ECE276A: Sensing & Estimation in Robotics
Lecture 6: Rotations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering



mailto:natanasov@ucsd.edu
mailto:moshan@eng.ucsd.edu
mailto:aasghari@eng.ucsd.edu

Rigid Body Motion
» Consider a moving object in a fixed world reference frame {W}

» Rigid object: it is sufficient to specify the motion of one point
p(t) € R3 and 3 coordinate axes r1(t), ra(t), r3(t) attached to that
point (body reference frame {B})

» A point s on the rigid body has fixed coordinates sg € R3 in the body
frame but time-varying coordinates sy (t) € R3 in the world frame.

€3

W}



Rigid Body Motion

» A rigid body is free to translate (3 degrees of freedom) and rotate (3
degrees of freedom)

» The pose T(t) € SE(3) of a moving rigid object {B} at time t in a
fixed world frame {W} is determined by
1. The position p(t) € R? of {B} relative to {W}
2. The orientation R(t) € SO(3) of {B} relative to {W}, determined by the
3 coordinate axes ri(t), ra(t), r3(t)

» The space R3 of positions is familiar

» How do we describe the space SO(3) of orientations and the space
SE(3) of poses?



Special Euclidean Group

» Rigid body motion is a sequence of functions that describe how the
coordinates of 3-D points on the object change with time

» Rigid body motion preserves distances (vector norms) and does not
allow reflection of the coordinate system (vector cross products)

» Euclidean Group E(3): a set of functions R3 — R3 that preserve the
norm of any two vectors

» Special Euclidean Group SE(3): a set of functions R3 — R3 that
preserve the norm and cross product of any two vectors

» The set of rigid body motions forms a group because:
> We can combine several motions to generate a new one (closure)
» We can execute a motion that leaves the object at the same state

(identity element)
» We can move rigid objects from one place to another and then reverse the

action (inverse element)



Special Euclidean Group

> A group is a set G with an associated operator ® that satisfies:
» Closure: a® be G,Va,be G
> Identity element: 3le € G (unique) such thate@a=aGe=a
» Inverse element: fora€ G, 3'lb&€ Gsuchthata®b=bGOa=¢e
> Associativity: (a©b)Oc=a0® (b®c¢), Va,b,c,e G

> SE(3) is a set of functions g : R® — R3 that preserve:
1. Norm: [|g(u) — g(v)|| = |lv — u]|, Yu,v € R3
2. Cross product: g(u) x g(v) = g(u x v), Yu,v € R®

» Corollary: SE(3) elements also preserve:
1. Angle: uTv=1(Ju+v|?=[lu—v[?) = uTv=g(u)Tg(v), Vu,v € R?
2. Volume: Vu,v,w € R3, g(u)T(g(v) x g(w)) =uT(v x w)
(volume of parallelepiped spanned by u, v, w)



Orientation and Rotation

>

>

Pure rotational motion is a special case of rigid body motion

The orientation of a body frame {B} is determined by the coordinates
of the three orthogonal vectors r; = g(e1), r» = g(e2), r3 = g(es3),
transformed from the body frame {B} to the world frame {W}

These vectors can be organized in a 3 x 3 matrix to describe orientation:
R = [rl ry r3] c R3%3
Consider a point with coordinates sg € R3 in {B}

Ly
Its coordinates sy in {W} are:

sw = [sg]ir1 + [sB]2r2 + [sB]3r3
= RSB




Special Orthogonal Group SO(3)
1 ifi=

» rq, rp, r3 form an orthonormal basis: r,Trj = ]
0 otherwise

» Distances are preserved since R'TR = I
IRx=¥)I3=(x=y)"RTR(x —y) = (x —y) " (x —y) = [x |3
» R belongs to the orthogonal group:
03):={ReR¥>3|RTR=RR" =1}

» The inverse of R is its transpose: R~1 = RT
> Reflections are not allowed since det(R) = r{ (r2 x r3) = 1:
1
— T — (RRT —
R(x x y) = R (x « (R Ry)) = (RRRT)Ry = o (Rx) % (R)

» R belongs to the special orthogonal group:
S0(3) :={ReR¥3| RTR = I,det(R) = 1}



Parametrizing 2-D Rotations
» There are 2 common ways to parametrize a rotation matrix R € SO(2)
» Rotation angle: a 2-D rotation of a

point sg € R? can be parametrized
by an angle 6 around the z-axis:

cosf —sinf
sw = R(0)ss = [sin@ cosf ] S8

» § > 0: counterclockwise rotation

» Unit-norm complex number: a 2-D rotation of [sg]; + i[sg]2 € C can
be parametrized by a unit-norm complex number e € C:

e'([sg]1 + i[sg]2) = ([sB]1 cos @ — [sg]2 sin 0) + i([sg]1 sin 6 + [sg]2 cos 0)

8



Parametrizing 3-D Rotations

» There are 3 common ways to parametrize a rotation matrix R € SO(3)

» Euler angles: an extension of the rotation angle parametrization of 2-D
rotations that specifies rotation angles around the three principal axes

» Axis-Angle: an extension of the rotation angle parametrization of 2-D
rotations that allows the axis of rotation to be chosen freely instead of
being a fixed principal axis

» Unit Quaternion: an extension of the unit-norm complex number
parametrization of 2-D rotations



Euler Angle Parametrization
» Uses three angles that specify rotations around the three principal axes

» There are 24 different ways to apply these rotations
> Extrinsic axes: the rotation axes remain fixed/global/static

» Intrinsic axes: the rotation axes move with the rotations

> Each of the two groups (intrinsic and extrinsic) can be divided into:
> Euler Angles: rotation about one axis, then a second, and then the first
» Tait-Bryan Angles: rotation about all three axes

» The Euler and Tait-Bryan Angles each have 6 possible choices for each of
the extrinsic/intrinsic groups leading to 2 x 2 x 6 = 24 possible conventions
to specify a rotation sequence with three given angles

» For simplicity we will refer to all these 24 conventions as Euler Angles
and will explicitly specify:
> r (rotating = intrinsic) or s (static = extrinic)
> xyz or zyx or zxz, etc. (axes about which to perform the rotation in the
specified order)

10



Principal 3-D Rotations

» A rotation by an angle ¢ around the x-axis is represented by:

1 0 0
R«(¢) := |0 cos¢p —sing
|10 sing cos¢

» A rotation by an angle 6 around the y-axis is represented by:

[ cosf 0 sinf
R():=] 0 1 0
| —sing 0 cosd

» A rotation by an angle ¥ around the z-axis is represented by:

cosy —siny O

R,(1) := |siny cosyp 0
0 0 1

11



Common Euler Angle Conventions

» Spin (), nutation (), precession (1)) sequence (rzxz convention):
> A rotation ¥ about the original z-axis
» A rotation v about the intermediate x-axis
> A rotation 6 about the transformed z-axis

> Roll (¢), pitch (6), yaw (¢) sequence (rzyx Yaw
convention):
. . . Roll
» A rotation ¢ about the original x-axis
» A rotation 6 about the intermediate y-axis X Y
Pitch

> A rotation v about the transformed z-axis

» We will call Euler Angles the roll (¢), pitch (), yaw (¢) angles
specifying an XYZ extrinsic or equivalently a ZYX intrinsic rotation:

R = R:(¢)Ry (0)Rx(¢)

cosyp —siny O cosf 0 sinf| |1 0 0
= |sinyy cosy O 0 1 0 0 cos¢p —sing
0 0 1| [—sinf 0 cosf| |0 sing cos¢

12



Gimbal Lock

» Angle parametrizations are widely used due to their simplicity

» Unfortunately, in 3-D angle parametrizations have singularities (not
one-to-one), which can result in gimbal lock, e.g., if the pitch becomes
0 = 90° the roll and yaw become associated with the same degree of
freedom and cannot be uniquely determined.

» Gimbal lock is a problem only if we want to recover the rotation angles
from a rotation matrix

13



Cross Product and Hat Map

» The cross product of two vectors x,y € R3 is also a vector in R3:

X2)3 — X3Y2 0 -x3 x yi
xxy:=|x3y1—xy3| =|x3 0 —xi| |y2| =%y
X1Yy2 — Xo)1 —X2 X1 0 %]

» The cross product x X y can be represented by a /inear map X called the
hat map

» The hat map *: R3 — s0(3) transforms a vector x € R3 to a
skew-symmetric matrix:

0 —X3 X2
X:= | x3 0 —x1 T =%
—X2 X1 0

» The vector space R3 and the space of skew-symmetric 3 x 3 matrices
s0(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.

14



Hat Map Properties

» Lemma: A matrix M € R3%3 is skew-symmetric iff M = X for some
x € R3.

» The inverse of the hat map is the vee map, V : 50(3) — R3, that
extracts the components of the vector x = X" from the matrix X.

» For any x,y € R3, A € R3%3, the hat map satisfies:
> Xy =xXy=—-yXX=—yx

> 2=xx" —x'x/

> 2k — (—xTx)k&

> —str(ky) =x"y

> XA+ AT = ((tr(A)] — A)x)"

> tr(%A) = Ltr(R(A - AT)) = —xT(A— AT)Y
> (Ax)" = det(A)A~TRA?

15



Axis-Angle Parametrization
» Consider a point s € R3 rotating about an axis
€ € R3 at constant unit velocity:

5(t) = & x s(t) = &s(t)

» This is a linear time-invariant (LTI) system of
ordinary differential equations determined by the
skew symmetric matrix & N

» The solution to this LTI system specifies the trajectory of the point s:
s(t) = exp(t€)s(0)
» Since s undergoes pure rotation, we know that:
s(t) = R(t)s(0)

» Since the rotation is determined by constant unit velocity, the elapsed
time t is equal to the angle of rotation 6:

R(6) = exp(68)

16



Axis-Angle Parametrization

» Any rotation can be represented as a rotation about a unit-vector axis
¢ € R3 through angle # € R

» The axis-angle parametrization can be combined in a single rotation
vector § := 0¢ € R3

(%)

» Axis-angle parametrization: a rotation around the axis £ := e
through an angle 6 := ||8]|2 can be represented as
o0
14 1,2 1,3
R = exp(8 Zonl = +§0 + 507+
n=

» The matrix exponential defines a map from the space s0(3) of skew
symmetric matrices to the space SO(3) of rotation matrices



Quaternions (Hamilton Convention)

» Quaternions: H = C + Cj generalize complex numbers C = R + R/

a=gs+qitqpjtak=I[0 a] ij=—ji=k iP=/7=k=-1

» As in 2-D, 3-D rotations can be represented using “unit complex
numbers”, i.e., unit-norm quaternions {q € H | ¢ +q/q, =1}

» To represent rotations, the quaternion space embeds a 3-D space into a
4-D space (no singularities) and introduces a unit-norm constraint.

» A rotation matrix R € SO(3) can be obtained from a unit quaternion q:
E(q) = [_an qsl + qu]
G(q) =[-av, gs/ —d)]

» The space of quaternions is a double covering of SO(3) because two
unit quaternions correspond to the same rotation: R(q) = R(—q).

18



Quaternion Conversions

» A rotation around a unit axis £ := ﬁ € R3 by angle 0 := [|0]| can be

represented by a unit quaternion:

() (2)

> A rotation around a unit axis £ € R3 by angle # can be recovered from a
unit quaternion q:

1 qu. ifO£0
6 = 2 arccos _ s v !
(gs) 3 {0, £0—0

» The inverse transformation above has a singularity at # = 0 because
there are infinitely many rotation axes that can be used or equivalently
the transformation from an axis-angle representation to a quaternion
representation is many-to-one

19



Quaternion Operations

Addition qa+p:=[gs+ps, 9 +p/]

Multiplication qop := [gsps — Q! Pv. gsPv + PsQv + Qv X Py
Conjugate 4§ := [¢s, —q/]

Norm lall :=v/aZ+aJav  llaop] = lallpll
Inverse ql:= Hill

Rotation [0, X]=qo0, x]oq~! =[0, R(q)x]

Velocity q=13q0[0, w] =3G(q) w

Exp exp(q) = % [cos ay |, 2 sin [a

Log log(q) := [Iog llall, Hq j arccos ”q”

> Exp: constructs q from rotation vector 8 € R3: q = exp ([0, 4])
» Log: recovers a rotation vector 8 € R3 from q: [0, 8] = 2log(q)

20



Example: Rotation with a Quaternion

> Let x = ey be a point in frame {A}.

» What are the coordinates of x in frame {B} which is rotated by § = /3
with respect to {A} around the x-axis?

» The quaternion corresponding to the rotation from {B} to {A} is:

s = [0/ 1TV

» The quaternion corresponding to the rotation from {A} to {B} is:

1\@]

BAA = Adg = AQB = 5 [—61

» The coordinates of x in frame {B} are:

gda 0 [0, x]quAlzl[\/?] . m . [e3

4 |—e (=) 1

1 0 V3 _1] o
_4- \662—61><62 e _2 eg—\ﬁEjg

21



Representations of Orientation (Summary)
» Rotation Matrix: an element of the Special Orthogonal Group:

ReSOB3):=<{ReR¥>3| R'R=1 ,det(R)=1

distances preserved |, reflection

» Euler Angles: roll ¢, pitch 6, yaw 1 specifying a rzyx rotation:
R = R(¢)Ry(0)Rx(9)

» Axis-Angle: 6 € R3 specifying a rotation about an axis & := ﬁ
through an angle 6 := ||0|:
~ ~ 1. ~
R=exp(0)=1+0+ 2—0 0
> Unit Quaternion: q=[gs, q.] € {qeH| ¢? + q,q, = 1}:
E(q) = [_qva qs! +qu]

B T
R = E(q)G(q) G(q) = [-qv, g5/ —d\] 22



Rigid Body Pose

» Let {B} be a body frame whose position and orientation with respect to
the world frame {W} are p € R3 and R € SO(3), respectively.

» The coordinates of a point sg € R3 can be converted to the world frame
by first rotating the point and then translating it to the world frame:

sw = Rsg+p

» The homogeneous coordinates of a point s € R3 are

el f] e

The scale factor X allows representing points arbitrarily far away from
the originas A - 0, eg.,s=[1 2 1 O}T

» Rigid-body transformations are linear in homogeneous coordinates:

=[] 8 ]

23



Special Euclidean Group SE(3)

» The pose T of a rigid body can be described by a matrix in the special
Euclidean group:

SE(3) := {T = [ORT 'ﬂ ’ R € SO(3),p € R3} c RM4

» It can be verified that SE(3) satisfies all requirements of a group:

> Closure: Ty T, = [("} Pll} L:‘)? Plz} _ [R(;fz R1P21+ P1:| € SE(3)

0} € SE(3)

> Identity: {OIT 1

-1
R RT —RT
> Inverse: [OT Fl)] = [OT 1 p} € SE(3)

> Associativity: (T1 TQ)T3 = TI(T2 T3) for all Tl7 TQ, T3 € SE(3)

24



Point Transformations

> Let the pose of a rigid body be [} Tyg} := {{W](’ﬁ{B} {W}f{B}]

» The subscripts indicate that the pose of a rigid body in the world
frame specifies a transformation from the body to the world frame

» A point with body-frame coordinates sg, has world-frame coordinates:

_ Sw R p| |sB
sw = Rsg +p equivalent to { 1 ] = [OT 1] [1]

» A point with world-frame coordinates sy, has body-frame coordinates:
se] [R p sy _[RT —RTp] [sw
1|07 1 1| (0" 1 1

25



Composing Transformations

> Given a robot with pose () Ty1) at time t1 and () T2y at time tp, the
relative transformation from the inertial frame {2} at time t, to the
inertial frame {1} at time t; is:

-1
T =nTw wm Ty = (wTy)  wTe

_[wmiRy —wiRL X mipy] [miRiy (P
0" 1 0" 1

» The pose Tj of a robot at time t, always specifies a transformation
from the body frame at time t, to the world frame so we will not
explicitly write the world frame subscript

» The relative transformation from inertial frame {2} with world-frame
pose T, to an inertial frame {1} with world-frame pose Tj is:

1 =TT,

26



Summary

Rotation SO(3) Pose SE(3)
RTR=1 R
Representation | R : T = P
det(R) =1 0" 1
Transformation | s,y = Rsg sw = Rsg+p
_RT s .
Inverse R1=RT T-1= P
0" 1
Composition wRe = wRa aRB wiles=wTlTaals




