
ECE276A: Sensing & Estimation in Robotics
Lecture 7: Motion and Observation Models

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
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Motion Models

Ackermann Drive

Differential Drive

Quadrotor

Spring-loaded Gait
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Motion Model

I A motion model is a function f (x,u,w) relating the current state x
and control input u of a robot with its state change subject to motion
noise w
I Continuous-time: ẋ(t) = f (x(t),u(t),w(t))

I Discrete-time: xt+1 = f (xt ,ut ,wt)

I Due to the presence of motion noise, the state change ẋ(t) or xt+1 is a
random variable and can equivalently be described by its probability
density function (pdf) conditioned on x and u:
I Continuous-time: ẋ(t) has pdf pf (· | x(t),u(t))

I Discrete-time: xt+1 has pdf pf (· | xt ,ut)
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How is a motion model obtained?

I Physics-based kinematics or dynamics modeling:
I differential-drive model (roomba or fixed-wing aerial vehicle)
I Ackermann-drive model (bicycle or car model)
I quadrotor model
I sping-loaded gait model
I . . .

I System identification or supervised learning from a dataset
D = {(xi ,ui , x

′
i )} of system transitions

I Model-based reinforcement learning: a motion model is inferred
indirectly as the robot is learning to perform a task

I Odometry:
I sensor data (e.g., wheel encoders, IMU, camera, laser) is used to estimate

ego motion in retrospect, after the robot has moved
I an alternative to using a motion model that is suitable for localization and

mapping but not for planning and control
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Differential-drive Kinematic Model

I State: x = (p, θ), where p = (x , y) ∈ R2 is the position and
θ ∈ (−π, π] is the orientation (yaw angle) in the world frame

I Control: u = (v , ω), where v ∈ R is the linear velocity and ω ∈ R is the
angular velocity (yaw rate) in the body frame

I Continuous-time model:

ẋ =

ẋẏ
θ̇

 = f (x,u) :=

v cos θ
v sin θ
ω
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Continuous-time Differential-drive Kinematic Model
I Let L be the distance between the wheels and R be the radius of

rotation, i.e., the distance from the ICC to axel center.
I The arc-length travelled is equal to the angle θ times the radius R

ω =
θ

t
v =

Rθ

t
= ωR

ω =
vR − vL

L

R =
L

2

(
vL + vR
vR − vL

)
=

v

ω

v =
vR + vL

2

[
ẋ
ẏ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
v
0

]
θ̇ = ω
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Discrete-time Differential-drive Kinematic Model

I Euler discretization over time interval of length τ :

xt+1 =

xt+1

yt+1

θt+1

 = f (xt ,ut) := xt + τ

vt cos(θt)
vt sin(θt)

ωt


I Exact discretization by integration over time interval of length τ :

xt+1 =

xt+1

yt+1

θt+1

 = f (xt ,ut) := xt + τ

vtsinc
(
ωtτ

2

)
cos
(
θt + ωtτ

2

)
vtsinc

(
ωtτ

2

)
sin
(
θt + ωtτ

2

)
ωt
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Discrete-time Differential-drive Kinematic Model
I What is the state after τ seconds if we apply constant linear velocity v

and angular velocity ω at time t0?
I To convert the continuous-time differential-drive model to discrete time,

we can solve the ordinary differential equations:

ẋ(t) = v cos θ(t)

ẏ(t) = v sin θ(t)

θ̇(t) = ω

⇒

θ(t0 + τ) = θ(t0) +

∫ t0+τ

t0

ωds = θ(t0) + ωτ

x(t0 + τ) = x(t0) + v

∫ t0+τ

t0

cos θ(s)ds

= x(t0) +
v

ω
(sin (ωτ + θ(t0))− sin θ(t0))

= x(t0) + vτ
sin(ωτ/2)

ωτ/2
cos
(
θ(t0) +

ωτ

2

)
y(t0 + τ) = y(t0) + v

∫ t0+τ

t0

sin θ(s)ds

= y(t0)− v

ω
(cos θ(t0)− cos (ωτ + θ(t0)))

= y(t0) + vτ
sin(ωτ/2)

ωτ/2
sin
(
θ(t0) +

ωτ

2

)
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Ackermann-drive Kinematic Model

I State: x = (p, θ), where p = (x , y) ∈ R2 is the position and
θ ∈ (−π, π] is the orientation (yaw angle) in the world frame

I Control: u = (v , φ), where v ∈ R is the linear velocity and φ ∈ (−π, π]
is the steering angle in the body frame

I Continuous-time model:

ẋ =

ẋẏ
θ̇

 = f (x,u) :=

v cos θ
v sin θ
v
L tanφ


where L is the distance between the wheels

I With the definition ω := v
L tanφ, the model is equivalent to the

differential-drive model and we can use the same discretized models
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Quadrotor Dynamics Model
I State: x = (p, ṗ,R,ω) with position p ∈ R3, velocity ṗ ∈ R3,

orientation R ∈ SO(3), and body-frame rotational velocity ω ∈ R3

I Control: u = (ρ, τ) with thrust force ρ ∈ R and torque τ ∈ R3

I Continuous-time model with mass m ∈ R>0, gravitational acceleration
g , moment of inertia J ∈ R3×3 and z-axis e3 ∈ R3:

ẋ = f (x,u) =


mp̈ = −mge3 + ρRe3

Ṙ = Rω̂

Jω̇ = −ω × Jω + τ
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Odometry-based Motion Model

I Let xt := WTt be the robot pose at time t

I Let ut := tTt+1 be the relative pose of the body frame at time t + 1
with respect to the body frame at time t

I Given xt := WTt and ut := tTt+1, the robot pose xt+1 := WTt+1 at
time t + 1 can be estimated as:

WTt+1 = xt+1 = f (xt ,ut) := xt ⊕ ut = WTt tT̂t+1

where ⊕ denotes multiplication of SE (3) elements
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Odometry-based Motion Model

I Odometry: onboard sensors (camera, lidar, encoders, imu, etc.) may be
used to estimate the relative transformation of the robot pose at time
t + 1 with respect to the body frame at time t:

tT̂t+1 :=

[
t R̂t+1 t p̂t+1

0> 1

]
∈ SE (3)

I Assuming a small time discretization, the estimates tT̂t+1 are accurate

I Given x0 := WT0 and
{

ûτ := τ T̂τ+1 | τ = 0, . . . , t
}

, the robot pose

xt+1 := WTt+1 at time t + 1 can be estimated as:

WTt+1 = xt+1 = x0 ⊕t
τ=0 uτ ≈ x0 ⊕t

τ=0 ûτ = (WT0)
t∏

τ=0

(
τ T̂τ+1

)
I The odometry estimate is “drifting”, i.e., gets worse and worse over

time, because the small errors in each tT̂t+1 are accumulated
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Observation Models

Inertial Measurement Unit

Global Positioning System

RGB Camera

2-D Lidar
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Observation Model

I An observation model is a function z = h(x,m, v) relating the robot
state x and the environment m with the sensor observation z subject to
measurement noise v:

zt = h(xt ,mt , vt)

I Due to the presence of measurement noise, the observation zt is a
random variable and can equivalently be described by its pdf conditioned
on xt and mt :

zt has pdf ph(· | xt ,mt)

I Common sensor models:
I Inertial: encoders, magnetometer, gyroscope, accelerometer
I Position model: direct position measurements, e.g., GPS, RGBD

camera, laser scanner
I Bearing model: angular measurements to points in 3-D, e.g., compass,

RGB camera
I Range model: distance measurements to points in 3-D, e.g., radio

received signal strength (RSS) or time-of-flight
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Encoders
I A magnetic encoder consists of a rotating gear, a

permanent magnet, and a sensing element

I The sensor has two output channels with offset
phase to determine the direction of rotation

I A microcontroller counts the number of
transitions adding or subtracting 1 (depending on
the direction of rotation) to the counter

I The distance traveled by the wheel,
corresponding to one tick on the encoder is:

meters per tick =
π × (wheel diameter)

ticks per revolution

I The distance traveled during time τ for a given encoder count z , wheel
diameter d , and 360 ticks per revolution is:

τv ≈ πdz

360
and can be used to predict position change in a differential-drive model15



MEMS Strapdown IMU
I MEMS: micro-electro-mechanical system
I IMU: inertial measurement unit:

I triaxial accelerometer (measures linear acceleration)
I triaxial gyroscope (measures angular velocity)
I Strapdown: the IMU and the robot body frames are

identical

I Accelerometer:
I A mass m on a spring with constant k . The spring

displacement is proportional to the system
acceleration: F = ma = kd ⇒ a = kd

m
I VLSI Fabrication: the displacement of a metal plate

with mass m is measured with respect to another
plate using capacitance

I Used for car airbags (if the acceleration goes above
2g , the car is hitting something!)

I Gyroscope: uses Coriolis force to detect rotational velocity from the
changing mechanical resonsance of a tuning fork

16



IMU Observation Model

I State: (p, ṗ, p̈,R,ω, ω̇,bg ,ba) with position p ∈ R3, velocity ṗ ∈ R3,
acceleration p̈ ∈ R3, orientation R ∈ SO(3), rotational velocity ω ∈ R3

(body frame), and rotational acceleration ω̇ ∈ R3 (body frame),
gyroscope bias bg ∈ R3, accelerometer bias ba ∈ R3

I Extrinsic Parameters: the IMU position BpI ∈ R3 and orientation

BRI ∈ SO(3) in the body frame (assumed known or obtained via
calibration)

I Measurement: (zω, za) with rotational velocity measurement zω ∈ R3

and linear acceleration measurement za ∈ R3
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IMU Observation Model
I Continuous-time model: with gravitational acceleration g , gyro

measurement noise ng ∈ R3, accelerometer measurement noise na ∈ R3

(assumed zero-mean white Gaussian):

zω = BR
>
I ω + bg + ng

za = WR>I (W p̈I − ge3) + ba + na

= (R BRI )
>
(

d

dt2
(p + R BpI )− ge3

)
+ ba + na

= BR
>
I

(
R>(p̈− ge3) + ˆ̇ωBpI + ω̂2

BpI

)
+ ba + na

I For a strapdown IMU (BRI = I and BpI = 0), the above simplifies to:

zω = ω + bg + ng

za = R>(p̈− ge3) + ba + na

I Discrete-time model: A. Mourikis and S. Roumeliotis, “A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation”
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Lasers

Single-beam Garmin Lidar

2-D Hokuyo Lidar

3-D Velodyne Lidar
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LIDAR Model
I LIDAR: LIght Detection And Ranging

I Illuminates the scene with pulsed laser light
and measures the return times and
wavelengths of the reflected pulses

I Mirrors are used to steer the laser beam in
the xy plane (and zy plane for 3D lidars)

I LIDAR rays are emitted over a set of known
horizontal (azimuth) and vertical (elevation)
angles {αk , εk} and return range estimates
{rk} to obstacles in the environment m

I Example: Hokuyo URG-04LX; detectable
range: 0.02 to 4m; 240◦ field of view with
0.36◦ angular resolution (666 beams); 100
ms/scan
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Laser Range-Azimuth-Elevation Model
I Consider a Lidar with position p ∈ R3 and orientation R ∈ SO(3)

observing a point m ∈ R3 in the world frame

I The point m has coordinates m̄ := R>(m− p) in the lidar frame

I The lidar provides a spherical coordinate measurement of m̄:

m̄ = R>(m− p) =

r cosα cos ε
r sinα cos ε

r sin ε


where r is the range, α is the azimuth, and ε is the elevation

I Inverse observation model: expresses the lidar state p, R and

environment state m, in terms of the measurement z =
[
r α ε

]T
I Inverting gives the laser range-azimuth-elevation model:

z =

rα
ε

 =

 ‖m̄‖2

arctan (m̄y/m̄x)
arcsin (m̄z/‖m̄‖2)

 m̄ = R>(m− p)
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Laser Beam Model
I Let rkt be the range measurement of beam k from pose xt in map m
I Let rk∗t be the expected measurement and let rmax be the max range
I The laser beam model assumes that the beams are independent:

ph(rt | xt ,m) =
∏
k

p(rkt | xt ,m)

Four types of measurement noise:

1. Small measurement noise:
phit , Gaussian

2. Unexpected object:
pshort , Exponential

3. Unexplained noise:
prand , Uniform

4. No objects hit:
pmax , Uniform
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Laser Beam Model

I Independent beam assumption: ph(rt | xt ,m) =
∏

k p(rkt | xt ,m)

I Each beam likelihood is a mixture model of four noise types:

p(rkt | xt ,m) = α1phit(r
k
t | xt ,m) + α2pshort(r

k
t | xt ,m) + α3prand(rkt | xt ,m) + α4pmax(rkt | xt ,m)

phit(r
k
t | x,m) =


φ(rkt ;rk∗t ,σ2)∫ rmax

0 φ(s;rk∗t ,σ2)ds
if 0 ≤ rkt ≤ rmax

0 else

pshort(r
k
t | x,m) =

 λse−λs r
k∗
t

1−e−λs r
k∗
t

if 0 ≤ rkt ≤ rk∗t

0 else

prand(rkt | x,m) =

{
1

rmax
if 0 ≤ rkt < rmax

0 else

pmax(rkt | x,m) = δ(rkt ; rmax) :=

{
1 if rkt = rmax

0 else
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Cameras

Global shutter

RGBD

Stereo (+ IMU)

Event-based
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Image Formation
I Image formation model: must trade-off physical accuracy and

mathematical simplicity

I The values of an image depend on the shape and reflectance of the
scene as well as the distribution of light

I Image intensity/brightness/irradiance I (u, v) describes the energy
falling onto a small patch of the imaging sensor (integrated both over
the shutter interval and over a region of space) and is measured in
power per unit area (W /m2)

I A camera uses a set of lenses to control the direction of light
propagation by means of diffraction, refraction, and reflection

I Thin lens model: a simple geometric model of image formation that
considers only refraction

I Pinhole model: a thin lens model in which the lens aperture is
decreased to zero and all rays are forced to go through the optical center
and remain undeflected (diffraction becomes dominant).
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Pinhole Camera Model

I Focal plane: perpendicular to
the optical axis with a circular
aperture at the optical center

I Image plane: parallel to the focal plane and a distance f (focal
length) in meters from the optical center

I The pinhole camera model is described in an optical frame centered at
the optical center with the optical axis as the z-axis:
I optical frame: x = right, y = down, z = forward
I regular frame: x = forward, y = left, z = up

I Image flip: the object appears upside down on the image plane. To
eliminate this effect, we can simply flip the image (x , y)→ (−x ,−y),
which corresponds to placing the image plane {z = −f } in front of the
optical center instead of behind {z = f }.
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Pinhole Camera Model

I Field of view: the angle subtended by the spatial extend of the image
plane as seen from the optical center. If s is the side of the image plane

in meters, then the field of view is θ = 2 arctan
( s

2f

)
.

I For a flat image plane: θ < 180◦.
I For a spherical or ellipsoidal imaging surface, common in omnidirectional

cameras, θ can exceed 180◦.

I Ray tracing: assuming a pinhole model and Lambertian surfaces, image
formation can be reduced to tracing rays from points on objects to
pixels. A mathematical model associating 3-D points in the world frame
to 2-D points in the image frame must account for:

1. Extrinsics: world-to-camera frame transformation

2. Projection: 3D-to-2D coordinate projection

3. Intrinsics: scaling and translation of the image coordinate frame
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Extrinsics

I Let p ∈ R3 and R ∈ SO(3) be the camera position and orientation in
the world frame

I Rotation from a regular to an optical frame: oRr :=

0 −1 0
0 0 −1
1 0 0


I Let (Xw ,Yw ,Zw ) be the coordinates of point m in the world frame. The

coordinates of m in the optical frame are then:
Xo

Yo

Zo

1

 =

[
oRr 0
0> 1

] [
R p
0> 1

]−1


Xw

Yw

Zw

1

 =

[
oRrR

> −oRrR
>p

0 1

]
Xw

Yw

Zw

1
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Projection
I The 3D-to-2D perspective

projection operation relates the
optical-frame coordinates
(Xo ,Yo ,Zo) of point m to its
image coordinates (x , y) using
similar triangles:

x = f
Xo

Zo

y = f
Yo

Zo

z
y
1

 =
1

Zo

f 0 0 0
0 f 0 0
0 0 1 0



Xo

Yo

Zo

1


I The above can be decomposed into:x

y
1

 =

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Ff

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸

focal scaling: Kf

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: π


Xo

Yo

Zo

1
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Intrinsics
I Images are obtained in terms of pixels (u, v) with the origin of the pixel

array typically in the upper-left corner of the image.

I The relationship between the image frame and the pixel array is
specified via the following parameters:
I (su, sv ) [pixels/meter]: define the scaling from meters to pixels and the

aspect ration σ = su/sv
I (cu, cv ) [pixels]: coordinates of the principal point used to translate the

image frame origin, e.g., (cu, cv ) = (320.5, 240.5) for a 640× 480 image
I sθ [pixels/meter]: skew factor that scales non-rectangular pixels and is

proportional to cot(α) where α is the angle between the coordinate axes
of the pixel array.

I Normalized coordinates in the image frame are converted to pixel
coordinates in the pixel array using the intrinsic parameter matrix:su sθ cu
0 sv cv
0 0 1


︸ ︷︷ ︸
pixel scaling: Ks

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Ff

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸

focal scaling: Kf

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸

calibration matrix: K

∈ R3×3
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Pinhole Camera Model Summary

I Extrinsics:
Xo

Yo

Zo

1

=

[
oRrR

> −oRrR
>p

0> 1

]
Xw

Yw

Zw

1



I Projection and Intrinsics:u
v
1


︸ ︷︷ ︸
pixels

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸

calibration: K

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: π


Xo

Yo

Zo

1
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Perspective Projection Camera Model

I The canonical projection function for vector x ∈ R3 is: π(x) := 1
e>3 x

x

I The pixel coordinates z ∈ R2 of a point m ∈ R3 in the world frame
observed by a camera at position p ∈ R3 with orientation R ∈ SO(3)
and intrinsic parameters K ∈ R3×3 are:

z = PKπ(oRrR
>(m− p)) P :=

[
I 0

]
∈ R2×3

I The homogeneous coordinates of x are x :=

[
x
1

]
I The camera model can be written directly in terms of the camera pose

T ∈ SE (3) using homogeneous coordinates:

z = Kπ(oRrPT
−1m) P :=

[
I 0

]
∈ R3×4
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Radial Distortion and Other Camera Models
I Wide field of view camera: in addition to linear distortions described

by the intrinsic parameters K , one can observe distortion along radial
directions.

I The simplest effective model for radial distortion:

x = xd(1 + a1r
2 + a2r

4)

y = yd(1 + a1r
2 + a2r

4)

where (xd , yd) are the pixel coordinates of distorted points and
r2 = x2

d + y2
d and a1, a2 are additional parameters modeling the amount

of distortion.

I Spherical perspective projection: if the imaging surface is a sphere
S2 := {x ∈ R3 | ‖x‖ = 1} (motivated by retina shapes in biological
systems), we can define a spherical projection πs(x) = x

‖x‖2
and use it in

place of π in the perspective projection model.

I Catadioptric model: uses an ellipsoidal imaging surface
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Epipolar Geometry
I Let m ∈ R3 be observed by two calibrated cameras (K1, K2 are known)

I Without loss of generality assume that the first camera frame coincides
with the world frame. Let the position and orientation of the second
camera be p ∈ R3 and R ∈ SO(3) (absorb oRr into R)

I Let z1, z2 be the homogeneous pixel coordinates of m in the two images

I Let y
i

:= K−1
i zi be the normalized pixel coordinates so that:

λ1y
1

= m, λ1 = e>3 m = unknown depth

λ2y
2

= R>(m− p), λ2 = e>3 R
>(m− p) = unknown depth

I We obtain the following relationship between the image points:

λ1y
1

= Rλ2y
2

+ p

I To eliminate the unknown depths λi , pre-multiply by p̂ and note that
p̂y

1
is perpendicular to y

1
:

λ1y>
1

p̂y
1︸ ︷︷ ︸

0

= λ2y>
1

p̂Ry
2

+ y>
1

p̂p︸ ︷︷ ︸
0 34



Essential Matrix
I Thus, λ2y>

1
p̂Ry

2
= 0 and since λ2 > 0, we arrive at the following

I Epipolar constraint: the observations y
1

= K−1
1 z1, y

2
= K−1

2 z2 in
normalized image coordinates of the same point m from two calibrated
cameras with relative pose (R,p) of cam 2 in the frame of cam 1 satisfy:

0 = y>
1

(p̂R) y
2

= y>
1
Ey

2

where E := p̂R ∈ R3×3 is the essential matrix.

I Essential matrix characterization: a non-zero E ∈ R3×3 is an
essential matrix iff its singular value decomposition is
E = Udiag(σ, σ, 0)V> for some σ ≥ 0 and U,V ∈ SO(3)

I Pose recovery from the Essential matrix: there are exactly two
relative poses corresponding to a non-zero essential matrix E :

(p̂,R) =
(
URz

(π
2

)
diag(σ, σ, 0)U>,UR>z

(π
2

)
V>
)

(p̂,R) =
(
URz

(
−π

2

)
diag(σ, σ, 0)U>,UR>z

(
−π

2

)
V>
)
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Fundamental Matrix

I The epipolar constraint holds even for two uncalibrated cameras

I Consider images z1 = K1y
1

and z2 = K2y
2

of the same point m ∈ R3

from two uncalibrated cameras with unknown intrinsic parameter
matrices K1 and K2 and relative pose (R,p) of camera 2 in the frame of
camera 1:

0 = y>
1

p̂Ry
2

= y>
1
Ey

2
= z>1 K

−>
1 EK−1

2 z2 = z>1 Fz2

I The matrix F := K−>1 p̂RK−1
2 = K−>1 EK−1

2 is called the fundamental
matrix
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Epipolar Line
I If a point m ∈ R3 is observed as z1 in one image and the fundamental

matrix F between two camera frames is known, the epipolar constraint
desribes an epipolar line, along which the observation z2 of m must lie

I The epipolar line is used to limit the search for matching points

I This is possible because the camera model is an affine transformation,
i.e., a straight line in Euclidean space, projects to a straight line in
image space
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Stereo Camera Model
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Stereo Camera Model

I Stereo Camera: two perspective cameras rigidly connected to one
another with a known transformation

I Unlike a single camera, a stereo camera can determine the depth of a
point from a single stereo observation

I Stereo Baseline: the transformation between the two stereo cameras is
only a displacement along the x-axis (optical frame) of size b

I The pixel coordinates zL, zR ∈ R2 of a point m ∈ R3 in the world frame
observed by a stereo camera at position p ∈ R3 and orientation
R ∈ SO(3) with intrinsic parameters K ∈ R3×3 are:

zL = Kπ
(
oRrR

>(m− p)
)

zR = Kπ
(
oRrR

>(m− p)− be1

)
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Stereo Camera Model
I Stacking the two observations together gives the stereo camera model:

uL
vL
uR
vR

 =


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


︸ ︷︷ ︸

M

1

z


x
y
z
1


xy
z

 = oRrR
>(m− p)

I Because of the stereo setup, two rows of M are identical. The vertical
coordinates of the two pixel observations are always the same because
the epipolar lines in the stereo configuation are horizontal.

I The vR equation may be dropped, while the uR equation is replaced

with a disparity measurement d = uL − uR =
1

z
fsub leading to:

uLvL
d

 =

fsu 0 cu 0
0 fsv cv 0
0 0 0 fsub

 1

z


x
y
z
1


xy
z

 = oRrR
>(m− p)
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Observation Models Summary
I Position sensor: state x = (p,R), position p ∈ R3, orientation

R ∈ SO(3), observed point m ∈ R3, measurement z ∈ R3:

z = h(x,m) = R>(m− p)

I Range sensor: state x = (p,R), position p ∈ R3, orientation
R ∈ SO(3), observed point m ∈ R3, measurement z ∈ R:

z = h(x,m) = ‖R>(m− p)‖2 = ‖m− p‖2

I Bearing sensor: state x = (p, θ), position p ∈ R2, orientation
θ ∈ (−π, π], observed point m ∈ R2, bearing z ∈ (−π, π]:

z = h(x,m) = arctan

(
m2 − p2

m1 − p1

)
− θ

I Camera sensor: state x = (p,R), position p ∈ R3, orientation
R ∈ SO(3), intrinsic camera matrix K ∈ R3×3, projection matrix
P := [I , 0] ∈ R2×3, observed point m ∈ R3, pixel z ∈ R2:

z = h(x,m) = PKπ(R>(m− p)) projection: π(m) :=
1

e>3 m
m
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