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Structure of Robotics Problems

» Time: t (discrete or continuous)

Robot state: x; (e.g., position, orientation, velocity)

| 2

» Control input: u; (e.g., quadrotor thrust and torque)

» Observation: z; (e.g., image, laser scan, inertial measurements)
| 2

Environment state: m; (e.g., map of the occupancy of space)




Structure of Robotics Problems

» The sequences of control inputs ug.; and observations zg.; are
known /observed

» The sequences of robot states xg.; and environment states mg.; are
unknown/hidden

» Markov Assumptions

» The robot state x;11 only depends on the previous input u; and state x;,
i.e., X¢11 given U, X; is independent of the history Xo.;—1, Zo.r—1, Ug:t—1

» The environment state m;;; only depends on the previous environment
state m;.

» The environment state m; and robot state x; may affect each other’s
motion (e.g., collisions) but we do not make this explicit to simplify the
presentation.

» The observation z; only depends on the robot state x; and the
environment state m;



Motion and Observation Models

» Motion Model: a nonlinear function f or equivalently a probability
density function ps that describes the motion of the robot to a new
state x41 after applying control input u; at state x;:

Xe1 = F(Xe,ue, We) ~ pr(- | Xe, ug) w; = motion noise

» The robot motion model may also depend on m; and the environment
may have its own motion model:

M1 = a(My, X¢, noise;) ~ pa(- | Mg, X¢)

» Observation Model: a function h or equivalently a probability density
function pp that describes the observation z; of the robot depending on
x; and m;

zy = h(xe, Mg, ve) ~ pp(c | X¢, my) v: = observation noise



Markov Assumption Factorization

» The Markov assumptions QD\V\ QD\V\ 0
induce a factorization of eee »(x . »(x

joint pdf of the states xq.T
(robot and map combined),
observations zg.7, and
controls ug.7_1

» Joint distribution:

p(Xo0:7,20:7,U0:7—1) = P(ZT|X0:T»20: 71, U0: T—1)P(X0: 75 Z0: T—1, U0: T—1)
Markov

ph(ZT|XT)p(XT’x0:T717 Z0:7—-1, uO:Tfl)p(XO:Tfla Z0:T—1, uO:Tfl)
Markov

pr(zT|xT)pr(XT|XT—1,uT_1)P(UT_1]|XT—1)P(X0: T—1,Z0: T—1, U0: T—2)

—P(XO)H Ph Zt|xt HPf(Xt‘Xt 1,Ut—1 H P(Ut|xt

prior t_ observatlon model ¢ motion model t=0 control poIlcy




Bayes Filter

» A probabilistic inference technique for estimating the state of a
dynamical system (e.g., the robot and/or its environment) that
combines evidence from control inputs and observations using the
Markov assumptions and Bayes rule:

> Total probability: p(x) = [ p(x,y)dy
> Conditional probability: p(x,y) = p(y | x)p(x)

Cix Ly gy = PO X 2)p(x [ 2) _ ply | x,2)p(z | x)p(x)
> Bayes rule: plx|y.2) = = S [ 2)ds ol | 2)p(2)

» The Bayes filter keeps track of:
> Updated pdf: pt|t(xt) = P(Xt | ZO:huO:t—l)

> Predicted pdf: Pt+1|t(xt+1) = p(Xt41 | Zo:t, Uo:t)

» Special cases of the Bayes filter:
> Particle filter
> Kalman filter
» Forward algorithm for Hidden Markov Models (HMMs)



Filtering Examples

» Track the center ¢; € R? and radius r; € R of a ball in images:
http://www.pyimagesearch.com/2015/09/14/
ball-tracking-with-opencv/

» Track the position p; € R3 and orientation R; € SO(3) of a camera:
https://www.youtube.com/watch?v=CsJkciblfco

» Estimate the probability of occupancy of a static environment
represented as a grid m:
https://www.youtube.com/watch?v=RhP1zIyTT58
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Bayes Filter Prediction and Update Steps

» The Bayes filter keeps track of py:(x¢) and p;i1j¢(X¢+1) using a
prediction step to incorporate the control inputs and an update step to
incorporate the measurements

> Prediction step: given a prior density p;; over x; and control input uy,
use the motion model pr to compute the predicted density p;,|; over
X1t

Pri1jt(X) = /Pf(x | s, u¢)pye(s)ds

> Update step: given a predicted density p;1|; over X¢+1 and
measurement z;1, use the observation model p, to obtain the updated
density pyi1jt41 OVEr Xey1:

_ Ph(Zes1 | X)pt+1|t(x)
[ pr(zes1 | $)Pty1)¢(s)ds

Pt+1\t+1(x)




Bayes Filter Illustration

Py (%)= p(x, | 2y,,uy)

~

Prediction step

Pu() = [ p, (x| 5,1) py (s)dis

Update step

Py (x)=

Pi(2 | x)pzu(x)

p(z, | 2y)



Bayes Filter Derivation

Pr1je+1(Xe+1) =P(Xe41 | Zo:e+1, Uo:t)

Bayes 1
7P(Zt+1 | Xt+1720:t7U0:t)P(Xt+1 | zO:tvuO:t)
Ne+1
Markov 1
————pp(Ze+1 | Xe41)P(Xe41 | Z0:¢, Uo:¢)
Ne+1

Total prob. 1
2P pn(zeg | xt+1)/P(Xt+1,Xt | 20:¢, Uo:¢ ) X
Nt+1
Cond. prob. 1
%ﬁph(zﬁ-l | xt+1)/P(xt+1 | Zo:t, Uo:t, X¢)P(Xt | Zo:¢, Uo:¢ )X
t+

Markov 1
ﬂﬁph(zﬂrl | Xt+1)/pf(xt+1 | Xe, ue)p(Xe | Zo:¢, Uo:e—1)dx¢
t+

1

1 oh(zers | xes) / Pr(xest | xe, ) prje(xe)dxe
Ne+1

» Normalization constant: 7:1 := p(z:y1 | Zo:t, Uo:t)
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Bayes Filter Summary

» Motion model: x;11 = f(X¢, ur, W) ~ pr(- | X¢, uy)
» Observation model: z; = h(x¢, v¢) ~ pp(- | X¢)

» Filtering: recursive computation of p(x1|zo.7,up.7—1) that tracks:
> Updated pdf: pt|t(xt) = p(xt | zo:t, Uo:t—1)

> Predicted pdf: Pt+1|t(xt+1) = p(Xes1 | Zo:t, Uo:t)

» Bayes filter:

1 .
Merl Predict: p; q)¢(xt+1)

——

1
Y EEEE—— d
p(Zes1]Zoc, Uoie) pr(ze+1 | Xt+1)/Pf(Xt+1 | Xt,Ut)Pt|t(Xt) Xt

Pt+1\t+1(xt+1) =

Update
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Bayes Smoother

» Recursive computation of a pdf p(xo.7|zo. 7, up.7—1) over the whole
state trajectory Xq.7 instead of only the most recent state xt

» The Bayes smoother keeps track of:
> Updated pdf: pt|t(XO:t) = p(Xo:¢t | Zo:t, W0:¢—1)

» Predicted pdf: p. 1j¢(x0:t11) := P(X0:t41 | Zo:t, Uo:¢)

» Forward pass: compute p(X¢+1 | Zo:t4+1, Uo:t) and p(X¢41 | Zo:t, Uo:¢) for
t=0,..., T via the Bayes filter

» Backward pass: for t = T —1,...,0 compute:

Total

P(Xt | ZO:T7UO:T—1) /P(Xt | Xt41,Z0:T, Uo:T—1)P(Xt+1 | ZO:T7U0:T—1)dXt+1

Probability
Markov

== [ p(X¢ | Xt41,20:t,U0:t)P(X¢+1 | Z0:T,U0:T—1)dXe11

Assumption

motion model
—_——N—
Baves e | zO:t7u0:t—1)/ |:Pf(xt+1 | x¢,ur) p(Xet1 | Zo.7, U0 T—1)

Rule P(Xt+1 ‘ ZO:t,"O:t)
\—/—/
forward pass

dxiq1

forward pass
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Histogram Filter

» Implementation of the Bayes filter when x; belongs to a fixed discrete
set for all t. In this case:

> we can work with probability mass functions (pmfs)
» integration in the Bayes filter steps reduces to summation

» Overloading our pdf notation, assume that py(;(x), pe41)¢(x), and
pr(x'|x, u) are pmfs over the discrete set

» We will use the connection between a pdf and a pmf more carefully
when deriving the particle filter

13



Histogram Filter

> Keeps track of the pmfs py(x) and p;1j¢(x) over a discrete set X

> Prediction step: given a prior pmf p;; and control input u;, use the
motion model pmf ps to compute the predicted pmf p; ¢

Pei1ft(Xe+1) = Z pr(Xe+1 | 'S, ue)pye(s)
seX

> Update step: given a predicted pmf p.;;; and measurement z;;1, use
the observation model pj, to obtain an updated pmf p; 1j¢41:

Ph(ze41 | xt+1)pt+1|t(xt+1)
> scx Ph(zes | 5)Pt+1\t(5)

Pty1]t+1 (xt41) =
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Efficient Histogram Filter Prediction

» Let X be a regular grid discretization of the state space
» Motion model: x' = f(x,u) +w

» Assume bounded “Gaussian” noise w

» Prediction step:
> shift the prior pmf data py(x) at each grid index x € X’ to a new grid
index x’ according to the motion model x’ = f(x, u)

» convolve the shifted grid values with a separable Gaussian kernel:

1/16 1/8 1/16 1/4

= +
1/8 1/4 1/8 1/2 1/4 1/2 1/4
1716 1/8 1/16 1/4

» This reduces the prediction step cost from O(n?) to O(n) where n is the
number of grid cells in X
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Adaptive Histogram Filter

» The accuracy of the histogram filter is limited by the size of the grid X

» A small-resolution grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in
the number of dimensions

» Adaptive Histogram Filter: represents the pmf via adaptive
discretization, e.g., an octree data structure

F r]
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Markov Localization

» Robot Localization Problem: Given a map m, a sequence of control
inputs ug.;—1, and a sequence of measurements zg.;, infer the state of

the robot x;

» Approach: use a Bayes filter with a multi-modal distribution in order to
capture multiple hypotheses about the robot state, e.g.:
» Histogram filter
» Particle filter
» Gaussian mixture filter

» Important considerations:

» How is the map m represented?

» What are the motion and observation models?

» Need to keep the number of hypotheses about x; under control, especially
in high dimensions

17



Histogram Filter Localization (1-D)

Pl’iOI’Z Bel(g)
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Histogram Filter Localization (1-D)

Bd(s)

Piols)

Bel(s)

Prior:

Update:
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Histogram Filter Localization (1-D)

Bel(s)

Prols)

Bd(z)

Bd(s)

Prior:

Update:

Predict:
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Histogram Filter Localization (1-D)

Bel(s)

Prols)
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Update:
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Particle Filter

» The particle filter is a histogram filter which allows its grid centers to
move around and adaptively concentrate in areas of the state space that
are more likely to contain the true state

» To obtain the particle filter, we will explicitly use the connection between
a pmf and a pdf and the Bayes filter prediction and update steps

> Reminder: a pmf a(%) over a discrete set {pu(Y), u(®, ...} can be viewed
as a continuous-space pdf by defining:

x) =Y al§(x— pk
p(x) ; 5( u)

where § is the Dirac delta function:

d(x) := {;O i ; 8 /OO d(x)dx = 1.
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Particle Filter
» Particle: a hypothesis that the value of x is u(k) with probability a(k)

» The particle filter uses a set of hypotheses (particles) with locations
{u(k)}k and weights {a(k)}k to represent the pdfs py; and p; ¢

k k
pt|t(xt) = Z 04£|t)(5 (Xt - N£|t))
Nt+1\t
k k
Pt+1|t(xt+1) = Z agfwé (Xt+1 - H£+)1|t>
k=1
» To derive the particle filter, substitute these pdfs in the Bayes filter
prediction and update steps

» The prediction and update steps should maintain the
mixture-of-delta-functions form of the pdfs

20



Particle Filter Prediction
» Plug the particle representation of p;|; in the Bayes filter prediction step:

Nt\t
peiel) = [ prtx 5,003 allls (s uf)) os
k=1
Nt|t Nt+1|t

_ (k) (k) 2 (k) (k)
- Zaﬂt pr(x | “t|t’ut) ~ Z at+1|t6 ( “t+1|t>
k=1 k=1

» How do we approximate the prediction step as a delta-mixture pdf?
» Since pyy1)¢(x) is a mixture pdf with components pr(x | ugf?,ut), we
may approximate it with particles by drawing samples from it:
> Resampling: given particles {pglt), E‘t)} for k =1,..., Ny, create a
new set, {ui‘t), E’|f)} for k =1,..., Neyqpe (usually Neppje = Neje)

> Prediction: apply the motion model to each ﬁgrt) by drawing

(k) = (k) (k) _ =(k)
Hifae ™~ PF ( | l‘l't|t7ut) and set Cria)e = Ype

21



Particle Filter Update

» Plug the particle representation of p |, in the Bayes filter update step:
N k k
ph(zt11 | x) kHlllt O‘E—s—)llt(S ( “E—i-)l|t)
fPh zer1|8) 20 e t+1\t‘5 (5 - “S:—i)-l|t> ds

Neya)e O‘£+)1|tp” (Zt+1 | “H-)l\t)

pt+1|t+1(

=3 (x = )
ZNHIM o) Zei1 | () t+1ft

k=1 j=1 t+1)tPh \Zt+1 | Bopyqy T
“t+1\t+1

(k)
i)t

» The updated pdf turns out to be a delta mixture so no approximation is
necessary!

» The update step does not change the particle positions but only their
weights

22



Particle Filter Summary
. k
» Prior: x; | zo.t,ug:t—1 ~ pt|t(xt) = Zk 1 at|t (Xt ﬂg‘t)>

» Resampling: If Ngg = 5 < Ninreshold, resample the particle

1
S (od)

set {“grt)’a(trt)} via stratified or sample importance resampling

» Prediction: let u(ti)l't ~ P ( | u(tf(t), ut) and O‘E:)ut = ag‘kt) so that:

N
(k)
pt+1|t(x Zat+1|t ( l‘l't+1|t>
k=1

» Update: rescale the particle weights based on the observation likelihood:

VT o o (2 | f®

t+1|tph t+1 l’l't+1|t (k)

Per1je+1(x Z Nt+l\t 0 m) 0 ( .Ut+1|t>
k=1 J 1 t+1|tph (Zt+1 ‘ l""’t—‘,—l‘t)
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Particle Resampling

» Particle depletion: a situation in which most of the updated particle
weights become close to zero because the finite number of particles is

not enough, i.e., the observation likelihoods pp (zt+1 \ uiljr)l‘t) are small
atallk=1,...,N

» The resampling procedure tries to avoid particle depletion

» Given a weighted particle set, resampling creates a new particle set with
equal weights by adding many particles to the locations that had high
weights and few particles to the locations that had low weights

» Resampling focuses the representation power of the particles to likely
regions, while leaving unlikely regions with only few particles

» Resampling is applied at time t if the effective number of particles:

Nefr =

1

Zk 1 ( t|t)2

is less than a threshold

24



Particle Filter Resampling

i=1...n=10 particles

oe o e e oo e ] {[l,(‘fjl,%}

D - ———

I
| : :|
| | [ |
Update ' i ‘ ‘ ‘H : {,uf‘f),af‘f)}
Resampling : E f é ! {ﬁf(\f)’%}
| / : |'A| II
N AL
8! $

(et /)

Prediction & A

|
|
|
|
: (k) (k)
9 9
® {#t+l\t+l’at+l\t+l}

|
|
|
|
:
¥

L]

Al
Update °
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)

Prior:

Piols)
Update: T A A A s

‘ h\ e
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Particle Filter Localization (1-D)

Prior: [p(s)

s
O RRT R S ST R TR (TN VR R LU TR (TR RTIT T TR I AT SRRU ST TRURE AT U (0F CRTRITTON L SRU R WO T WA 1/ (IR

Update:

M)

Predict:

Resample:
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Particle Filter Localization (1-D)

27



Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)

Prior:

555155555555555Efifiﬁififif.:::.:.:::5555:fifiiififi.ii:Efiiififiiii

Update: A A A s
1G]

Predict:

Resample:
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Inverse Transform Sampling

» Target distribution: How do we sample from a distribution with pdf

p(x) and CDF F(x) = [*_ p(s)ds?

» Inverse Transform Sampling:

1.
2.

Draw u ~ U(0,1)

Return inverse CDF value:
p=F"(u)

The CDF of F~1(u) is:

P(F~(u) < %) = B(u < F(x)
= F(x)

Inverse transforming sampling for normal distribution

— pdf flx)
[ — cde-T,.r':-:f f(t) dt

-

’ | 1 .
L P r=F"(u)
10} L :
’
’
’ I|
-1sf |
L |
- |
L
=20 1 | 1 1 1
-20 -15 -10 -05 0.0 05 10 15 20
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Rejection Sampling
» Target distribution: How do we sample from a complicated pdf p(x)?

» Proposal distribution: use another pdf g(x) that is easy to sample
from (e.g., Uniform, Gaussian) and: Ap(x) < g(x) with A € (0,1)

» Rejection Sampling:
1. Draw u ~U(0,1) and p ~ ¢(+)
2. Return ponly if u < %}%l. If X is small, many rejections are necessary

» Good g(x) and A are hard to choose in practice

%q(x)

reject reg

“~q(x) 29



Sample Importance Resampling (SIR)

» How about rejection sampling without \?

» Sample Importance Resampling for a target distribution p(-) with
proposal distribution q(-)
1. Draw p® ... u™M ~ g()

*)
2. Compute importance weights a(k) = 5%5(“; and normalize: a(k) = S ol

3. Draw p(k) independently with replacement from {,u(l), e ,M(N)} with
probability o) and add to the final sample set with weight +

» If g(-) is a poor approximation of p(-), then the best samples from g are
not necessarily good samples for resampling
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Markov Chain Monte Carlo Resampling

» The main drawback of rejection sampling and SIR is that choosing a
good proposal distribution ¢(-) is hard

» ldea: let the proposed samples i depend on the last accepted sample

i, i.e., obtain correlated samples from a conditional proposal

distribution ,u(k) ~q ( ’ ,u(k_l))

» Under certain conditions, the samples generated from q(- | i) form an
ergodic Markov chain with p(+) as its stationary distribution

» MCMC methods include Metropolis-Hastings and Gibbs sampling
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SIR applied to the Particle Filter

> Let {ug‘kt),agf?} for k=1,..., N be the particle set at time t
_(k) —(k
» If Negr := ﬁ < Nipreshold, Create a new set {;LE't),aE‘t)} for
it (o)

k=1,..., N as follows

» Repeat N times:

» Draw j € {1,..., N} independently with resplacement with discrete
probability agl)t

> Add the sample /J,(J)

r\‘r with weight % to the new particle set
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Stratified Resampling

> In SIR, the weighted set {u(¥), a(K} is sampled independently with
replacement

» This might result in high variance resampling, i.e., sometimes some
samples with large weights might not be selected or samples with very
small weights may be selected multiple times

» Stratified resampling: guarantees that samples with large weights
appear at least once and those with small weights — at most once.
Stratified resampling is optimal in terms of variance (Thrun et al.
2005)

» Instead of selecting samples independently, use a sequential process:
» Add the weights along the circumference of a circle
» Divide the circle into N equal pieces and sample a uniform on each piece
» Samples with large weights are chosen at least once and those with small
weights — at most once
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Stratified and Systematic Resampling

Stratified (low variance) resampling

1: Input: particle set {,u(k),a(k)}i\l:l

2: Qutput: resampled particle set

3 j1 c+al

4: for k=1,...,N do -
! ‘

5: u ~ Z/{ (O,kN]? Random

6 6 =u-+ N

7 while > c do

8 j=j+1 c=c+al)

9 add (u0), 1) to the new set

» Systematic resampling: the same as stratified resampling except that
the same uniform is used for each piece, i.e., u ~ U (O7 %) is sampled
only once before the for loop above.
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