1 i1 [|Ajx + b |3 for x € RY and assume >0 lAJTAj =0

» Solve the unconstrained optimization problem miny f(x) using:
» The necessary and sufficient optimality condition for convex function f
» Gradient descent
» Newton's method
» Gauss-Newton's method

» We will need Vf(x) and sz(x):

n

- 22 A+ bilE = (Ax -+ )T A

j=1
n n
S ATA | xS ATh
j=1 Jj=1

d n
V2f(x) = V) = > AlA =0
j=1

VF(x) = df(x) "

36



Necessary and Sufficient Optimality Condition

» Solve Vf(x) = 0 for x:

0=Vf(x)= (Z AJTAJ-) X+ (Z A]bj>
j=1 j=1

-1
x=— > AlA > Al
j=1 j=1

» The solution above is unique since we assumed that Z}’Zl AJ-TAJ- =0
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Gradient Descent

> Start with an initial guess x(°) = 0

» At iteration k, gradient descent uses the descent direction
ox(k) = —Vf(x(k))

» Given arbitary x1, x> € R?, determine the Lipschitz constant of V(x):

IVf(x1) — VF(x2)] H(ZA A) X1 — X2) D ATA| 1 — x|
j=1
- L
» Choose step size a(k) = % and iterate:
x(kT1) — x(k) 4 oK) sx(K)
1 n
_ (K Ta | (K Th
_x()—Z D> ATA; | X )_7 ZA
j=1
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Newton's Method

» Start with an initial guess x(9) = 0

> At iteration k, Newton's method uses the descent direction:

-1
5%“::—[veﬂﬂ“ﬂ v (x*)

n

1
=—xW - [N AT A > Alb
j=1

j=1

and updates the solution estimate via:

1
x(kH1) — x(K) 4 gy (k) — _ ZAJ-TAJ' ZAJTbJ'
j=t =t

» Note that for this problem, Newton's method converges in one iteration!
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Gauss-Newton's I\/Iethod

» f(x) is of the form % " ei(x)ej(x) for ej(x) ;== Ajx + b;
» The Jacobian of ej(x) is Ji(x) = A;

» Start with an initial guess x(°) = 0

> At iteration k, Gauss-Newton's method uses the descent direction:

(SX(k Z J k))T k)) Z J k))

-1
n n

=— (Y A4 > AT (AXH) 1 by)

Jj=1 Jj=1

= —x(K — (Z Al A; ) : (Z A]bj)

» If k) =1, in this problem, Gauss-Newton’s method behaves exactly
like Newton's method and coverges in one iteration! 40



