
ECE276A: Sensing & Estimation in Robotics
Lecture 6: Rotations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
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Rigid Body Motion
I Consider a moving object in a fixed world reference frame {W }

I Rigid object: it is sufficient to specify the motion of one point
p(t) ∈ R3 and 3 coordinate axes r1(t), r2(t), r3(t) attached to that
point (body reference frame {B})

I A point s on the rigid body has fixed coordinates sB ∈ R3 in the body
frame but time-varying coordinates sW (t) ∈ R3 in the world frame.
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Rigid Body Motion

I A rigid body is free to translate (3 degrees of freedom) and rotate (3
degrees of freedom)

I The pose T (t) ∈ SE (3) of a moving rigid object {B} at time t in a
fixed world frame {W } is determined by

1. The position p(t) ∈ R3 of {B} relative to {W }
2. The orientation R(t) ∈ SO(3) of {B} relative to {W }, determined by the

3 coordinate axes r1(t), r2(t), r3(t)

I The space R3 of positions is familiar

I How do we describe the space SO(3) of orientations and the space
SE (3) of poses?

3



Special Euclidean Group

I Rigid body motion is a sequence of functions that describe how the
coordinates of 3-D points on the object change with time

I Rigid body motion preserves distances (vector norms) and does not
allow reflection of the coordinate system (vector cross products)

I Euclidean Group E (3): a set of functions R3 → R3 that preserve the
norm of any two vectors

I Special Euclidean Group SE (3): a set of functions R3 → R3 that
preserve the norm and cross product of any two vectors

I The set of rigid body motions forms a group because:
I We can combine several motions to generate a new one (closure)
I We can execute a motion that leaves the object at the same state

(identity element)
I We can move rigid objects from one place to another and then reverse the

action (inverse element)
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Special Euclidean Group

I A group is a set G with an associated operator � that satisfies:
I Closure: a� b ∈ G , ∀a, b ∈ G
I Identity element: ∃!e ∈ G (unique) such that e � a = a� e = a
I Inverse element: for a ∈ G , ∃!b ∈ G such that a� b = b � a = e
I Associativity: (a� b)� c = a� (b � c), ∀a, b, c ,∈ G

I SE (3) is a set of functions g : R3 → R3 that preserve:

1. Norm: ‖g(u)− g(v)‖ = ‖v − u‖, ∀u, v ∈ R3

2. Cross product: g(u)× g(v) = g(u× v), ∀u, v ∈ R3

I Corollary: SE (3) elements also preserve:

1. Angle: u>v = 1
4

(
‖u + v‖2 − ‖u− v‖2

)
⇒ u>v = g(u)>g(v), ∀u, v ∈ R3

2. Volume: ∀u, v,w ∈ R3, g(u)>(g(v)× g(w)) = u>(v ×w)
(volume of parallelepiped spanned by u, v,w)
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Orientation and Rotation
I Pure rotational motion is a special case of rigid body motion

I The orientation of a body frame {B} is determined by the coordinates
of the three orthogonal vectors r1 = g(e1), r2 = g(e2), r3 = g(e3),
transformed from the body frame {B} to the world frame {W }

I These vectors can be organized in a 3× 3 matrix to describe orientation:

R =
[
r1 r2 r3

]
∈ R3×3

I Consider a point with coordinates sB ∈ R3 in {B}

I Its coordinates sW in {W } are:

sW = [sB ]1r1 + [sB ]2r2 + [sB ]3r3

= RsB
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Special Orthogonal Group SO(3)

I r1, r2, r3 form an orthonormal basis: r>i rj =

{
1 if i = j

0 otherwise
I Distances are preserved since R>R = I :

‖R(x− y)‖2
2 = (x− y)>R>R(x− y) = (x− y)>(x− y) = ‖x− y‖2

2

I R belongs to the orthogonal group:

O(3) := {R ∈ R3×3 | R>R = RR> = I}

I The inverse of R is its transpose: R−1 = RT

I Reflections are not allowed since det(R) = r>1 (r2 × r3) = 1:

R(x× y) = R
(

x× (R>Ry)
)

= (R x̂R>)Ry =
1

det(R)
(Rx)× (Ry)

I R belongs to the special orthogonal group:

SO(3) := {R ∈ R3×3 | RTR = I , det(R) = 1}
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Parametrizing 2-D Rotations

I There are 2 common ways to parametrize a rotation matrix R ∈ SO(2)

I Rotation angle: a 2-D rotation of a
point sB ∈ R2 can be parametrized
by an angle θ around the z-axis:

sW = R(θ)sB :=

[
cos θ − sin θ
sin θ cos θ

]
sB

I θ > 0: counterclockwise rotation

I Unit-norm complex number: a 2-D rotation of [sB ]1 + i [sB ]2 ∈ C can
be parametrized by a unit-norm complex number e iθ ∈ C:

e iθ([sB ]1 + i [sB ]2) = ([sB ]1 cos θ− [sB ]2 sin θ) + i([sB ]1 sin θ+ [sB ]2 cos θ)
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Parametrizing 3-D Rotations

I There are 3 common ways to parametrize a rotation matrix R ∈ SO(3)

I Euler angles: an extension of the rotation angle parametrization of 2-D
rotations that specifies rotation angles around the three principal axes

I Axis-Angle: an extension of the rotation angle parametrization of 2-D
rotations that allows the axis of rotation to be chosen freely instead of
being a fixed principal axis

I Unit Quaternion: an extension of the unit-norm complex number
parametrization of 2-D rotations
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Euler Angle Parametrization

I Uses three angles that specify rotations around the three principal axes

I There are 24 different ways to apply these rotations
I Extrinsic axes: the rotation axes remain fixed/global/static

I Intrinsic axes: the rotation axes move with the rotations

I Each of the two groups (intrinsic and extrinsic) can be divided into:
I Euler Angles: rotation about one axis, then a second, and then the first
I Tait-Bryan Angles: rotation about all three axes

I The Euler and Tait-Bryan Angles each have 6 possible choices for each of
the extrinsic/intrinsic groups leading to 2 ∗ 2 ∗ 6 = 24 possible conventions
to specify a rotation sequence with three given angles

I For simplicity we will refer to all these 24 conventions as Euler Angles
and will explicitly specify:
I r (rotating = intrinsic) or s (static = extrinic)
I xyz or zyx or zxz , etc. (axes about which to perform the rotation in the

specified order)

10



Principal 3-D Rotations

I A rotation by an angle φ around the x-axis is represented by:

Rx(φ) :=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


I A rotation by an angle θ around the y -axis is represented by:

Ry (θ) :=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


I A rotation by an angle ψ around the z-axis is represented by:

Rz(ψ) :=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


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Common Euler Angle Conventions
I Spin (θ), nutation (γ), precession (ψ) sequence (rzxz convention):

I A rotation ψ about the original z-axis
I A rotation γ about the intermediate x-axis
I A rotation θ about the transformed z-axis

I Roll (φ), pitch (θ), yaw (ψ) sequence (rzyx
convention):
I A rotation φ about the original x-axis
I A rotation θ about the intermediate y -axis
I A rotation ψ about the transformed z-axis

I We will call Euler Angles the roll (φ), pitch (θ), yaw (ψ) angles
specifying an XYZ extrinsic or equivalently a ZYX intrinsic rotation:

R = Rz(ψ)Ry (θ)Rx(φ)

=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


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Gimbal Lock

I Angle parametrizations are widely used due to their simplicity

I Unfortunately, in 3-D angle parametrizations have singularities (not
one-to-one), which can result in gimbal lock, e.g., if the pitch becomes
θ = 90◦, the roll and yaw become associated with the same degree of
freedom and cannot be uniquely determined.

I Gimbal lock is a problem only if we want to recover the rotation angles
from a rotation matrix
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Cross Product and Hat Map
I The cross product of two vectors x, y ∈ R3 is also a vector in R3:

x× y :=

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

y1

y2

y3

 = x̂y

I The cross product x× y can be represented by a linear map x̂ called the
hat map

I The hat map ·̂ : R3 → so(3) transforms a vector x ∈ R3 to a
skew-symmetric matrix:

x̂ :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 x̂> = −x̂

I The vector space R3 and the space of skew-symmetric 3× 3 matrices
so(3) are isomorphic, i.e., there exists a one-to-one map (the hat map)
that preserves their structure.
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Hat Map Properties

I Lemma: A matrix M ∈ R3×3 is skew-symmetric iff M = x̂ for some
x ∈ R3.

I The inverse of the hat map is the vee map, ∨ : so(3)→ R3, that
extracts the components of the vector x = x̂∨ from the matrix x̂.

I For any x, y ∈ R3, A ∈ R3×3, the hat map satisfies:
I x̂y = x× y = −y × x = −ŷx

I x̂2 = xx> − x>x I

I x̂2k+1 = (−x>x)k x̂

I − 1
2 tr(x̂ŷ) = x>y

I x̂A + A>x̂ = ((tr(A)I − A)x)∧

I tr(x̂A) = 1
2 tr(x̂(A− A>)) = −x>(A− A>)∨

I (Ax)∧ = det(A)A−>x̂A−1
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Axis-Angle Parametrization
I Consider a point s ∈ R3 rotating about an axis
ξ ∈ R3 at constant unit velocity:

ṡ(t) = ξ × s(t) = ξ̂s(t)

I This is a linear time-invariant (LTI) system of
ordinary differential equations determined by the
skew symmetric matrix ξ̂

I The solution to this LTI system specifies the trajectory of the point s:

s(t) = exp(tξ̂)s(0)

I Since s undergoes pure rotation, we know that:

s(t) = R(t)s(0)

I Since the rotation is determined by constant unit velocity, the elapsed
time t is equal to the angle of rotation θ:

R(θ) = exp(θξ̂)
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Axis-Angle Parametrization

I Any rotation can be represented as a rotation about a unit-vector axis
ξ ∈ R3 through angle θ ∈ R

I The axis-angle parametrization can be combined in a single rotation
vector θ := θξ ∈ R3

I Axis-angle parametrization: a rotation around the axis ξ := θ
‖θ‖2

through an angle θ := ‖θ‖2 can be represented as

R = exp(θ̂) :=
∞∑
n=0

1

n!
θ̂
n

= I + θ̂ +
1

2!
θ̂

2
+

1

3!
θ̂

3
+ . . .

I The matrix exponential defines a map from the space so(3) of skew
symmetric matrices to the space SO(3) of rotation matrices
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Quaternions (Hamilton Convention)

I Quaternions: H = C + Cj generalize complex numbers C = R + Ri

q = qs +q1i +q2j +q3k = [qs , qv ] ij = −ji = k , i2 = j2 = k2 = −1

I As in 2-D, 3-D rotations can be represented using “unit complex
numbers”, i.e., unit-norm quaternions {q ∈ H | q2

s + qT
v qv = 1}

I To represent rotations, the quaternion space embeds a 3-D space into a
4-D space (no singularities) and introduces a unit-norm constraint.

I A rotation matrix R ∈ SO(3) can be obtained from a unit quaternion q:

R(q) = E (q)G (q)>
E (q) = [−qv , qs I + q̂v ]

G (q) = [−qv , qs I − q̂v ]

I The space of quaternions is a double covering of SO(3) because two
unit quaternions correspond to the same rotation: R(q) = R(−q).

18



Quaternion Conversions

I A rotation around a unit axis ξ := θ
‖θ‖ ∈ R3 by angle θ := ‖θ‖ can be

represented by a unit quaternion:

q =

[
cos

(
θ

2

)
, sin

(
θ

2

)
ξ

]
I A rotation around a unit axis ξ ∈ R3 by angle θ can be recovered from a

unit quaternion q:

θ = 2 arccos(qs) ξ =

{
1

sin(θ/2)qv , if θ 6= 0

0, if θ = 0

I The inverse transformation above has a singularity at θ = 0 because
there are infinitely many rotation axes that can be used or equivalently
the transformation from an axis-angle representation to a quaternion
representation is many-to-one
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Quaternion Operations
Addition q + p := [qs + ps , qv + pv ]

Multiplication q ◦ p :=
[
qsps − qT

v pv , qspv + psqv + qv × pv

]
Conjugate q̄ := [qs , −qv ]

Norm ‖q‖ :=
√
q2
s + qT

v qv ‖q ◦ p‖ = ‖q‖‖p‖

Inverse q−1 := q̄
‖q‖2

Rotation [0, x′] = q ◦ [0, x] ◦ q−1 = [0, R(q)x]

Velocity q̇ = 1
2q ◦ [0, ω] = 1

2G (q)Tω

Exp exp(q) := eqs
[
cos ‖qv‖, qv

‖qv‖ sin ‖qv‖
]

Log log(q) :=
[
log ‖q‖, qv

‖qv‖ arccos qs
‖q‖

]
I Exp: constructs q from rotation vector θ ∈ R3: q = exp

([
0, θ

2

])
I Log: recovers a rotation vector θ ∈ R3 from q: [0, θ] = 2 log(q)
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Example: Rotation with a Quaternion
I Let x = e2 be a point in frame {A}.
I What are the coordinates of x in frame {B} which is rotated by θ = π/3

with respect to {A} around the x-axis?
I The quaternion corresponding to the rotation from {B} to {A} is:

AqB =

[
cos(θ/2)
sin(θ/2)ξ

]
=

1

2

[√
3

e1

]
I The quaternion corresponding to the rotation from {A} to {B} is:

BqA = Aq−1
B = Aq̄B =

1

2

[√
3

−e1

]
I The coordinates of x in frame {B} are:

BqA ◦ [0, x] ◦ Bq−1
A =

1

4

[√
3

−e1

]
◦
[

0
e2

]
◦
[√

3
e1

]
=

1

4

[
0√

3e2 − e1 × e2

]
◦
[√

3
e1

]
=

1

2

[
0

e2 −
√

3e3

]
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Representations of Orientation (Summary)
I Rotation Matrix: an element of the Special Orthogonal Group:

R ∈ SO(3) :=

R ∈ R3×3

∣∣∣∣ R>R = I︸ ︷︷ ︸
distances preserved

, det(R) = 1︸ ︷︷ ︸
no reflection


I Euler Angles: roll φ, pitch θ, yaw ψ specifying a rzyx rotation:

R = Rz(ψ)Ry (θ)Rx(φ)

I Axis-Angle: θ ∈ R3 specifying a rotation about an axis ξ := θ
‖θ‖

through an angle θ := ‖θ‖:

R = exp(θ̂) = I + θ̂ +
1

2!
θ̂

2
+

1

3!
θ̂

3
+ . . .

I Unit Quaternion: q = [qs , qv ] ∈
{

q ∈ H | q2
s + q>v qv = 1

}
:

R = E (q)G (q)>
E (q) = [−qv , qs I + q̂v ]

G (q) = [−qv , qs I − q̂v ]
22



Rigid Body Pose
I Let {B} be a body frame whose position and orientation with respect to

the world frame {W } are p ∈ R3 and R ∈ SO(3), respectively.

I The coordinates of a point sB ∈ R3 can be converted to the world frame
by first rotating the point and then translating it to the world frame:

sW = RsB + p

I The homogeneous coordinates of a point s ∈ R3 are

s := λ

[
s
1

]
∝
[

s
1

]
∈ R4

The scale factor λ allows representing points arbitrarily far away from

the origin as λ→ 0, e.g., s =
[
1 2 1 0

]>
I Rigid-body transformations are linear in homogeneous coordinates:

sW =

[
sW
1

]
=

[
R p
0> 1

] [
sB
1

]
= T sB
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Special Euclidean Group SE (3)

I The pose T of a rigid body can be described by a matrix in the special
Euclidean group:

SE (3) :=

{
T :=

[
R p
0> 1

] ∣∣∣∣ R ∈ SO(3),p ∈ R3

}
⊂ R4×4

I It can be verified that SE (3) satisfies all requirements of a group:

I Closure: T1T2 =

[
R1 p1

0> 1

] [
R2 p2

0> 1

]
=

[
R1R2 R1p2 + p1

0> 1

]
∈ SE (3)

I Identity:

[
I 0

0> 1

]
∈ SE (3)

I Inverse:

[
R p
0> 1

]−1

=

[
RT −R>p
0> 1

]
∈ SE (3)

I Associativity: (T1T2)T3 = T1(T2T3) for all T1,T2,T3 ∈ SE (3)
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Point Transformations

I Let the pose of a rigid body be {W }T{B} :=

[
{W }R{B} {W }p{B}

0> 1

]
I The subscripts indicate that the pose of a rigid body in the world

frame specifies a transformation from the body to the world frame

I A point with body-frame coordinates sB , has world-frame coordinates:

sW = RsB + p equivalent to

[
sW
1

]
=

[
R p
0> 1

] [
sB
1

]
I A point with world-frame coordinates sW , has body-frame coordinates:[

sB
1

]
=

[
R p
0> 1

]−1 [
sW
1

]
=

[
R> −R>p
0> 1

] [
sW
1

]
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Composing Transformations

I Given a robot with pose {W }T{1} at time t1 and {W }T{2} at time t2, the
relative transformation from the inertial frame {2} at time t2 to the
inertial frame {1} at time t1 is:

{1}T{2} = {1}T{W } {W }T{2} =
(
{W }T{1}

)−1
{W }T{2}

=

[
{W }R

>
{1} −{W }R

>
{1} × {W }p{1}

0> 1

] [
{W }R{2} {W }p{2}

0> 1

]
I The pose Tk of a robot at time tk always specifies a transformation

from the body frame at time tk to the world frame so we will not
explicitly write the world frame subscript

I The relative transformation from inertial frame {2} with world-frame
pose T2 to an inertial frame {1} with world-frame pose T1 is:

1T2 = T−1
1 T2
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Summary

Rotation SO(3) Pose SE (3)

Representation R :

{
RTR = I

det(R) = 1
T =

 R p

0> 1


Transformation sW = RsB sW = RsB + p

Inverse R−1 = R> T−1 =

R> −R>p

0> 1


Composition WRB = WRA ARB WTB = WTA ATB
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