
ECE276A: Sensing & Estimation in Robotics
Lecture 3: Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:moshan@eng.ucsd.edu
mailto:aasghari@eng.ucsd.edu

Field

I A field is a set F with two binary operations, + : F × F 7→ F (addition)
and · : F × F 7→ F (multiplication), which satisfy the following axioms:

I Associativity: a + (b + c) = (a + b) + c and a(bc) = (ab)c , ∀a, b, c ∈ F

I Commutativity: a + b = b + a and ab = ba, ∀a, b ∈ F

I Identity: ∃1, 0 ∈ F such that a + 0 = a and a1 = a, ∀a ∈ F

I Inverse: ∀a ∈ F ,∃−a ∈ F such that a + (−a) = 0
∀a ∈ F \ {0},∃a−1 ∈ F \ {0} such that aa−1 = 1

I Distributivity: a(b + c) = (ab) + (ac), ∀a, b, c ∈ F

I Examples: real numbers R, complex numbers C, rational numbers Q

2

Vector Space

I A vector space over a field F is a set V with two binary operations,
+ : V × V 7→ V (addition) and · : F × V 7→ V (scalar multiplication),
which satisfy the following axioms:

I Associativity: x + (y + z) = (x + y) + z, ∀x, y, z ∈ V

I Compatibility: a(bx) = (ab)x, ∀a, b ∈ F and ∀x ∈ V

I Commutativity: x + y = x + y, ∀x, y ∈ V

I Identity: ∃ 0 ∈ V and 1 ∈ F such that x + 0 = x and 1x = x, ∀x ∈ V

I Inverse: ∀x ∈ V ,∃−x ∈ V such that x + (−x) = 0

I Distributivity: a(x + y) = ax + by and (a + b)x = ax + bx, ∀a, b ∈ F
and ∀x, y ∈ V

I Examples: real vectors Rd , complex vectors Cd , rational vectors Qd ,
functions Rd 7→ R

3

Basis and Dimension

I A basis of a vector space V over a field F is a set B ⊆ V that satisfies:
I linear independence: for all finite {x1, . . . , xm} ⊆ B,

if a1x1 + · · ·+ amxm = 0 for some a1, . . . , am ∈ F , then a1 = · · · = am = 0

I B spans V : ∀x ∈ V , ∃ x1, . . . , xd ∈ B and unique a1, . . . , ad ∈ F such
that x = a1x1 + · · ·+ adxd

I The dimension d of a vector space V is the cardinality of its bases

4

Inner Product and Norm
I An inner product on a vector space V over a field F is a function
〈·, ·〉 : V × V 7→ F such that for all a ∈ F and all x, y, z ∈ V :

I 〈ax, y〉 = a〈x, y〉 (homogeneity)

I 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

I 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

I 〈x, x〉 ≥ 0 (non-negativity)

I 〈x, x〉 = 0 iff x = 0 (definiteness)

I A norm on a vector space V over a field F is a function ‖ · ‖ : V → R
such that for all a ∈ F and all x, y ∈ V :

I ‖ax‖ = |a|‖x‖ (absolute homogeneity)

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I ‖x‖ ≥ 0 (non-negativity)

I ‖x‖ = 0 iff x = 0 (definiteness)

5

Euclidean Vector Space
I A Euclidean vector space Rd is a vector space with finite dimension d

over the real numbers R

I A Euclidean vector x ∈ Rd is a collection of scalars xi ∈ R for
i = 1, . . . , d organized as a column:

x =

x1
...
xd


I The transpose of x ∈ Rd is organized as a row: x> =

[
x1 · · · xd

]
I The Euclidean inner product between two vectors x, y ∈ Rd is:

〈x, y〉 = x>y =
d∑

i=1

xiyi

I The Euclidean norm of a vector x ∈ Rd is ‖x‖2 :=
√

x>x and satisfies:
I max

1≤i≤d
|xi | ≤ ‖x‖2 ≤

√
d max

1≤i≤d
|xi |

I |x>y| ≤ ‖x‖2‖y‖2 (Cauchy-Schwarz Inequality) 6

Matrices

I A matrix A ∈ Rm×n is a rectangular array of scalars Aij ∈ R for
i = 1, . . . ,m and j = 1, . . . , n

I The entries of the transpose A> ∈ Rn×m of a matrix A ∈ Rm×n are
A>ij = Aji . The transpose satisfies: (AB)> = B>A>

I The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC) = tr(BCA) = tr(CAB)

I The Frobenius inner product between two matrices X ,Y ∈ Rm×n is:

〈X ,Y 〉 = tr(X>Y)

I The Frobenius norm of a matrix X ∈ Rm×n is: ‖X‖F :=
√

tr(X>X)

7

Matrix Determinant and Inverse

I The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j

times the determinant of the (n − 1)× (n − 1) submatrix that results
when the i th-row and j th-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.

I The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)>

I The inverse A−1 of A exists iff det(A) 6= 0 and satisfies:

A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1

8

Matrix Inversion Lemma

I Square completion:

1

2
x>Ax + b>x + c =

1

2

(
x + A−1b

)>
A
(
x + A−1b

)
+ c − 1

2
b>A−1b

I Woodbury matrix identity:

(A + BDC)−1 = A−1 − A−1B
(
CA−1B + D−1

)−1
CA−1

I Block matrix inversion:[
A B
C D

]−1

=

[
I 0

D−1C I

]−1 [
A− BD−1C 0

0 D

]−1 [
I BD−1

0 I

]−1

=

[
I 0

−D−1C I

] [(
A− BD−1C

)−1
0

0 D−1

] [
I −BD−1

0 I

]
=

[(
A− BD−1C

)−1 −
(
A− BD−1C

)−1
BD−1

−D−1C
(
A− BD−1C

)−1
D−1 + D−1C

(
A− BD−1C

)−1
BD−1

]

9

Eigenvalue Decomposition
I For any A ∈ Rn×n, if there exists q ∈ Cn \ {0} and λ ∈ C such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ.

I A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs.

I Eigenvectors are not unique since for any c ∈ C \ {0}, cq is an
eigenvector corresponding to the same eigenvalue.

I The n eigenvalues of A ∈ Rn×n are precisely the n roots of the
characteristic polynomial of A:

p(λ) := det(λI − A)

I We can put all n equations Aqi = λiqi to obtain the eigen
decomposition of A:

A = QΛQ−1

10

Eigenvalue Decomposition
I The roots of a polynomial are continuous functions of its coefficients and

hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) :=
n∑

i=1

λi det(A) :=
n∏

i=1

λi

I A> has the same eigenvalues and eigenvectors as A

I A>A has the same eigenvectors as A but its eigenvalues are λ2

I Ak for k = 1, 2, . . . has the same eigenvectors as A but its eigenvalues
are λk

I A−1 has the same eigenvectors as A but its eigenvalues are λ−1

I The eigenvalues of A are invariant under any unitary transform U∗AU
for U∗U = UU∗ = I

I If A is symmetric (A> = A), then all its eigenvalues are real and all its
eigenvectors are orthogonal (Q−1 = Q>)

11

Singular Value Decomposition
I An eigen-decomposition does not exist for A ∈ Rm×n

I A ∈ Rm×n with rank r ≤ min {m, n} can be diagonalized by two
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n via singular value
decomposition:

A = UΣV> Σ =


σ1

. . .

σr

 ∈ Rm×n

I U contains the m orthogonal eigenvectors of the symmetric matrix
AA> ∈ Rm×m and satisfies U>U = UU> = I

I V contains the n orthogonal eigenvectors of the symmetric matrix
A>A ∈ Rn×n and satisfies V>V = VV> = I

I Σ contains the singular values σi =
√
λi , equal to the square roots of

the r non-zero eigenvalues λi of AA> or A>A, on its diagonal

I If A is normal (A>A = AA>), its singular values are related to its
eigenvalues via σi = |λi | 12

Matrix Pseudo Inverse

I The pseudo-inverse A† ∈ Rn×m of A ∈ Rm×n can be obtained from its
SVD A = UΣV>:

A† = VΣ†UT Σ† =


1/σ1

. . .

1/σr

 ∈ Rn×m

I The pseudo-inverse A† ∈ Rn×m satisfies the Moore-Penrose conditions:
I AA†A = A
I A†AA† = A†

I
(
AA†

)>
= AA†

I
(
A†A

)>
= A†A

13

Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I The column space or image of A is im(A) ⊆ Rm and is spanned by the
r columns of U corresponding to non-zero singular values

I The null space or kernel of A is ker(A) ⊆ Rn and is spanned by the
n − r columns of V corresponding to zero singular values

I The row space or co-image of A is im(A>) ⊆ Rn and is spanned by
the r columns of V corresponding to non-zero singular values

I The left null space or co-kernel of A is ker(A>) ⊆ Rm and is spanned
by the m − r columns of U corresponding to zero singular values

I The domain of A is Rn = ker(A)⊕ im(A>)

I The co-domain of A is Rm = ker(A>)⊕ im(A)

14

Solution of Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I If b ∈ im(A), i.e., b>v = 0 for all v ∈ ker(A>), then Ax = b has one or
infinitely many solutions x = A†b + (I − A†A)y for any y ∈ Rn

I If b /∈ im(A), then no solution exists and x = A†b is an approximate
solution with minimum ‖x‖ and ‖Ax− b‖ norms

I If m = n = r , then Ax = b has a unique solution x = A†b = A−1b

15

Positive Semidefinite Matrices

I The product x>Ax for A ∈ Rn×n and x ∈ Rn is called a quadratic form
and A can be assumed symmetric, A = A>, because:

1

2
x>(A + A>)x = x>Ax, ∀x ∈ Rn

I A symmetric matrix A ∈ Rn×n is positive semidefinite if x>Ax ≥ 0 for
all x ∈ Rn.

I A symmetric matrix A ∈ Rn×n is positive definite if it is positive
semidefinite and if x>Ax = 0 implies x = 0.

I All eigenvalues of a symmetric positive semidefinite matrix are
non-negative.

I All eigenvalues of a symmetric positive definite matrix are positive.

16

Schur Complement

I The Schur complement of block D of M =

[
A B
C D

]
is SD =A−BD−1C

I The Schur complement of block A of M =

[
A B
C D

]
is SA =D−CA−1B

I Let M =

[
A B
B> D

]
be symmetric. Then:

I M � 0⇔ A � 0,SA = D − B>A−1B � 0

I M � 0⇔ D � 0,SD = A− BD−1B> � 0

I M � 0⇔ A � 0,SA � 0, (I − AA†)B = 0

I M � 0⇔ D � 0,SD � 0, (I − DD†)B> = 0

17

Derivatives (numerator layout)
I Derivatives of y ∈ Rm and Y ∈ Rm×n by scalar x ∈ R:

dy

dx
=


dy1
dx
...

dym
dx

 ∈ Rm×1 dY

dx
=


dY11
dx · · · dY1n

dx
...

. . .
...

dYm1
dx · · · dYmn

dx

 ∈ Rm×n

I Derivatives of y ∈ R and y ∈ Rm by vector x ∈ Rp:

dy

dx
=

[
dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy]> (gradient transpose)

∈ R1×p dy

dx
=


dy1
dx1

· · · dy1
dxp

...
. . .

...
dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

∈ Rm×p

I Derivative of y ∈ R by matrix X ∈ Rp×q:

dy

dX
=


dy
dX11

· · · dy
dXp1

...
. . .

...
dy

dX1q
· · · dy

dXpq

 ∈ Rq×p

18

Matrix Derivatives Example

I d
dXij

X = eie
>
j

I d
dxAx = A

I d
dxx>Ax = x>(A + A>)

I d
dxM

−1(x) = −M−1(x)dM(x)
dx M−1(x)

I d
dX tr(AX−1B) = −X−1BAX−1

I d
dX log detX = X−1

19

Matrix Derivatives Example

I d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn


I d

dxx>Ax = x>A> dx
dx + x> dAx

dx = x>(A> + A)

I M(x)M−1(x) = I ⇒ 0 =
[
d
dxM(x)

]
M−1(x) + M(x)

[
d
dxM

−1(x)
]

I

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

>
j X
−1B)

= −e>j X
−1BAX−1ei = −e>i

(
X−1BAX−1

)>
ej

I

d

dXij
log detX =

1

det(X)

d

dXij

n∑
k=1

Xikcof ik(X)

=
1

det(X)
cof ij(X) =

1

det(X)
adjji (X) = e>i X

−Tej

20

Unconstrained Optimization
I Many problems we encounter in this course, lead to an unconstrained

optimization problem over the Euclidean vector space Rd :

min
x∈Rd

f (x)

I A global minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ Rd . The
value f (x∗) is called global minimum.

I A local minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ N (x∗),
where N (x∗) ⊂ Rd is a neighborhood around x∗ (e.g., an open ball with
small radius centered at x∗). The value f (x∗) is called local minimum.

I The objective function f : Rd 7→ R is differentiable if the gradient:

∇f (x) :=
[
∂f (x)
∂x1

· · · ∂f (x)
∂xd

]>
∈ Rd

exists at each x ∈ Rd

I A critical point x̄ ∈ Rd satisfies ∇f (x̄) = 0 or ∇f (x̄) = undefined
I All minimizers are critical points but not all critical points are

minimizers. A critical point is either a local maximizer, a local
minimizer, or neither (saddle point). 21

Convexity
I A set D ⊆ Rd is convex if λx + (1− λ)y ∈ D for all x, y ∈ D, λ ∈ [0, 1]

I A convex set contains the line segment between any two points in it

I A function f : D 7→ R with D ⊆ Rd is convex if:
I D is a convex set
I f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for all x, y ∈ D, λ ∈ [0, 1]

I First-order convexity condition: a differentiable f : D 7→ R with
convex D is convex iff f (y) ≥ f (x) +∇f (x)>(y − x) for all x, y ∈ D

I Second-order convexity condition: a twice-differentiable f : D 7→ R
with convex D is convex iff ∇2f (x) � 0 for all x ∈ D

22

Descent Direction

I Consider the unconstrained optimization problem:

min
x∈Rd

f (x)

Descent Direction Theorem

Suppose f is differentiable at x̄. If ∃ δx such that ∇f (x̄)>δx < 0, then
∃ ε > 0 such that f (x̄ + αδx) < f (x̄) for all α ∈ (0, ε).

I The vector δx is called a descent direction

I The theorem states that if a descent direction exists at x̄, then it is
possible to move to a new point that has a lower f value

I Steepest descent direction: δx := − ∇f (x̄)
‖∇f (x̄)‖

I Based on this theorem, we can derive conditions for determining the
optimality of x̄

23

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at x̄. If x̄ is a local minimizer, then
∇f (x̄) = 0 and ∇2f (x̄) � 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at x̄. If ∇f (x̄) = 0 and ∇2f (x̄) � 0, then x̄
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x̄. If f is convex, then x̄ is a global minimizer
if and only if ∇f (x̄) = 0.

24

Descent Optimization Methods

I A critical point of f can be obtained by solving ∇f (x) = 0 but an
explicit solution may be difficult to derive

I Descent methods: iterative methods to obtain a solution of ∇f (x) = 0

I Given an initial guess x(k), take a step of size α(k) > 0 along a descent
direction δx(k):

x(k+1) = x(k) + α(k)δx(k)

I Different methods differ in the way δx(k) and α(k) are chosen

I δx(k) needs to be a descent direction: ∇f (x(k))>δx(k) < 0, ∀x(k) 6= x∗

I α(k) needs to ensure sufficient decrease in f to guarantee convergence:
I The best step size choice is α(k) ∈ arg min

α>0
f (x(k) + αδx(k))

I In practice, α(k) is obtained via approximate line search methods

25

Gradient Descent (First-Order Method)

I Idea: −∇f (x(k)) points in the direction of steepest local descent

I Gradient descent: let δx(k) := −∇f (x(k)) and iterate:

x(k+1) = x(k) − α(k)∇f (x(k))

I Step size: a good choice for α(k) is 1
L , where L > 0 is the Lipschitz

constant of ∇f (x):

‖∇f (x)−∇f (x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ Rd

26

Newton’s Method (Second-Order Method)

I Newton’s method: iteratively approximates f by a quadratic function

I Since δx is a ‘small‘ change to the initial guess x(k), we can approximate
f using a Taylor-series expansion:

f (x(k) + δx) ≈ f (x(k)) +

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸
Gradient Transpose

δx +
1

2
δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸

Hessian

δx

=: q(δx, x(k))︸ ︷︷ ︸
quadratic function in δx

I The symmetric Hessian matrix ∇2f (x(k)) needs to be positive-definite
for this method to work.

27

Newton’s Method (Second-Order Method)

28

Newton’s Method (Second-Order Method)
I Find δx that minimizes the quadratic approximation to f (x(k) + δx)

I Since this is an unconstrained optimization problem, δx can be
determined by setting the derivative with respect to δx to zero:

0 =
∂q(δx, x(k))

∂δx
=

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
+ δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
⇒

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
δx = −

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)>
I The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., ∇2f (x(k)) � 0:

δx = −
[
∇2f (x(k))

]−1
∇f (x(k))

I Newton’s method:

x(k+1) = x(k) − α(k)
[
∇2f (x(k))

]−1
∇f (x(k))

29

Newton’s Method (Comments)

I Newton’s method, like any other descent method, converges only to a
local minimum

I Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes α(k) are small

I Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e., α(k) = 1, and
the function value converges quadratically to the optimum

I A disadvantage of Newton’s method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high-dimensional problems

30

Gauss-Newton’s Method

I Gauss-Newton is an approximation to Newton’s method that avoids
computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f (x) =
1

2
e(x)>e(x) e(x) ∈ Rm

I The Jacobian and Hessian matrices are:

Jacobian:
∂f (x)

∂x

∣∣∣∣
x=x(k)

= e(x(k))>
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
Hessian:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

=

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+

m∑
i=1

ei (x(k))

(
∂2ei (x)

∂x∂x>

∣∣∣∣
x=x(k)

)

31

Gauss-Newton’s Method

I Near the minimum of f , the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

≈
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
I The above does not involve any second derivatives

I Setting the gradient of this new quadratic approximation of f with
respect to δx to zero, leads to the system:(

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I Gauss-Newton’s method:

x(k+1) = x(k) + α(k)δx

32

Gauss-Newton’s Method (Alternative Derivation)

I Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f (x):

e(x(k) + δx) ≈ e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

I Substituting into f leads to:

f (x(k) + δx) ≈ 1

2

(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)>(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)
I Minimizing this with respect to δx leads to the same system as before:(

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

33

Levenberg-Marquardt’s Method

I The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian
approximation:((

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+ λD

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I When λ ≥ 0 is large, the descent vector δx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

34

Levenberg-Marquardt’s Method (Summary)

I An iterative optimization approach for the unconstrained problem:

min
x

f (x) :=
1

2

∑
j

ej(x)>ej(x) ej(x) ∈ Rmj , x ∈ Rn

I Given an initial guess x(k), determine a descent direction δx by solving:∑
j

Jj(x(k))>Jj(x(k)) + λD

 δx = −

∑
j

Jj(x(k))>ej(x(k))


where Jj(x) :=

∂ej (x)
∂x ∈ Rmj×n, λ ≥ 0, D ∈ Rn×n is a positive diagonal

matrix, e.g., D = diag
(∑

j Jj(x(k))>Jj(x(k))
)

I Obtain an updated estimate according to:

x(k+1) = x(k) + α(k)δx

35

Unconstrained Optimization Example
I Let f (x) := 1

2

∑n
j=1 ‖Ajx + bj‖2

2 for x ∈ Rd and assume
∑n

j=1 A
>
j Aj � 0

I Solve the unconstrained optimization problem minx f (x) using:
I The necessary and sufficient optimality condition for convex function f
I Gradient descent
I Newton’s method
I Gauss-Newton’s method

I We will need ∇f (x) and ∇2f (x):

df (x)

dx
=

1

2

n∑
j=1

d

dx
‖Ajx + bj‖2

2 =
n∑

j=1

(Ajx + bj)
> Aj

∇f (x) =
df (x)

dx

>
=

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


∇2f (x) =

d

dx
∇f (x) =

n∑
j=1

A>j Aj � 0

36

Necessary and Sufficient Optimality Condition

I Solve ∇f (x) = 0 for x:

0 = ∇f (x) =

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


x = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I The solution above is unique since we assumed that

∑n
j=1 A

>
j Aj � 0

37

Gradient Descent

I Start with an initial guess x(0) = 0

I At iteration k , gradient descent uses the descent direction
δx(k) = −∇f (x(k))

I Given arbitary x1, x2 ∈ Rd , determine the Lipschitz constant of ∇f (x):

‖∇f (x1)−∇f (x2)‖ =

∥∥∥∥(n∑
j=1

A>j Aj

)
(x1 − x2)

∥∥∥∥ ≤ ∥∥∥∥ n∑
j=1

A>j Aj

∥∥∥∥︸ ︷︷ ︸
L

‖x1 − x2‖

I Choose step size α(k) = 1
L and iterate:

x(k+1) = x(k) + α(k)δx(k)

= x(k) − 1

L

 n∑
j=1

A>j Aj

 x(k) − 1

L

 n∑
j=1

A>j bj


38

Newton’s Method

I Start with an initial guess x(0) = 0

I At iteration k , Newton’s method uses the descent direction:

δx(k) = −
[
∇2f (x(k))

]−1
∇f (x(k))

= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


and updates the solution estimate via:

x(k+1) = x(k) + δx(k) = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I Note that for this problem, Newton’s method converges in one iteration!

39

Gauss-Newton’s Method
I f (x) is of the form 1

2

∑n
j=1 ej(x)>ej(x) for ej(x) := Ajx + bj

I The Jacobian of ej(x) is Jj(x) = Aj

I Start with an initial guess x(0) = 0

I At iteration k , Gauss-Newton’s method uses the descent direction:

δx(k) = −

 n∑
j=1

Jj(x(k))>Jj(x(k))

−1 n∑
j=1

Jj(x(k))>ej(x(k))


= −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j (Ajx
(k) + bj)


= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I If α(k) = 1, in this problem, Gauss-Newton’s method behaves exactly

like Newton’s method and coverges in one iteration! 40

