
ECE276A: Sensing & Estimation in Robotics
Lecture 9: Particle Filter SLAM

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Mo Shan: moshan@eng.ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:moshan@eng.ucsd.edu
mailto:aasghari@eng.ucsd.edu

Simultaneous Localization & Mapping (SLAM)
I Chicken-and-egg problem:

I Mapping: given the robot state trajectory x0:T , build a map m of the
environment

I Localization: given a map m of the environment, estimate the robot
trajectory x0:T

I SLAM is a parameter estimation problem for x0:T and m given a dataset
of the robot inputs u0:T−1 and observations z0:T

I Possible approaches:
I MLE: maximize the data likelihood conditioned on the parameters:

max
x0:T ,m

log p(z0:T ,u0:T−1 | x0:T ,m)

I MAP: maximize the posterior likelihood of the parameters given the data:

max
x0:T ,m

log p(x0:T ,m | z0:T ,u0:T−1)

I BI: use Bayesian inference to maintain a posterior likelihood for the
parameters given the data:

p(x0:T ,m | z0:T ,u0:T−1)
2

Simultaneous Localization & Mapping (SLAM)

I Solutions to the SLAM problem exploit the decomposition of the joint
pdf due to the Markov assumptions:

p(x0:T ,m, z0:T ,u0:T−1) = p0(x0,m)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt ,m)︸ ︷︷ ︸
observation model

T∏
t=1

pf (xt | xt−1,ut−1)︸ ︷︷ ︸
motion model

T−1∏
t=0

p(ut | xt)︸ ︷︷ ︸
control policy

I The control policy term is usually not considered

I MLE: max
x0:T ,m

T∑
t=0

log ph(zt | xt ,m) +
T∑
t=1

log pf (xt | xt−1,ut−1)

I MAP: equivalent to MLE with the addition of a prior log p0(x0,m) to
the objective function

I BI: uses Bayesian smoothing to obtain p(x0:T ,m | z0:T ,u0:T−1)

3

Simultaneous Localization & Mapping (SLAM)

I Earlier SLAM techniques:
I Bayes filtering to maintain only p(xt ,m | z0:t ,u0:t−1)

I Expectation Maximization (EM) treating xt as a hidden variable. Given
an inital map m(0), e.g., obtained from the first observation z0, iterate:

E: Estimate the distribution of xt given m(i)

M: Update m(i+1) by maximizing (over m) the log-likelihood of the
measurements conditioned on xt and m

I The implementation of any SLAM approach depends on the particular
representation of the robot states xt , map m, observations zt , control
inputs ut , observation model ph, and motion model pf .

4

Mapping

I Given a robot state trajectory x0:T and a sequence of measurements
z0:T , build a map m of the environment

5

Sparse Map Representations

I Point cloud: a collection of points,
potentially with properties, e.g., color

I Landmark-based: objects, each having a
semantic class, position, orientation,
shape, etc.

I Surfels: a collection of oriented discs
containing photometric information

6

Dense Map Representations

I Implicit Surface Models:
I Occupancy-based: assign occupied (+1)

or free (−1) labels over the space of the
environment

I Distance-based: measure the signed
distance (negative inside) to the
environment surfaces

I Explicit Surface Models:
I Polygonal mesh: a collection of points

and connectivity information among
them, forming polygons

7

Popular Sparse SLAM Algorithms
I Rao-Blackwellized Particle Filter uses particles for x0:t and Gaussian

distributions for the landmark positions m

I Kalman Filter uses Gaussian distributions both for the robot poses x0:t

and the landmark positions m

I Factor Graphs SLAM
I Estimates the whole robot trajectory x0:t using the MAP formulation

I The log observation and motion models are modelled as nonlinear
functions subject to additive Gaussian noise

I The motion and observation log-likelihoods are proportional to the
Mahalonobis distance

I This leads to a sparse (due to the Markov assumptions), nonlinear (due
to the motion and observation models) least-squares (due to the
Mahalonobis distance) optimization problem

I The problem can be solved using the Gauss-Newton descent algorithm (an
approximation to Newton’s method that avoids computing the Hessian)

8

Popular Dense SLAM Algorithms

I Fast SLAM (Montemerlo et al., AAAI’02)
I exploits that the occupancy grid cells are independent conditioned on the

robot trajectory:

p(x0:t ,m | z0:t ,u0:t−1) = p(x0:t | z0:t ,u0:t−1)
∏
i

p(mi | z0:t , x0:t)

I uses a particle filter to maintain the robot trajectory pdf and log-odds
mapping to maintain a probabilistic map for every particle

I Kinect Fusion (Newcombe et al., ISMAR’11)
I matches consecutive RGBD point clouds using the iterative closest point

(ICP) algorithm

I updates a grid discretization of the truncated signed distance function
(TSDF) representing the scene surface via weighted averaging

9

Occupancy Grid Map

I One of the simplest and most widely used representations

I The environment is divided into a regular
grid with n cells

I Occupancy grid: a vector m ∈ Rn, whose
i-th entry indicates whether the i-th cell is
free (mi = −1) or occupied (mi = 1)

I The cells are called pixels (pictures (pics)
elements) in 2D and voxels (volumes
elements) in 3D

10

Probabilistic Occupancy Grid Mapping

I The occupancy grid m is unknown and needs
to be estimated given the robot trajectory x0:t

and a sequence of observations z0:t

I Since the map is unknown and the
measurements are uncertain, maintain a pmf
p(m | z0:t , x0:t) over time

I Independence Assumption: occupancy grid mapping algorithms
usually assume that the cell values are independent conditioned on the
robot trajectory:

p(m | z0:t , x0:t) =
n∏

i=1

p(mi | z0:t , x0:t)

I It is sufficient to track γi ,t := p(mi = 1 | z0:t , x0:t) for each map cell

11

Probabilistic Occupancy Grid Mapping

I Model the map cells mi as independent Bernoulli random variables

mi =

{
+1 (Occupied) with prob. γi ,t := p(mi = 1 | z0:t , x0:t)

-1 (Free) with prob. 1− γi ,t

I How do we update γi ,t over time?

I Bayes Rule:

γi ,t = p(mi = 1 | z0:t , x0:t)

=
1

ηt
ph(zt | mi = 1, xt)p(mi = 1 | z0:t−1, x0:t−1)

=
1

ηt
ph(zt | mi = 1, xt)γi ,t−1

(1− γi ,t) = p(mi = −1 | z0:t , x0:t) =
1

ηt
ph(zt | mi = −1, xt)(1− γi ,t−1)

12

Probabilistic Occupancy Grid Mapping

I Odds ratio of the Bernoulli random variable mi updated via Bayes rule:

o(mi | z0:t , x0:t) : =
p(mi = 1 | z0:t , x0:t)

p(mi = −1 | z0:t , x0:t)
=

γi ,t
1− γi ,t

=
ph(zt | mi = 1, xt)

ph(zt | mi = −1, xt)︸ ︷︷ ︸
gh(zt |mi ,xt)

γi ,t−1

1− γi ,t−1︸ ︷︷ ︸
o(mi |z0:t−1,x0:t−1)

I Observation model odds ratio: gh(zt | mi , xt)

I Using Bayes rule again, we can simplify the observation odds ratio:

gh(zt | mi , xt) =
ph(zt | mi = 1, xt)

ph(zt | mi = −1, xt)
=

p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸
inverse observation model

odds ratio

p(mi = −1)

p(mi = 1)︸ ︷︷ ︸
map prior
odds ratio

13

Probabilistic Occupancy Grid Mapping

I Observation model odds ratio:

gh(zt | mi , xt) =
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸
inverse observation model

odds ratio

p(mi = −1)

p(mi = 1)︸ ︷︷ ︸
map prior
odds ratio

I Inverse observation model: ph(m|z, x)

I Assume zt indicates whether mi is occupied or not. Then, the inverse
observation model odds ratio specifies how much we trust the
observations, i.e., it is the ratio of true positives versus false positives:

p(mi = 1 | mi is observed occupied at time t)

p(mi = −1 | mi is observed occupied at time t)
=

80%

20%
= 4

I The second term o(mi) = p(mi=1)
p(mi=−1) is just a prior occupancy odds ratio

and may be chosen as 1 (occupied and free space are equally likely) or
< 1 (optimistic about free space)

14

Probabilistic Occupancy Grid Mapping

I Odds ratio occupancy grid mapping:

o(mi | z0:t , x0:t) = gh(zt | mi , xt)o(mi | z0:t−1, x0:t−1)

I Observation model odds ratio: gh(zt | mi , xt) = p(mi=1|zt ,xt)
p(mi=−1|zt ,xt)

1
o(mi)

I Take a log to convert the products to sums

I Log-odds of the Bernoulli random variable mi :

λi ,t := λ(mi | z0:t , x0:t) := log o(mi | z0:t , x0:t)

I Log-odds occupancy grid mapping:

λi ,t = log
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸

∆λi,t

−λi ,0 + λi ,t−1

15

Probabilistic Occupancy Grid Mapping

I Estimating the pmf of mi conditioned on z0:t and x0:t is equivalent to
accumulating the log-odds ratio ∆λi ,t of the inverse measurement
model:

λi ,t = λi ,t−1 + (∆λi ,t − λi ,0)

I If the map prior is uniform, i.e., occupied and free space are equally
likely: λi ,0 = log 1 = 0

I Assuming that zt indicates whether mi is occupied or not, the log-odds
ratio ∆λi ,t of the inverse measurement model specifies the measurement
“trust”, e.g., for an 80% correct sensor:

∆λi ,t = log
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)

=

{
+ log 4 if zt indicates mi is occupied

− log 4 if zt indicates mi is free

16

Lidar Occupancy Grid Mapping
I Maintain a grid of the map log-odds λi ,t

I Given a new laser scan zt+1, transform it to the
world frame using the robot pose xt+1

I Determine the cells that the lidar beams pass
through (e.g., using Bresenham’s line
rasterization algorithm)

I For each observed cell i , decrease the log-odds if it was observed free or
increase the log-odds if the cell was observed occupied:

λi ,t+1 = λi ,t ± log 4

I Constrain λMIN ≤ λi ,t ≤ λMAX to avoid overconfident estimation
I May introduce a decay on λi ,t to handle changing maps
I The map pmf γi ,t can be recovered from the log-odds λi ,t via the

logistic sigmoid function:

γi ,t = p(mi = 1 | z0:t , x0:t) = σ(λi ,t) =
exp (λi ,t)

1 + exp (λi ,t) 17

Localization

I Given a map m, a sequence of control inputs u0:T−1, and a sequence of
measurements z0:T , infer the robot state trajectory x0:T

18

Markov Localization in Occupancy Grid Maps

I Use the particle filter to maintain the pdf p(xt |z0:t ,u0:t−1,m) of the
robot state over time

I Each particle µ
(k)
t|t is a hypothesis on the state xt with confidence α

(k)
t|t

I The particles specify the pdf of the robot state at time t:

pt|t(xt) := p(xt | z0:t ,u0:t−1,m) ≈
N∑

k=1

α
(k)
t|t δ

(
xt ;µ

(k)
t|t

)
I Prediction step: use the motion model pf to obtain the predicted pdf

pt+1|t(xt+1)

I Update step: use the observation model ph to obtain the updated pdf
pt+1|t+1(xt+1)

19

Lidar-based Localization with a Differential-drive Robot
I Each particle µ

(k)
t|t ∈ R3 represents a possible robot 2-D position (x , y)

and orientation θ

I Prediction step: for every particle µ
(k)
t|t , k = 1, . . . ,N, compute:

µ
(k)
t+1|t = f

(
µ

(k)
t|t ,ut + εt

)
α

(k)
t+1|t = α

(k)
t|t

I f (x,u) is the differential-drive motion model

I ut = (vt , ωt) is the linear and angular velocity input

I εt ∼ N
(

0,

[
σ2
v 0

0 σ2
ω

])
is a 2-D Gaussian motion noise

I If ut is unknown it can be obtained from wheel encoders (linear velocity)
and an IMU sensor:
I The distance traveled during time τt for a given encoder count zt , wheel

diameter d , and 360 ticks per revolution is: τtvt ≈ πdzt
360

I ωt is the yaw rate directly provided by the gyroscope angular velocity
measurement

20

Lidar-based Localization with a Differential-drive Robot

I Update step: the particle poses remain unchanged but the weights are
scaled by the observation model:

µ
(k)
t+1|t+1 = µ

(k)
t+1|t α

(k)
t+1|t+1 ∝ ph(zt+1 | µ(k)

t+1|t ,m)α
(k)
t+1|t

I Need to define a lidar observation model: ph(z | x,m)

I Laser Correlation Model: a model for a laser scan z obtained from
sensor pose x in occupancy grid m based on correlation between z and m

I Transform the scan zt+1 to the world frame using µ
(k)
t+1|t and find all

cells y
(k)
t+1 in the grid corresponding to the scan

I Update the particle weights using the laser correlation model:

ph(zt+1 | µ(k)
t+1|t ,m) ∝ exp

(
corr

(
y

(k)
t+1,m

))
21

Laser Correlation Model
I The laser correlation model sets the likelihood of a laser scan z

proportional to the correlation between the scan’s world-frame projection
y = r(z, x) via the robot pose x and the occupancy grid m

ph(z|x,m) ∝ exp (corr (r(z, x),m))

I Computing scan-grid correlation:
I Transform the scan z from the laser frame to the world frame using the

robot pose x (transformation from the body frame to the world frame)

I Find all grid coordinates y that correspond to the scan, i.e., y is a vector
of grid cell indices i which are visited by the laser scan rays (e.g., using
Bresenham’s line rasterization algorithm)

I Let y = r(z, x) be the transformation from a lidar scan z to grid cell
indices y. Definite a similarity function corr(r(z, x),m) between the
transformed and discretized scan y and the occupancy grid m:

corr(y,m) =
∑
i

1{yi = mi}

22

Laser Correlation Model
I Transform the scan zt+1 to the world frame using µ

(k)
t+1|t and find all

cells y
(k)
t+1 in m corresponding to the scan

I The correlation corr
(

y
(k)
t+1,m

)
is large if y

(k)
t+1 and m agree

23

Particle Filter Localization (2-D)

24

Particle Filter Localization (2-D)

25

Particle Filter Localization (2-D)

26

Particle Filter Localization (2-D)

27

Particle Filter Localization (2-D)

28

Particle Filter Localization (2-D)

29

Particle Filter Localization (2-D)

30

Particle Filter Localization (2-D)

31

Particle Filter Localization (2-D)

32

Particle Filter Localization (2-D)

33

Particle Filter Localization (2-D)

34

Particle Filter Localization (2-D)

35

Particle Filter Localization (2-D)

36

Particle Filter Localization (2-D)

37

Particle Filter Localization (2-D)

38

Particle Filter Localization (2-D)

39

Particle Filter Localization (2-D)

40

Project 2: Autonomous Car

I Stereo RGB
camera

I 2D Lidar

I 2x 3D Lidar

I Encoders, IMU

I Odometry

I Transforms

41

Project 2: Localization and Texture Map

42

Project 2: Lidar-based Particle-filter SLAM
I Initial particle set µ

(k)
0|0 = (0, 0, 0)> with weights α

(k)
0|0 = 1

N

I Use the first laser scan to initialize the map:
1. convert the scan to cartesian coordinates
2. transform the scan from the lidar frame to the body frame and then to

the world frame
3. convert the scan to cells (via bresenham2D or cv2.drawContours) and

update the map log-odds

I Prediction step: Use the differential-drive model with velocity from
the encoders and angular velocity from the gyroscope to predict the
motion of each particle and add noise

I Update step: combines robot state and map update
I Use the laser scan from each particle to compute map correlation (via

getMapCorrelation) and update the particle weights
I Choose the particle with largest weight α

(k)
t|t , project the laser scan zt to

the world frame and update the map log-odds

I Textured map: use the RGBD images from the largest-weight particle’s
pose to assign colors to the occupancy grid cells 43

