ECE276A: Sensing \& Estimation in Robotics Lecture 3: Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Field

- A field is a set F with two binary operations, $+: F \times F \mapsto F$ (addition) and $\cdot: F \times F \mapsto F$ (multiplication), which satisfy the following axioms:
- Associativity: $a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c, \forall a, b, c \in F$
- Commutativity: $a+b=b+a$ and $a b=b a, \forall a, b \in F$
- Identity: $\exists 1,0 \in F$ such that $a+0=a$ and $a 1=a, \forall a \in F$
- Inverse: $\forall a \in F, \exists-a \in F$ such that $a+(-a)=0$

$$
\forall a \in F \backslash\{0\}, \exists a^{-1} \in F \backslash\{0\} \text { such that } a a^{-1}=1
$$

- Distributivity: $a(b+c)=(a b)+(a c), \forall a, b, c \in F$
- Examples: real numbers \mathbb{R}, complex numbers \mathbb{C}, rational numbers \mathbb{Q}

Vector Space

- A vector space over a field F is a set V with two binary operations, $+: V \times V \mapsto V$ (addition) and $\cdot: F \times V \mapsto V$ (scalar multiplication), which satisfy the following axioms:
- Associativity: $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$
- Compatibility: $a(b \mathbf{x})=(a b) \mathbf{x}, \forall a, b \in F$ and $\forall \mathbf{x} \in V$
- Commutativity: $\mathbf{x}+\mathbf{y}=\mathbf{x}+\mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in V$
- Identity: $\exists \mathbf{0} \in V$ and $1 \in F$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $1 \mathbf{x}=\mathbf{x}, \forall \mathbf{x} \in V$
- Inverse: $\forall \mathbf{x} \in V, \exists-\mathbf{x} \in V$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
- Distributivity: $a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+b \mathbf{y}$ and $(a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{x}, \forall a, b \in F$ and $\forall \mathbf{x}, \mathbf{y} \in V$
- Examples: real vectors \mathbb{R}^{d}, complex vectors \mathbb{C}^{d}, rational vectors \mathbb{Q}^{d}, functions $\mathbb{R}^{d} \mapsto \mathbb{R}$

Basis and Dimension

- A basis of a vector space V over a field F is a set $B \subseteq V$ that satisfies:
- linear independence: for all finite $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subseteq B$, if $a_{1} \mathbf{x}_{1}+\cdots+a_{m} \mathbf{x}_{m}=0$ for some $a_{1}, \ldots, a_{m} \in F$, then $a_{1}=\cdots=a_{m}=0$
- B spans $V: \forall \mathbf{x} \in V, \exists \mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in B$ and unique $a_{1}, \ldots, a_{d} \in F$ such that $\mathbf{x}=a_{1} \mathbf{x}_{1}+\cdots+a_{d} \mathbf{x}_{d}$
- The dimension d of a vector space V is the cardinality of its bases

Inner Product and Norm

- An inner product on a vector space V over a field F is a function $\langle\cdot, \cdot\rangle: V \times V \mapsto F$ such that for all $a \in F$ and all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$:
- $\langle a \mathbf{x}, \mathbf{y}\rangle=a\langle\mathbf{x}, \mathbf{y}\rangle$
(homogeneity)
- $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle \quad$ (additivity)
- $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$
- $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
- $\langle\mathbf{x}, \mathbf{x}\rangle=0$ iff $\mathbf{x}=\mathbf{0}$
(conjugate symmetry)
(non-negativity)
(definiteness)
- A norm on a vector space V over a field F is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $a \in F$ and all $\mathbf{x}, \mathbf{y} \in V$:
- $\|a \mathbf{x}\|=|a|\|\mathbf{x}\| \quad$ (absolute homogeneity)
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (triangle inequality)
- $\|x\| \geq 0$
(non-negativity)
- $\|\mathbf{x}\|=0$ iff $\mathbf{x}=0 \quad$ (definiteness)

Euclidean Vector Space

- A Euclidean vector space \mathbb{R}^{d} is a vector space with finite dimension d over the real numbers \mathbb{R}
- A Euclidean vector $\mathbf{x} \in \mathbb{R}^{d}$ is a collection of scalars $x_{i} \in \mathbb{R}$ for $i=1, \ldots, d$ organized as a column:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- The transpose of $\mathbf{x} \in \mathbb{R}^{d}$ is organized as a row: $\mathbf{x}^{\top}=\left[\begin{array}{lll}x_{1} & \cdots & x_{d}\end{array}\right]$
- The Euclidean inner product between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ is:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{d} x_{i} y_{i}
$$

- The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^{d}$ is $\|\mathbf{x}\|_{2}:=\sqrt{\mathbf{x}^{\top} \mathbf{x}}$ and satisfies:
$-\max _{1 \leq i \leq d}\left|x_{i}\right| \leq\|\mathbf{x}\|_{2} \leq \sqrt{d} \max _{1 \leq i \leq d}\left|x_{i}\right|$
- $\left|\mathbf{x}^{\top} \mathbf{y}\right| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$ (Cauchy-Schwarz Inequality)

Matrices

- A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of scalars $A_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$
- The entries of the transpose $A^{\top} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are $A_{i j}^{\top}=A_{j i}$. The transpose satisfies: $(A B)^{\top}=B^{\top} A^{\top}$
- The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} A_{i i} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
$$

- The Frobenius inner product between two matrices $X, Y \in \mathbb{R}^{m \times n}$ is:

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

- The Frobenius norm of a matrix $X \in \mathbb{R}^{m \times n}$ is: $\|X\|_{F}:=\sqrt{\operatorname{tr}\left(X^{\top} X\right)}$

Matrix Determinant and Inverse

- The determinant of a matrix $A \in \mathbb{R}^{n \times n}$ is:
$\operatorname{det}(A):=\sum_{j=1}^{n} A_{i j} \boldsymbol{\operatorname { c o f }}_{i j}(A)$

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)
$$

where $\operatorname{cof}_{i j}(A)$ is the cofactor of the entry $A_{i j}$ and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times(n-1)$ submatrix that results when the $i^{\text {th }}$-row and $j^{\text {th }}$-col of A are removed. This recursive definition uses the fact that the determinant of a scalar is the scalar itself.

- The adjugate is the transpose of the cofactor matrix:

$$
\operatorname{adj}(A):=\operatorname{cof}(A)^{\top}
$$

- The inverse A^{-1} of A exists iff $\operatorname{det}(A) \neq 0$ and satisfies:

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)} \quad(A B)^{-1}=B^{-1} A^{-1}
$$

Matrix Inversion Lemma

- Square completion:

$$
\frac{1}{2} x^{\top} A x+b^{\top} x+c=\frac{1}{2}\left(x+A^{-1} b\right)^{\top} A\left(x+A^{-1} b\right)+c-\frac{1}{2} b^{\top} A^{-1} b
$$

- Woodbury matrix identity:

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(C A^{-1} B+D^{-1}\right)^{-1} C A^{-1}
$$

- Block matrix inversion:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
1 & 0 \\
D^{-1} C & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]^{-1}\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right]\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
\end{aligned}
$$

Eigenvalue Decomposition

- For any $A \in \mathbb{R}^{n \times n}$, if there exists $\mathbf{q} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ and $\lambda \in \mathbb{C}$ such that:

$$
A \mathbf{q}=\lambda \mathbf{q}
$$

then \mathbf{q} is an eigenvector corresponding to the eigenvalue λ.

- A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs.
- Eigenvectors are not unique since for any $c \in \mathbb{C} \backslash\{0\}, c q$ is an eigenvector corresponding to the same eigenvalue.
- The n eigenvalues of $A \in \mathbb{R}^{n \times n}$ are precisely the n roots of the characteristic polynomial of A :

$$
p(\lambda):=\operatorname{det}(\lambda I-A)
$$

- We can put all n equations $A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$ to obtain the eigen decomposition of A :

$$
A=Q \wedge Q^{-1}
$$

Eigenvalue Decomposition

- The roots of a polynomial are continuous functions of its coefficients and hence the eigenvalues of a matrix are continuous functions of its entries.

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \lambda_{i} \quad \operatorname{det}(A):=\prod_{i=1}^{n} \lambda_{i}
$$

- A^{\top} has the same eigenvalues and eigenvectors as A
- $A^{\top} A$ has the same eigenvectors as A but its eigenvalues are λ^{2}
- A^{k} for $k=1,2, \ldots$ has the same eigenvectors as A but its eigenvalues are λ^{k}
- A^{-1} has the same eigenvectors as A but its eigenvalues are λ^{-1}
- The eigenvalues of A are invariant under any unitary transform $U^{*} A U$ for $U^{*} U=U U^{*}=I$
- If A is symmetric $\left(A^{\top}=A\right)$, then all its eigenvalues are real and all its eigenvectors are orthogonal $\left(Q^{-1}=Q^{\top}\right)$

Singular Value Decomposition

- An eigen-decomposition does not exist for $A \in \mathbb{R}^{m \times n}$
- $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$ can be diagonalized by two orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ via singular value decomposition:

$$
A=U \Sigma V^{\top} \quad \Sigma=\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- U contains the m orthogonal eigenvectors of the symmetric matrix $A A^{\top} \in \mathbb{R}^{m \times m}$ and satisfies $U^{\top} U=U U^{\top}=I$
- V contains the n orthogonal eigenvectors of the symmetric matrix $A^{\top} A \in \mathbb{R}^{n \times n}$ and satisfies $V^{\top} V=V V^{\top}=I$
- Σ contains the singular values $\sigma_{i}=\sqrt{\lambda_{i}}$, equal to the square roots of the r non-zero eigenvalues λ_{i} of $A A^{\top}$ or $A^{\top} A$, on its diagonal
- If A is normal $\left(A^{\top} A=A A^{\top}\right)$, its singular values are related to its eigenvalues via $\sigma_{i}=\left|\lambda_{i}\right|$

Matrix Pseudo Inverse

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of $A \in \mathbb{R}^{m \times n}$ can be obtained from its SVD $A=U \Sigma V^{\top}$:

$$
A^{\dagger}=V \Sigma^{\dagger} U^{T} \quad \Sigma^{\dagger}=\left[\begin{array}{ccc}
1 / \sigma_{1} & & \\
& \ddots & \\
& & 1 / \sigma_{r} \\
& &
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ satisfies the Moore-Penrose conditions:
- $A A^{\dagger} A=A$
- $A^{\dagger} A A^{\dagger}=A^{\dagger}$
- $\left(A A^{\dagger}\right)^{\top}=A A^{\dagger}$
- $\left(A^{\dagger} A\right)^{\top}=A^{\dagger} A$

Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- The column space or image of A is $i m(A) \subseteq \mathbb{R}^{m}$ and is spanned by the r columns of U corresponding to non-zero singular values
- The null space or kernel of A is $\operatorname{ker}(A) \subseteq \mathbb{R}^{n}$ and is spanned by the $n-r$ columns of V corresponding to zero singular values
- The row space or co-image of A is $i m\left(A^{\top}\right) \subseteq \mathbb{R}^{n}$ and is spanned by the r columns of V corresponding to non-zero singular values
- The left null space or co-kernel of A is $\operatorname{ker}\left(A^{\top}\right) \subseteq \mathbb{R}^{m}$ and is spanned by the $m-r$ columns of U corresponding to zero singular values
- The domain of A is $\mathbb{R}^{n}=\operatorname{ker}(A) \oplus i m\left(A^{\top}\right)$
- The co-domain of A is $\mathbb{R}^{m}=\operatorname{ker}\left(A^{\top}\right) \oplus i m(A)$

Solution of Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- If $\mathbf{b} \in \operatorname{im}(A)$, i.e., $\mathbf{b}^{\top} \mathbf{v}=0$ for all $\mathbf{v} \in \operatorname{ker}\left(A^{\top}\right)$, then $A \mathbf{x}=\mathbf{b}$ has one or infinitely many solutions $\mathbf{x}=A^{\dagger} \mathbf{b}+\left(I-A^{\dagger} A\right) \mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{n}$
- If $\mathbf{b} \notin i m(A)$, then no solution exists and $\mathbf{x}=A^{\dagger} \mathbf{b}$ is an approximate solution with minimum $\|\mathbf{x}\|$ and $\|A \mathbf{x}-\mathbf{b}\|$ norms
- If $m=n=r$, then $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{\dagger} \mathbf{b}=A^{-1} \mathbf{b}$

Positive Semidefinite Matrices

- The product $\mathbf{x}^{\top} A \mathbf{x}$ for $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ is called a quadratic form and A can be assumed symmetric, $A=A^{\top}$, because:

$$
\frac{1}{2} \mathbf{x}^{\top}\left(A+A^{\top}\right) \mathbf{x}=\mathbf{x}^{\top} A \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if $\mathbf{x}^{\top} A \mathbf{x} \geq 0$ for all $x \in \mathbb{R}^{n}$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if it is positive semidefinite and if $\mathbf{x}^{\top} A \mathbf{x}=0$ implies $\mathbf{x}=0$.
- All eigenvalues of a symmetric positive semidefinite matrix are non-negative.
- All eigenvalues of a symmetric positive definite matrix are positive.

Schur Complement

- The Schur complement of block D of $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is $S_{D}=A-B D^{-1} C$

The Schur complement of block A of $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is $S_{A}=D-C A^{-1} B$

- Let $M=\left[\begin{array}{cc}A & B \\ B^{\top} & D\end{array}\right]$ be symmetric. Then:
- $M \succ 0 \Leftrightarrow A \succ 0, S_{A}=D-B^{\top} A^{-1} B \succ 0$
- $M \succ 0 \Leftrightarrow D \succ 0, S_{D}=A-B D^{-1} B^{\top} \succ 0$
- $M \succeq 0 \Leftrightarrow A \succeq 0, S_{A} \succeq 0,\left(I-A A^{\dagger}\right) B=0$
- $M \succeq 0 \Leftrightarrow D \succeq 0, S_{D} \succeq 0,\left(I-D D^{\dagger}\right) B^{\top}=0$

Derivatives (numerator layout)

- Derivatives of $\mathbf{y} \in \mathbb{R}^{m}$ and $\mathbf{Y} \in \mathbb{R}^{m \times n}$ by scalar $x \in \mathbb{R}$:

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
\frac{d y_{1}}{d x} \\
\vdots \\
\frac{d y_{m}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times 1} \quad \frac{d Y}{d x}=\left[\begin{array}{ccc}
\frac{d Y_{11}}{d x} & \cdots & \frac{d Y_{1 n}}{d x} \\
\vdots & \ddots & \vdots \\
\frac{d \mathbf{Y}_{m 1}}{d x} & \cdots & \frac{d \mathbf{Y}_{m n}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- Derivatives of $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^{m}$ by vector $\mathbf{x} \in \mathbb{R}^{p}$:

$$
\frac{d y}{d \mathbf{x}}=\underbrace{\left[\begin{array}{lll}
\frac{d y}{d x_{1}} & \cdots & \frac{d y}{d x_{p}}
\end{array}\right]}_{\left[\nabla_{\mathrm{x}} y\right]^{\top} \text { (gradient transpose) }} \in \mathbb{R}^{1 \times p} \quad \frac{d \mathbf{y}}{d \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{d y_{1}}{d x_{1}} & \cdots & \frac{d y_{1}}{d x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{d y_{m}}{d x_{1}} & \cdots & \frac{d y_{m}}{d x_{p}}
\end{array}\right]}_{\text {Jacobian }} \in \mathbb{R}^{m \times p}
$$

- Derivative of $y \in \mathbb{R}$ by matrix $\mathbf{X} \in \mathbb{R}^{p \times q}$:

$$
\frac{d y}{d X}=\left[\begin{array}{ccc}
\frac{d y}{d X_{11}} & \cdots & \frac{d y}{d X_{p 1}} \\
\vdots & \ddots & \vdots \\
\frac{d y}{d X_{1 q}} & \cdots & \frac{d y}{d X_{p q}}
\end{array}\right] \in \mathbb{R}^{q \times p}
$$

Matrix Derivatives Example

$-\frac{d}{d X_{i j}} X=\mathbf{e}_{i} \mathbf{e}_{j}^{\top}$

- $\frac{d}{d x} A x=A$
- $\frac{d}{d \mathbf{x}} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top}\left(A+A^{\top}\right)$
$-\frac{d}{d x} M^{-1}(x)=-M^{-1}(x) \frac{d M(x)}{d x} M^{-1}(x)$
- $\frac{d}{d X} \operatorname{tr}\left(A X^{-1} B\right)=-X^{-1} B A X^{-1}$
- $\frac{d}{d X} \log \operatorname{det} X=X^{-1}$

Matrix Derivatives Example

- $\frac{d}{d x} A \mathbf{x}=\left[\begin{array}{ccc}\frac{d}{d x_{1}} \sum_{j=1}^{n} A_{1 j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{1 j} x_{j} \\ \vdots & \ddots & \vdots \\ \frac{d}{d x_{1}} \sum_{j=1}^{n} A_{m j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{m j} x_{j}\end{array}\right]=\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 n} \\ \vdots & \ddots & \vdots \\ A_{m 1} & \cdots & A_{m n}\end{array}\right]$
- $\frac{d}{d x} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} A^{\top} \frac{d \mathbf{x}}{d x}+\mathbf{x}^{\top} \frac{d A \mathbf{x}}{d \mathbf{x}}=\mathbf{x}^{\top}\left(A^{\top}+A\right)$
- $M(x) M^{-1}(x)=1 \Rightarrow 0=\left[\frac{d}{d x} M(x)\right] M^{-1}(x)+M(x)\left[\frac{d}{d x} M^{-1}(x)\right]$

$$
\begin{aligned}
\frac{d}{d X_{i j}} \operatorname{tr}\left(A X^{-1} B\right) & =\operatorname{tr}\left(A \frac{d}{d X_{i j}} X^{-1} B\right)=-\operatorname{tr}\left(A X^{-1} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} X^{-1} B\right) \\
& =-\mathbf{e}_{j}^{\top} X^{-1} B A X^{-1} \mathbf{e}_{i}=-\mathbf{e}_{i}^{\top}\left(X^{-1} B A X^{-1}\right)^{\top} \mathbf{e}_{j}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d X_{i j}} \log \operatorname{det} X & =\frac{1}{\operatorname{det}(X)} \frac{d}{d X_{i j}} \sum_{k=1}^{n} X_{i k} \operatorname{cof}_{i k}(X) \\
& =\frac{1}{\operatorname{det}(X)} \boldsymbol{c o f}_{i j}(X)=\frac{1}{\operatorname{det}(X)} \operatorname{add}_{j i}(X)=\mathbf{e}_{i}^{\top} X^{-\top} \mathbf{e}_{j}
\end{aligned}
$$

Unconstrained Optimization

- Many problems we encounter in this course, lead to an unconstrained optimization problem over the Euclidean vector space \mathbb{R}^{d} :

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

- A global minimizer $\mathbf{x}^{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{d}$. The value $f\left(\mathbf{x}^{*}\right)$ is called global minimum.
- A local minimizer $\mathbf{x}^{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}\left(\mathbf{x}^{*}\right)$, where $\mathcal{N}\left(\mathbf{x}^{*}\right) \subset \mathbb{R}^{d}$ is a neighborhood around \mathbf{x}^{*} (e.g., an open ball with small radius centered at \mathbf{x}^{*}). The value $f\left(\mathbf{x}^{*}\right)$ is called local minimum.
- The objective function $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ is differentiable if the gradient:

$$
\nabla f(\mathbf{x}):=\left[\begin{array}{lll}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_{d}}
\end{array}\right]^{\top} \in \mathbb{R}^{d}
$$

exists at each $\mathrm{x} \in \mathbb{R}^{d}$

- A critical point $\overline{\mathbf{x}} \in \mathbb{R}^{d}$ satisfies $\nabla f(\overline{\mathbf{x}})=0$ or $\nabla f(\overline{\mathbf{x}})=$ undefined
- All minimizers are critical points but not all critical points are minimizers. A critical point is either a local maximizer, a local minimizer, or neither (saddle point).

Convexity

- A set $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \mathcal{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- A convex set contains the line segment between any two points in it

Convex set

Non - convex set

- A function $f: \mathcal{D} \mapsto \mathbb{R}$ with $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if:
- \mathcal{D} is a convex set
- $f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- First-order convexity condition: a differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex iff $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$
- Second-order convexity condition: a twice-differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex iff $\nabla^{2} f(\mathbf{x}) \succeq 0$ for all $\mathbf{x} \in \mathcal{D}$

Descent Direction

- Consider the unconstrained optimization problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

Descent Direction Theorem

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\exists \delta \mathbf{x}$ such that $\nabla f(\overline{\mathbf{x}})^{\top} \delta \mathbf{x}<0$, then $\exists \epsilon>0$ such that $f(\overline{\mathbf{x}}+\alpha \delta \mathbf{x})<f(\overline{\mathbf{x}})$ for all $\alpha \in(0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a descent direction
- The theorem states that if a descent direction exists at $\overline{\mathbf{x}}$, then it is possible to move to a new point that has a lower f value
- Steepest descent direction: $\delta \mathbf{x}:=-\frac{\nabla f(\overline{\mathbf{x}})}{\|\nabla f(\overline{\mathbf{x}})\|}$
- Based on this theorem, we can derive conditions for determining the optimality of \bar{x}

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succ 0$, then $\overline{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If f is convex, then $\overline{\mathbf{x}}$ is a global minimizer if and only if $\nabla f(\overline{\mathbf{x}})=0$.

Descent Optimization Methods

- A critical point of f can be obtained by solving $\nabla f(\mathbf{x})=0$ but an explicit solution may be difficult to derive
- Descent methods: iterative methods to obtain a solution of $\nabla f(\mathbf{x})=0$
- Given an initial guess $\mathbf{x}^{(k)}$, take a step of size $\alpha^{(k)}>0$ along a descent direction $\delta \mathbf{x}^{(k)}$:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)}
$$

- Different methods differ in the way $\delta \mathbf{x}^{(k)}$ and $\alpha^{(k)}$ are chosen
- $\delta \mathbf{x}^{(k)}$ needs to be a descent direction: $\nabla f\left(\mathbf{x}^{(k)}\right)^{\top} \delta \mathbf{x}^{(k)}<0, \forall \mathbf{x}^{(k)} \neq \mathbf{x}^{*}$
- $\alpha^{(k)}$ needs to ensure sufficient decrease in f to guarantee convergence:
- The best step size choice is $\alpha^{(k)} \in \arg \min f\left(\mathbf{x}^{(k)}+\alpha \delta \mathbf{x}^{(k)}\right)$

$$
\alpha>0
$$

- In practice, $\alpha^{(k)}$ is obtained via approximate line search methods

Gradient Descent (First-Order Method)

- Idea: $-\nabla f\left(\mathbf{x}^{(k)}\right)$ points in the direction of steepest local descent
- Gradient descent: let $\delta \mathbf{x}^{(k)}:=-\nabla f\left(\mathbf{x}^{(k)}\right)$ and iterate:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

- Step size: a good choice for $\alpha^{(k)}$ is $\frac{1}{L}$, where $L>0$ is the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f(\mathbf{x})-\nabla f\left(\mathbf{x}^{\prime}\right)\right\| \leq L\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \quad \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

Newton's Method (Second-Order Method)

- Newton's method: iteratively approximates f by a quadratic function
- Since $\delta \mathbf{x}$ is a 'small' change to the initial guess $\mathbf{x}^{(k)}$, we can approximate f using a Taylor-series expansion:

$$
\begin{aligned}
f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) & \approx f\left(\mathbf{x}^{(k)}\right)+\underbrace{\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)}_{\text {Gradient Transpose }} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top} \underbrace{\left(\frac{\partial^{2} f(\mathbf{x})}{\left.\left.\partial \mathbf{x} \partial \mathbf{x}^{\top}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)} \delta \mathbf{x}\right.}_{\text {Hessian }} \\
& =: \underbrace{q\left(\delta \mathbf{x}, \mathbf{x}^{(k)}\right)}_{\text {quadratic function in } \delta \mathbf{x}}
\end{aligned}
$$

- The symmetric Hessian matrix $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ needs to be positive-definite for this method to work.

Newton's Method (Second-Order Method)

Newton's Method (Second-Order Method)

- Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right)$
- Since this is an unconstrained optimization problem, $\delta \mathbf{x}$ can be determined by setting the derivative with respect to $\delta \mathbf{x}$ to zero:

$$
\begin{aligned}
0=\frac{\partial q\left(\delta \mathbf{x}, \mathbf{x}^{(k)}\right)}{\partial \delta \mathbf{x}} & =\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)+\delta \mathbf{x}^{\top}\left(\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
& \Rightarrow\left(\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}
\end{aligned}
$$

- The above is a linear system of equations and can be solved when the Hessian is invertible, i.e., $\nabla^{2} f\left(\mathbf{x}^{(k)}\right) \succ 0$:

$$
\delta \mathbf{x}=-\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

- Newton's method:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)}\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

Newton's Method (Comments)

- Newton's method, like any other descent method, converges only to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimal point, the function value is decreased sublinearly, i.e., the step sizes $\alpha^{(k)}$ are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e., $\alpha^{(k)}=1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian, which can be numerically ill-conditioned or very computationally expensive in high-dimensional problems

Gauss-Newton's Method

- Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{e}(\mathbf{x}) \quad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^{m}
$$

- The Jacobian and Hessian matrices are:

Jacobian: $\left.\quad \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}=\mathbf{e}\left(\mathbf{x}^{(k)}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)$
Hessian:

$$
\begin{aligned}
\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}= & \mathbf{e}\left(\mathbf{x}^{(k)}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}= & \left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
& +\sum_{i=1}^{m} e_{i}\left(\mathbf{x}^{(k)}\right)\left(\left.\frac{\partial^{2} e_{i}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)
\end{aligned}
$$

Gauss-Newton's Method

- Near the minimum of f, the second term in the Hessian is small relative to the first and the Hessian can be approximated according to:

$$
\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}} \approx\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)
$$

- The above does not involve any second derivatives
- Setting the gradient of this new quadratic approximation of f with respect to $\delta \mathbf{x}$ to zero, leads to the system:

$$
\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

- Gauss-Newton's method:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}
$$

Gauss-Newton's Method (Alternative Derivation)

- Another way to think about the Gauss-Newton method is to start with a Taylor expansion of $\mathbf{e}(\mathbf{x})$ instead of $f(\mathbf{x})$:

$$
\mathbf{e}\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) \approx \mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}
$$

- Substituting into f leads to:

$$
f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) \approx \frac{1}{2}\left(\mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}\right)^{\top}\left(\mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}\right)
$$

- Minimizing this with respect to $\delta \mathbf{x}$ leads to the same system as before:

$$
\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

Levenberg-Marquardt's Method

- The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$
\left(\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}(k)}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

- When $\lambda \geq 0$ is large, the descent vector $\delta \mathbf{x}$ corresponds to a very small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Levenberg-Marquardt's Method (Summary)

- An iterative optimization approach for the unconstrained problem:

$$
\min _{\mathbf{x}} f(\mathbf{x}):=\frac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x}) \quad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \mathbf{x} \in \mathbb{R}^{n}
$$

- Given an initial guess $\mathbf{x}^{(k)}$, determine a descent direction $\delta \mathbf{x}$ by solving:

$$
\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}^{(k)}\right)\right)
$$

where $J_{j}(\mathbf{x}):=\frac{\partial \mathbf{e}_{j}(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m_{j} \times n}, \lambda \geq 0, D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D=\operatorname{diag}\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)\right)$

- Obtain an updated estimate according to:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}
$$

Unconstrained Optimization Example

- Let $f(\mathbf{x}):=\frac{1}{2} \sum_{j=1}^{n}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}$ for $\mathbf{x} \in \mathbb{R}^{d}$ and assume $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$
- Solve the unconstrained optimization problem $\min _{\mathrm{x}} f(\mathbf{x})$ using:
- The necessary and sufficient optimality condition for convex function f
- Gradient descent
- Newton's method
- Gauss-Newton's method
- We will need $\nabla f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$:

$$
\begin{aligned}
\frac{d f(\mathbf{x})}{d \mathbf{x}} & =\frac{1}{2} \sum_{j=1}^{n} \frac{d}{d \mathbf{x}}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left(A_{j} \mathbf{x}+b_{j}\right)^{\top} A_{j} \\
\nabla f(\mathbf{x}) & =\frac{d f(\mathbf{x})^{\top}}{d \mathbf{x}}=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
\nabla^{2} f(\mathbf{x}) & =\frac{d}{d \mathbf{x}} \nabla f(\mathbf{x})=\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0
\end{aligned}
$$

Necessary and Sufficient Optimality Condition

- Solve $\nabla f(\mathbf{x})=0$ for \mathbf{x} :

$$
\begin{aligned}
& 0=\nabla f(\mathbf{x})=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
& \mathbf{x}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- The solution above is unique since we assumed that $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$

Gradient Descent

- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, gradient descent uses the descent direction $\delta \mathbf{x}^{(k)}=-\nabla f\left(\mathbf{x}^{(k)}\right)$
- Given arbitary $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{d}$, determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f\left(\mathbf{x}_{1}\right)-\nabla f\left(\mathbf{x}_{2}\right)\right\|=\left\|\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right\| \leq \underbrace{\left\|\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right\|}_{L}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|
$$

- Choose step size $\alpha^{(k)}=\frac{1}{L}$ and iterate:

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)} \\
& =\mathbf{x}^{(k)}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}^{(k)}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

Newton's Method

- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}^{(k)} & =-\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right) \\
& =-\mathbf{x}^{(k)}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

and updates the solution estimate via:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\delta \mathbf{x}^{(k)}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
$$

- Note that for this problem, Newton's method converges in one iteration!

Gauss-Newton's Method

- $f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x})$ for $\mathbf{e}_{j}(\mathbf{x}):=A_{j} \mathbf{x}+b_{j}$
- The Jacobian of $\mathbf{e}_{j}(\mathbf{x})$ is $J_{j}(\mathbf{x})=A_{j}$
- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, Gauss-Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}^{(k)} & =-\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)\right)^{-1}\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}^{(k)}\right)\right) \\
& =-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top}\left(A_{j} \mathbf{x}^{(k)}+b_{j}\right)\right) \\
& =-\mathbf{x}^{(k)}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- If $\alpha^{(k)}=1$, in this problem, Gauss-Newton's method behaves exactly like Newton's method and coverges in one iteration!

