ECE276A: Sensing \& Estimation in Robotics Lecture 5: Logistic Regression

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Supervised Learning

- Data: a set $D:=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$ of id examples $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with associated scalar labels y_{i} generated from an unknown joint pdf $p_{*}(y, \mathbf{x})$
- The training dataset is often also written in matrix notation, $D=(X, \mathbf{y})$, with $X \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$
- Generative model: choose model $p(y, \mathbf{x} ; \boldsymbol{\omega})$ with parameters $\boldsymbol{\omega}$ to approximate the unknown data-generating pdf
- Discriminative model: choose model $p(y \mid \mathbf{x} ; \boldsymbol{\omega})$ with parameters $\boldsymbol{\omega}$ to approximate the unknown label-generating pdf
- Optimize $\boldsymbol{\omega}$ using $D=(X, \mathbf{y})$:
- Maximum Likelihood Estimation (MLE): maximize the likelihood of the data D given the parameters ω
- Maximum A Posteriori (MAP): maximize the likelihood of the parameters $\boldsymbol{\omega}$ given the data D
- Bayesian Inference: estimate the whole distribution of the parameters $\boldsymbol{\omega}$ given the data D

Parametric Learning

- Maximum Likelihood Estimation (MLE):

MLE	Discriminative Model	Generative Model
Training	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y} \mid X, \boldsymbol{\omega})$	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y}, X \mid \boldsymbol{\omega})$
Testing	$y_{*} \in \underset{y}{\arg \max } p\left(y \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)$	$y_{*} \in \underset{y}{\arg \max } p\left(y, \mathbf{x}_{*} \mid \boldsymbol{\omega}^{*}\right)$

- Maximum A Posteriori (MAP):

MAP	Discriminative Model	Generative Model
Training	$\boldsymbol{\omega}^{*} \in \underset{\omega}{\arg \max } p(\boldsymbol{\omega} \mid \mathbf{y}, X)$ $=\underset{\omega}{\arg \max } p(\mathbf{y} \mid X, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid X)$	$\boldsymbol{\omega}^{*} \in \underset{\omega}{\arg \max p(\boldsymbol{\omega} \mid \mathbf{y}, X)}$ $=\underset{\omega}{\arg \max } p(\mathbf{y}, X \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})$
Testing	$y_{*} \underset{\boldsymbol{\omega}}{\arg \max p\left(y \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)}$	$y_{*} \in \underset{y}{\arg \max } p\left(y, \mathbf{x}_{*} \mid \boldsymbol{\omega}^{*}\right)$

- Bayesian Inference:

BI	Discriminative Model	Generative Model
Training	$p(\boldsymbol{\omega} \mid \mathbf{y}, X) \propto p(\mathbf{y} \mid X, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid X)$	$p(\boldsymbol{\omega} \mid \mathbf{y}, X) \propto p(\mathbf{y}, X \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})$
Testing	$p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{y}, X\right)=\int p\left(y_{*} \mid \mathbf{x}_{*}, \boldsymbol{\omega}\right) p(\boldsymbol{\omega} \mid \mathbf{y}, X) d \boldsymbol{\omega}$	$p\left(y_{*}, \mathbf{x}_{*} \mid \mathbf{y}, X\right)=\int p\left(y_{*}, \mathbf{x}_{*} \mid \boldsymbol{\omega}\right) p(\boldsymbol{\omega} \mid \mathbf{y}, X) d \boldsymbol{\omega}$

Logistic Sigmoid Function

- Useful for converting continuous (regression) preferences $z \in \mathbb{R}$ into a Bernoulli probability mass function, which can be used as a probabilistic model for binary classification, ie., $y \in\{-1,1\}$

$$
\sigma(z):=\frac{1}{1+\exp (-z)}=\frac{\exp (z)}{\exp (z)+\exp (0)}
$$

- Properties:
- $\sigma(z)=1-\sigma(-z)=\frac{1}{2}+\frac{1}{2} \tanh \left(\frac{z}{2}\right)$
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))=\sigma(z) \sigma(-z)$
- $\int \sigma(z) d z=\log (1+\exp (z))$, which is known as the softplus function

Softmax Function

- Useful for converting continuous (regression) preferences $\mathbf{z} \in \mathbb{R}^{K}$ into a categorical probability mass function, which can be used as a probabilistic model for classification, ie., $y \in\{1, \ldots, K\}$

$$
\mathbf{s}(\mathbf{z}):=\left[\begin{array}{lll}
\frac{\exp \left(z_{1}\right)}{\sum_{j} \exp \left(z_{j}\right)} & \cdots & \frac{\exp \left(z_{k}\right)}{\sum_{j} \exp \left(z_{j}\right)}
\end{array}\right]=\frac{e^{\mathbf{z}}}{\mathbf{1}^{\top} e^{\mathbf{z}}} \in \mathbb{R}^{K}
$$

- Properties:
- $\mathbf{s}(\mathbf{z})=\mathbf{s}(\mathbf{z}-c \mathbf{1})$, where $c \in \mathbb{R}$ is any constant, e.g., $c=\max _{i} z_{i}$ is useful for numerical conditioning
$-\log \frac{s_{i}(\mathrm{z})}{\mathrm{s}_{j}(\mathrm{z})}=z_{i}-z_{j}$
- $\frac{d s_{i}}{d z_{j}}= \begin{cases}s_{i}\left(1-s_{i}\right) & \text { if } i=j \\ -s_{i} s_{j} & \text { else }\end{cases}$
- $\nabla_{\mathbf{z}} \log \left(\sum_{i=1}^{K} \exp \left(z_{i}\right)\right)=\mathbf{s}(\mathbf{z})$

Discriminative Classification via a Logistic Model

- Given an example $\mathbf{x} \in \mathbb{R}^{d}$, use a logistic sigmoid function to map the continuous value $\boldsymbol{\omega}^{\top} \mathbf{x}$ to a Bernoulli probability mass function for a binary label $y \in\{-1,1\}$:

$$
p(y=1 \mid \mathbf{x}, \boldsymbol{\omega})=\sigma\left(\boldsymbol{\omega}^{\top} \mathbf{x}\right)
$$

- For $p(y \mid \mathbf{x}, \boldsymbol{\omega})$ to be a valid mf, it needs to sum to 1 over $\{-1,1\}$:

$$
p(y=-1 \mid \mathbf{x}, \boldsymbol{\omega})=1-p(y=1 \mid \mathbf{x}, \boldsymbol{\omega})=1-\sigma\left(\boldsymbol{\omega}^{\top} \mathbf{x}\right) \xlongequal[\text { properties }]{\text { sigmoid }} \sigma\left(-\boldsymbol{\omega}^{\top} \mathbf{x}\right)
$$

- Combine the two cases to obtain the final discriminative model for the mf of y conditioned on the example \mathbf{x} and the parameters $\boldsymbol{\omega}$:

$$
p(y \mid \mathbf{x}, \boldsymbol{\omega})=\sigma\left(y \mathbf{x}^{\top} \boldsymbol{\omega}\right)
$$

Discriminative Classification via a Logistic Model

- Logistic regression: approximates the unknown label-generating pdf with a logistic sigmoid function:

$$
p(y \mid \mathbf{x}, \boldsymbol{\omega})=\sigma\left(y \mathbf{x}^{\top} \boldsymbol{\omega}\right)
$$

- Since the data $D=(X, \mathbf{y})$ are id, the joint data likelihood is:

$$
p(\mathbf{y} \mid X, \boldsymbol{\omega})=\prod_{i=1}^{n} \sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)=\prod_{i=1}^{n} \frac{1}{1+\exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)}
$$

- Leads to these MLE and MAP (with $\boldsymbol{\omega} \sim \mathcal{N}(0, \Lambda)$) estimates for $\boldsymbol{\omega}$:

$$
\begin{aligned}
\boldsymbol{\omega}_{M L E} & =\underset{\boldsymbol{\omega}}{\arg \max } \log p(\mathbf{y} \mid X, \boldsymbol{\omega})=\underset{\boldsymbol{\omega}}{\arg \min } \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)\right) \\
\boldsymbol{\omega}_{M A P} & =\underset{\boldsymbol{\omega}}{\arg \max } \log p(\mathbf{y} \mid X, \boldsymbol{\omega})+\log p(\boldsymbol{\omega}) \\
& =\underset{\boldsymbol{\omega}}{\arg \min } \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)\right)+\frac{1}{2} \boldsymbol{\omega}^{\top} \Lambda^{-1} \boldsymbol{\omega}
\end{aligned}
$$

Discriminative Classification via a Logistic Model

- $\nabla_{\boldsymbol{\omega}}(-\log p(\mathbf{y} \mid X, \boldsymbol{\omega}))=0$ does not have a closed-form solution so we need to use an iterative optimization algorithm like gradient descent
- The negative \log-likelihood $-\log p(\mathbf{y} \mid X, \boldsymbol{\omega})$ is convex in $\boldsymbol{\omega}$:
- The composition of an affine function $f_{i}(\boldsymbol{\omega}):=-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}$ and a convex function $g(z):=\log \left(1+\exp ^{2}\right)$ is convex
- The sum of convex functions $\sum_{i=1}^{n} g\left(f_{i}(\omega)\right)$ is convex
- The negative log-likelihood can be minimized iteratively to obtain a global minimum:

$$
\begin{aligned}
\boldsymbol{\omega}_{M L E}^{(t+1)} & =\boldsymbol{\omega}_{M L E}^{(t)}-\left.\alpha \nabla_{\boldsymbol{\omega}}(-\log p(\mathbf{y} \mid X, \boldsymbol{\omega}))\right|_{\boldsymbol{\omega}=\boldsymbol{\omega}_{M L E}^{(t)}} \\
& =\boldsymbol{\omega}_{M L E}^{(t)}-\alpha \sum_{i=1}^{n} \frac{1}{1+\exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M L E}^{(t)}\right)} \exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M L E}^{(t)}\right)\left(-y_{i} \mathbf{x}_{i}\right) \\
& =\boldsymbol{\omega}_{M L E}^{(t)}+\alpha \sum_{i=1}^{n} y_{i} \mathbf{x}_{i}\left(1-\sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M L E}^{(t)}\right)\right)
\end{aligned}
$$

Logistic Regression Summary

- Discriminative model: $p(\mathbf{y} \mid X, \boldsymbol{\omega})$ for binary labels $\mathbf{y} \in\{-1,1\}^{n}$:

$$
p(\mathbf{y} \mid X, \boldsymbol{\omega})=\prod_{i=1}^{n} \sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)=\prod_{i=1}^{n} \frac{1}{1+\exp \left(-y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}\right)}
$$

- Training: given data $D=(X, \mathbf{y})$, optimize the model parameters:
- ME: $\boldsymbol{\omega}_{M L E}^{(t+1)}=\boldsymbol{\omega}_{M L E}^{(t)}+\alpha \sum_{i=1}^{n} y_{i} \mathbf{x}_{i}\left(1-\sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M L E}^{(t)}\right)\right)$
- MAP: $\boldsymbol{\omega}_{M A P}^{(t+1)}=\boldsymbol{\omega}_{M A P}^{(t)}+\alpha\left(\sum_{i=1}^{n} y_{i} \mathbf{x}_{i}\left(1-\sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M A P}^{(t)}\right)\right)-\Lambda^{-1} \boldsymbol{\omega}_{M A P}^{(t)}\right)$
- Testing: given a test example $\mathbf{x}_{*} \in \mathbb{R}^{d}$, use the optimized parameters $\boldsymbol{\omega}^{*}$ to predict the label:

$$
y_{*}= \begin{cases}1 & \mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*} \geq 0 \\ -1 & \mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}<0\end{cases}
$$

- Logistic regression generates a linear decision boundary, i.e., the values of \mathbf{x}_{*} for which the predictions $y_{*}=1$ and $y_{*}=-1$ are equally likely are:

$$
1=\frac{p\left(y=1 \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)}{p\left(y=-1 \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)}=\frac{1+\exp \left(\mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}\right)}{1+\exp \left(-\mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}\right)} \quad \Leftrightarrow \quad \mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}=0
$$

Logistic Regression Example

- Consider the same data as before:

$$
X=\left[\begin{array}{ccc}
-3 & 9 & 1 \\
-2 & 4 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
3 & 9 & 1
\end{array}\right] \in \mathbb{R}^{n \times d} \quad \mathbf{y}=\left[\begin{array}{c}
+1 \\
+1 \\
-1 \\
-1 \\
-1 \\
+1
\end{array}\right] \in \mathbb{R}^{n}
$$

Logistic Regression Example

- Training: start with $\boldsymbol{\omega}_{M L E}^{(0)}=\mathbf{0} \in \mathbb{R}^{3}$ and iterate:

$$
\boldsymbol{\omega}_{M L E}^{(t+1)}=\boldsymbol{\omega}_{M L E}^{(t)}+\alpha \sum_{i=1}^{n} y_{i} \mathbf{x}_{i}\left(1-\sigma\left(y_{i} \mathbf{x}_{i}^{\top} \boldsymbol{\omega}_{M L E}^{(t)}\right)\right)
$$

- After 10 iterations with $\alpha=0.1$, we have: $\boldsymbol{\omega}_{M L E}^{(10)}=\left[\begin{array}{c}0.2115 \\ -0.6015 \\ 1.1408\end{array}\right]$
- Testing: the decision boundary is a line with equation $0=\mathbf{x}^{\top} \boldsymbol{\omega}$:

Logistic Regression vs Gaussian Naïve Bayes

- Logistic regression generates a linear decision boundary: $\boldsymbol{\omega}^{\top} \mathbf{x}=0$.
- Gaussian Naïve Bayes generates a quadratic decision boundary. It looks like an ellipse, parabola, or hyperbola in 2-D:

$$
\log \frac{\theta_{-}^{2}}{\theta_{+}^{2}}+\sum_{l=1}^{d} \log \frac{\sigma_{+, I}^{2}}{\sigma_{-, l}^{2}}+\frac{\left(x_{I}-\mu_{+, l}\right)^{2}}{\sigma_{+, l}^{2}}-\frac{\left(x_{I}-\mu_{-, l}\right)^{2}}{\sigma_{-, l}^{2}}=0
$$

- When the variance is shared among the classes, i.e., $\sigma_{-, l}=\sigma_{+, l}=\sigma_{l}$, Gaussian Naïve Bayes generates a linear decision boundary:

$$
\log \frac{\theta_{-}^{2}}{\theta_{+}^{2}}+\sum_{l=1}^{d} \frac{2\left(\mu_{-, I}-\mu_{+, l}\right)}{\sigma_{I}^{2}} x_{l}+\frac{\left(\mu_{+, I}^{2}-\mu_{-, l}^{2}\right)}{\sigma_{I}^{2}}=0
$$

- Logistic regression has lower bias but higher variance than Gaussian Naïve Bayes.

K-ary Logistic Regression

- Logistic regression with K-classes: approximates the unknown label-generating pdf for $\mathbf{y} \in\{1, \ldots, K\}^{n}$ with a softmax function with parameters $W \in \mathbb{R}^{K \times d}$:

$$
p(\mathbf{y} \mid X, W)=\prod_{i=1}^{n} \mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(W \mathbf{x}_{i}\right):=\prod_{i=1}^{n} \mathbf{e}_{y_{i}}^{\top} \frac{\exp \left(W \mathbf{x}_{i}\right)}{\mathbf{1}^{\top} \exp \left(W \mathbf{x}_{i}\right)}
$$

where \mathbf{e}_{j} is the j-th standard basis vector, e.g., $\mathbf{e}_{1}:=\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]^{\top}$

- To optimize the parameters W via MLE, we need to compute the gradient of the data log-likelihood:

$$
\begin{aligned}
W_{M L E}^{(t+1)} & =W_{M L E}^{(t)}+\alpha\left(\left.\nabla_{W}[\log p(\mathbf{y} \mid X, W)]\right|_{W=W_{M L E}^{(t)}}\right) \\
& =W_{M L E}^{(t)}+\alpha\left(\sum_{i=1}^{n}\left(\mathbf{e}_{y_{i}}-\mathbf{s}\left(W_{M L E}^{(t)} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}^{\top}\right)
\end{aligned}
$$

K-ary Logistic Regression MLE

- Taking the gradient of $\log p(\mathbf{y} \mid X, W)$ with respect to W gives:

$$
\nabla_{W}\left[\sum_{i=1}^{n} \log \mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(W \mathbf{x}_{i}\right)\right]=\sum_{i=1}^{n} \frac{1}{\mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(W \mathbf{x}_{i}\right)} \nabla_{W}\left[\mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(W \mathbf{x}_{i}\right)\right]
$$

- Let $\mathbf{z}_{i}:=W \mathbf{x}_{i}$. The derivative of the last term via the chain rule is:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{z}_{i}} \mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(\mathbf{z}_{i}\right) \frac{\partial}{\partial W} W \mathbf{x}_{i} & =\frac{\partial}{\partial W} \mathbf{e}_{y_{i}}^{\top} \frac{\partial \mathbf{s}\left(\mathbf{z}_{i}\right)}{\partial \mathbf{z}_{i}} W \mathbf{x}_{i}=\frac{\partial}{\partial W} \operatorname{tr}\left(\mathbf{x}_{i} \mathbf{e}_{y_{i}}^{\top} \frac{\partial \mathbf{s}\left(\mathbf{z}_{i}\right)}{\partial \mathbf{z}_{i}} W\right) \\
& =\mathbf{x}_{i} \mathbf{e}_{y_{i}}^{\top} \frac{\partial \mathbf{s}\left(\mathbf{z}_{i}\right)}{\partial \mathbf{z}_{i}}=\mathbf{x}_{i} \mathbf{e}_{y_{i}}^{\top} \frac{\partial \mathbf{s}}{\partial \mathbf{z}_{i}}\left(W \mathbf{x}_{i}\right)
\end{aligned}
$$

- Arrange the derivatives of the softmax in matrix form:

$$
\frac{d \mathbf{s}(\mathbf{z})}{d \mathbf{z}}=\left[\begin{array}{cccc}
s_{1}-s_{1}^{2} & -s_{1} s_{2} & \cdots & -s_{1} s_{d} \\
-s_{2} s_{1} & s_{2}-s_{2}^{2} & \cdots & -s_{2} s_{d} \\
\vdots & & \ddots & \vdots \\
-s_{d} s_{1} & -s_{d} s_{2} & \cdots & -s_{d} s_{d}
\end{array}\right]=\operatorname{diag}(\mathbf{s}(\mathbf{z}))-\mathbf{s}(\mathbf{z}) \mathbf{s}(\mathbf{z})^{\top}
$$

K-ary Logistic Regression MLE

- The gradient is the transpose of the derivative:

$$
\begin{aligned}
\nabla_{W}[\log p(\mathbf{y} \mid X, W)] & =\sum_{i=1}^{n} \frac{1}{\mathbf{e}_{y_{i}}^{\top} \mathbf{s}\left(W \mathbf{x}_{i}\right)}\left(\operatorname{diag}\left(\mathbf{s}\left(W \mathbf{x}_{i}\right)\right)-\mathbf{s}\left(W \mathbf{x}_{i}\right) \mathbf{s}\left(W \mathbf{x}_{i}\right)^{\top}\right) \mathbf{e}_{y_{i}} \mathbf{x}_{i}^{\top} \\
& =\sum_{i=1}^{n}\left(\mathbf{e}_{y_{i}}-\mathbf{s}\left(W \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}^{\top} \in \mathbb{R}^{K \times d}
\end{aligned}
$$

- MLE leads to gradient ascent of the form:

$$
W_{M L E}^{(t+1)}=W_{M L E}^{(t)}+\alpha\left(\sum_{i=1}^{n}\left(\mathbf{e}_{y_{i}}-\mathbf{s}\left(W_{M L E}^{(t)} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}^{\top}\right)
$$

- MAP with $W \sim \mathcal{N}\left(0, \lambda I_{K d \times K d}\right)$ leads to gradient ascent of the form:

$$
W_{M A P}^{(t+1)}=W_{M A P}^{(t)}+\alpha\left(\sum_{i=1}^{n}\left(\mathbf{e}_{y_{i}}-\mathbf{s}\left(W_{M A P}^{(t)} \mathbf{x}_{i}\right)\right) \mathbf{x}_{i}^{\top}\right)-\alpha \lambda^{-1} W_{M A P}^{(t)}
$$

