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Visual-Inertial Localization and Mapping
I Input:

I IMU: linear acceleration at ∈ R3 and rotational velocity ωt ∈ R3

I Camera: features zt,i ∈ R4 (left and right image pixels) for i = 1, . . . ,Nt

I Assumption: The transformation OTI ∈ SE (3) from the IMU to the
camera optical frame (extrinsic parameters) and the stereo camera
calibration matrix Ks (intrinsic parameters) are known.

Ks :=


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


f = focal length [m]

su, sv = pixel scaling [pixels/m]

cu, cv = principal point [pixels]

b = stereo baseline [m] 2



Visual-Inertial Localization and Mapping
I Output:

I World-frame IMU pose WTI ∈ SE (3) over time (green)
I World-frame coordinates mj ∈ R3 of the j = 1, . . . ,M point landmarks

(black) that generated the visual features zt,i ∈ R4
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Visual Mapping

I Consider the mapping-only problem first

I Assumption: the IMU pose Tt := WTI ,t ∈ SE (3) is known

I Objective: given the observations zt :=
[
z>t,1 · · · z>t,Nt

]> ∈ R4Nt for

t = 0, . . . ,T , estimate the coordinates m :=
[
m>1 · · · m>M

]> ∈ R3M

of the landmarks that generated them

I Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

I Assumption: the landmarks m are static, i.e., it is not necessary to
consider a motion model or a prediction step for m
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Visual Mapping via the EKF
I Observation Model: with measurement noise vt,i ∼ N (0,V )

zt,i = h(Tt ,mj) + vt,i := Ksπ
(
OTIT

−1
t mj

)
+ vt,i

I Homogeneous coordinates: mj :=

[
mj

1

]
I Projection function and its derivative:

π(q) :=
1

q3
q ∈ R4 dπ

dq
(q) =

1

q3


1 0 −q1

q3
0

0 1 −q2
q3

0

0 0 0 0
0 0 −q4

q3
1

 ∈ R4×4

I All observations, stacked as a 4Nt vector, at time t with notation abuse:

zt = Ksπ
(
OTIT

−1
t m

)
+vt vt ∼ N (0, I ⊗ V ) I⊗V :=

V . . .

V


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Visual Mapping via the EKF
I Prior: m | z0:t ∼ N (µt ,Σt) with µt ∈ R3M and Σt ∈ R3M×3M

I EKF Update: given a new observation zt+1 ∈ R4Nt+1 :

Kt+1 = ΣtH
>
t+1

(
Ht+1ΣtH

>
t+1 + I ⊗ V

)−1
µt+1 = µt + Kt+1

(
zt+1 − Ksπ

(
OTIT

−1
t+1µt

)
︸ ︷︷ ︸

z̃t+1

)

Σt+1 = (I − Kt+1Ht+1)Σt

I z̃t+1 ∈ R4Nt+1 is the predicted observation based on the landmark
position estimates µt at time t

I We need the observation model Jacobian Ht+1 ∈ R4Nt×3M evaluated at
µt with block elements Ht+1,i ,j ∈ R4×3:

Ht+1,i ,j :=


∂
∂mj

h(Tt+1,mj)
∣∣∣
mj=µt,j

, if ∆t(j) = i ,

0, otherwise.
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Stereo Camera Jacobian (by Chain Rule)

I Observation model: h(Tt+1,mj) = Ksπ
(
OTIT

−1
t+1mj

)
I How do we obtain ∂

∂mj
h(Tt+1,mj)

∣∣∣
mj=µt,j

?

I Let qt+1,j = OTIT
−1
t+1mj and P =

[
I 0

]
∈ R3×4

I Apply the chain rule:

∂

∂mj
h(Tt+1,mj) = Ks

∂π

∂q
(qt+1,j)

∂qt+1,j

∂mj

= Ks
∂π

∂q

(
OTIT

−1
t+1mj

)
OTIT

−1
t+1

∂mj

∂mj

= Ks
∂π

∂q

(
OTIT

−1
t+1mj

)
OTIT

−1
t+1P

>
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Stereo Camera Jacobian (by Perturbation)
I The Jacobian of a function f (x) can also be obtained using first-order

Taylor series with perturbation δx:

f (x + δx) ≈ f (x) +

[
∂f

∂x
(x)

]
δx

I The Jacobian of f (x) is the part that is linear in δx in the first-order
Taylor series expansion

I Consider a perturbation δµt,j ∈ R3 for the position of landmark j :

mj = µt,j + δµt,j

I The first-order Taylor series approximation of the observation model:

Ksπ
(
OTIT

−1
t+1

(
µt,j + δµt,j

))
= Ksπ

(
OTIT

−1
t+1

(
µ
t,j

+ P>δµt,j

))
≈ Ksπ

(
OTIT

−1
t+1µt,j

)
︸ ︷︷ ︸

z̃t+1,i

+Ks
dπ

dq

(
OTIT

−1
t+1µt,j

)
OTIT

−1
t+1P

>︸ ︷︷ ︸
Ht+1,i,j

δµt,j
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Visual Mapping via the EKF (Summary)
I Prior: µt ∈ R3M and Σt ∈ R3M×3M

I Known: stereo calibration matrix Ks , extrinsics OTI ∈ SE (3), IMU pose
Tt+1 ∈ SE (3), new observation zt+1 ∈ R4Nt+1

I Predicted observations based on µt and known correspondences ∆t+1:

z̃t+1,i := Ksπ
(
OTIT

−1
t+1µt,j

)
∈ R4 for i = 1, . . . ,Nt+1

I Jacobian of z̃t+1,i with respect to mj evaluated at µt,j :

Ht+1,i ,j =

{
Ks

dπ
dq

(
OTIT

−1
t+1µt,j

)
OTIT

−1
t+1P

> if ∆t(j) = i ,

0, otherwise

I EKF update:

Kt+1 = ΣtH
>
t+1

(
Ht+1ΣtH

>
t+1 + I ⊗ V

)−1
µt+1 = µt + Kt+1 (zt+1 − z̃t+1)

Σt+1 = (I − Kt+1Ht+1)Σt

I ⊗ V :=

V . . .

V


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Visual-Inertial Odometry

I Now, consider the localization-only problem

I We will simplify the prediction step by using kinematic rather than
dynamic equations

I Assumption: linear velocity vt ∈ R3 instead of linear acceleration
at ∈ R3 measurements are available

I Assumption: known world-frame landmark coordinates m ∈ R3M

I Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

I Objective: given IMU measurements u0:T with ut := [v>t , ω
>
t ]> ∈ R6

and feature observations z0:T , estimate the pose Tt := WTI ,t ∈ SE (3)
of the IMU over time
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How to deal with an SE (3) state in the EKF?

I Goal: estimate Tt ∈ SE (3) using an extended Kalman filter

I Rotations: SO(3) :=

{
R ∈ R3×3

∣∣∣∣ R>R = I , det(R) = 1

}

I Poses: SE (3) :=

{
T =

[
R p
0> 1

]
∈ R4×4

∣∣∣∣ R ∈ SO(3),p ∈ R3

}
I Since Tt is not a vector, we face multiple questions:

I How do we specify a “Gaussian” distribution over Tt?

I What is the motion model for Tt?

I How do we find derivatives with respect to Tt?

I The axis-angle parametrizations of SO(3) plays a key role
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Exponential Map from so(3) to SO(3)
I Axis-Angle: θ ∈ R3 specifying a rotation about an axis η := θ

‖θ‖
through an angle θ := ‖θ‖:

R = exp(θ̂) = I + θ̂ +
1

2!
θ̂
2

+
1

3!
θ̂
3

+ . . .

I θ̂ =

 0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

 is a skew-symmetric matrix, i.e., θ̂
>

= −θ̂

I Every skew-symmetric matrix can be represented as θ̂ for some θ ∈ R3

I Space of skew-symmetric matrices: so(3) := {θ̂ ∈ R3×3 | θ ∈ R3}

I The exponential map provides a mapping from the space of
skew-symmetric matrices so(3) to the space of rotation matrices SO(3):

R = exp(θ̂) =
∞∑
n=0

1

n!
(θ̂)n
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Rotation Kinematics

I The trajectory R(t) of a continuous rotation motion should satisfy:

R>(t)R(t) = I ⇒ Ṙ>(t)R(t) + R>(t)Ṙ(t) = 0.

I The matrix R>(t)Ṙ(t) is skew-symmetric! There must exist some
vector-valued function ω(t) ∈ R3 such that:

R>(t)Ṙ(t) = ω̂(t) ⇒ Ṙ(t) = R(t)ω̂(t)

I A skew-symmetric matrix gives a first order approximation to a rotation
matrix:

R(t + dt) ≈ R(t) + R(t)ω̂(t)dt
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Rotation Kinematics
I Let R ∈ SO(3) be the orientation of a rigid body rotating with angular

velocity ω ∈ R3 with respect to the world frame.

I Rotation kinematic equations of motion:

Ṙ = Rω̂B = ω̂WR

where ωB and ωW := RωB are the body-frame and world-frame
coordinates of ω, respectively.

I Assuming ω is constant over a short period τ :

R(t + τ) = R(t) exp(τ ω̂B) = exp(τ ω̂W )R(t)

I Discrete Rotation Kinematics: let Rk := R(tk), τk := tk+1 − tk , and
ωk := ωB(tk) leading to:

Rk+1 = Rk exp(τkω̂k)
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Perturbation in R3, so(3), and SO(3)

I Perturbing a vector x ∈ R3 can be done by addition:
I perturbation in R3: x + δx

I Perturbing a rotation matrix R = exp(θ̂) ∈ SO(3) should be done using
the exponential map:
I perturbation in so(3): exp ((θ + δθ)∧)

I perturbation in SO(3): exp( ˆδψ)R︸ ︷︷ ︸
left perturbation

or R exp( ˆδψ)︸ ︷︷ ︸
right perturbation

I Note that the perturbations δθ and δψ are regular vectors in R3

I Infinitesimal perturbations allow us to compute derivatives and define
probability distributions in SO(3)
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How do we specify a Gaussian distribution in SO(3)?

I In R3 we can define a Gaussian distribution over a vector x as follows:

x = µ+ ε ε ∼ N (0,Σ)

where µ ∈ R3 is the deterministic mean and ε ∈ R3 is a zero-mean
Gaussian random vector

I In SO(3) we can define a Gaussian distribution over a rotation matrix R
as follows:

R = exp(ε̂)µ ε ∼ N (0,Σ)

where µ ∈ SO(3) is the deterministic mean and ε ∈ R3 is a zero-mean
Gaussian random vector
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Example: Rotation of a Random Rotation Variable

I Let Q ∈ SO(3) and θ ∈ R3. Then:

Q exp(θ̂)Q> = exp
(
Qθ̂Q>

)
= exp

(
(Qθ)∧

)
I Let R ∈ SO(3) be a random rotation with mean µ ∈ SO(3) and

covariance Σ ∈ R3×3.

I The random variable Y = QR ∈ SO(3) satisfies:

Y = QR = Q exp(ε̂)µ = exp
(
(Qε)∧

)
Qµ

E[Y ] = Qµ

Var[Y ] = Var[Qε] = QΣQ>
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What is the motion model for a rotation matrix R?

I Continuous-time rotation kinematics:

Ṙ(t) = R(t)ω̂(t)

where the rotation R(t) is the state and the angular velocity ω(t) is the
input

I Discrete-time rotation kinematics:

Rk+1 = Rk exp(τkω̂k)

where Rk = R(tk), τk = tk+1 − tk , ωk = ω(tk), and ω(t) is constant
for t ∈ [tk , tk+1)
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How do we find derivatives with respect to a rotation R?

I In R3, the derivative of a function f (x) can be obtained using first-order
Taylor series with perturbation δx ∈ R3:

f (x + δx) ≈ f (x) +

[
∂f

∂x
(x)

]
δx

I In R3, the derivative is
∂

∂δx
f (x + δx)

∣∣∣∣
δx=0

I In SO(3), the derivative of a function f (R) can be obtained using
first-order Taylor series with perturbation δψ ∈ R3:

f (R exp( ˆδψ)) ≈ f (R) +

[
∂f

∂R
(R)

]
δψ

I In SO(3), the derivative is
∂

∂δψ
f (R exp( ˆδψ)))

∣∣∣∣
δψ=0
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Exponential Map from se(3) to SE (3)
I In SO(3), an axis-angle vector θ ∈ R3 is mapped to a rotation matrix

R = exp(θ̂) by the exponential map

I In SE (3), a position-rotation vector ξ =

[
ρ
θ

]
∈ R6 is mapped to a pose

matrix T = exp(ξ̂) by the exponential map

I Space of twist matrices:

se(3) :=

{
ξ̂ :=

[
θ̂ ρ
0 0

]
∈ R4×4

∣∣∣∣ ξ =

[
ρ
θ

]
∈ R6

}
I The exponential map provides a mapping from the space of twist

matrices se(3) to the space of pose matrices SE (3):

T = exp(ξ̂) =
∞∑
n=0

1

n!
(ξ̂)n
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How do we specify a Gaussian distribution in SE (3)?

I In R3 we can define a Gaussian distribution over a vector x as follows:

x = µ+ ε ε ∼ N (0,Σ)

where µ ∈ R3 is the deterministic mean and ε ∈ R3 is a zero-mean
Gaussian random vector

I In SE (3) we can define a Gaussian distribution over a pose matrix T as
follows:

T = exp(ε̂)µ ε ∼ N (0,Σ)

where µ ∈ SE (3) is the deterministic mean and ε ∈ R6 is a zero-mean
Gaussian random vector
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What is the motion model for a pose matrix T?

I Continuous-time pose kinematics:

Ṫ (t) = T (t)ζ̂(t)

where the pose T (t) is the state and the generalized velocity

ζ(t) :=

[
v(t)
ω(t)

]
∈ R6 is the input

I Discrete-time pose kinematics:

Tk+1 = Tk exp(τk ζ̂k)

where Tk = T (tk), τk = tk+1 − tk , ζk = ζ(tk), and ζ(t) is constant
for t ∈ [tk , tk+1)
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How do we find derivatives with respect to a pose T?

I In R6, the derivative of a function f (x) can be obtained using first-order
Taylor series with perturbation δx ∈ R6:

f (x + δx) ≈ f (x) +

[
∂f

∂x
(x)

]
δx

I In R6, the derivative is
∂

∂δx
f (x + δx)

∣∣∣∣
δx=0

I In SE (3), the derivative of a function f (T ) can be obtained using
first-order Taylor series with perturbation δψ ∈ R6:

f (T exp( ˆδψ)) ≈ f (T ) +

[
∂f

∂T
(T )

]
δψ

I In SE (3), the derivative is
∂

∂δψ
f (T exp( ˆδψ)))

∣∣∣∣
δψ=0
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Visual-Inertial Odometry

I Now, consider the localization-only problem

I We will simplify the prediction step by using kinematic rather than
dynamic equations

I Assumption: linear velocity vt ∈ R3 instead of linear acceleration
at ∈ R3 measurements are available

I Assumption: known world-frame landmark coordinates m ∈ R3M

I Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

I Objective: given IMU measurements u0:T with ut := [v>t , ω
>
t ]> ∈ R6

and feature observations z0:T , estimate the pose Tt := WTI ,t ∈ SE (3)
of the IMU over time
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Pose Kinematics with Perturbation
I Motion model for the continuous-time IMU pose T (t) with noise w(t):

Ṫ = T (û + ŵ) u(t) :=

[
v(t)
ω(t)

]
∈ R6

I To consider a Gaussian distribution over T , express it as a nominal pose
µ ∈ SE (3) with small perturbation δ̂µ ∈ se(3):

T = µ exp(δ̂µ) ≈ µ
(
I + δ̂µ

)
I Substitute the nominal + perturbed pose in the kinematic equations:

µ̇
(
I + δ̂µ

)
+ µ

(
ˆ̇δµ
)

= µ
(
I + δ̂µ

)
(û + ŵ)

µ̇+ µ̇δ̂µ+ µ
(

ˆ̇δµ
)

= µû + µŵ + µδ̂µû +��
��*

0
µδ̂µŵ

µ̇ = µû µûδ̂µ+ µ
(

ˆ̇δµ
)

= µŵ + µδ̂µû

µ̇ = µû ˆ̇δµ = δ̂µû− ûδ̂µ+ ŵ =
(
−f
uδµ

)∧
+ ŵ
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Pose Kinematics with Perturbation

I Using T = µ exp(δ̂µ) ≈ µ
(
I + δ̂µ

)
, the pose kinematics

Ṫ = T (û + ŵ) can be split into nominal and perturbation kinematics:

nominal : µ̇ = µû

perturbation : ˙δµ = −f
uδµ+ w

f
u :=

[
ω̂ v̂
0 ω̂

]
∈ R6×6

I In discrete-time with discretization τt , the above becomes:

nominal : µt+1 = µt exp (τt ût)

perturbation : δµt+1 = exp
(
−τt

f
ut
)
δµt + wt

I This is useful to separate the effect of the noise wt from the motion of
the deterministic part of Tt . See Barfoot Ch. 7.2 for details.

26



EKF Prediction Step
I Prior: Tt |z0:t ,u0:t−1 ∼ N (µt|t ,Σt|t) with µt|t ∈SE (3) and Σt|t ∈ R6×6

I This means that Tt = µt|t exp(δ̂µt|t) with δµt|t ∼ N (0,Σt|t)

I Σt|t is 6× 6 because only the 6 degrees of freedom of Tt are changing

I Motion Model: nominal kinematics of µt|t and perturbation kinematics
of δµt|t with time discretization τt :

µt+1|t = µt|t exp (τt ût)

δµt+1|t = exp
(
−τt

f
ut
)
δµt|t + wt

I EKF Prediction Step with wt ∼ N (0,W ):

µt+1|t = µt|t exp (τt ût)

Σt+1|t = E[δµt+1|tδµ
>
t+1|t ] = exp

(
−τfut

)
Σt|t exp

(
−τfut

)>
+ W

where

ut :=

[
vt
ωt

]
∈ R6 ût :=

[
ω̂t vt
0> 0

]
∈ R4×4 f

ut :=

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6
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EKF Update Step

I Prior: Tt+1|z0:t , u0:t ∼ N (µt+1|t ,Σt+1|t) with µt+1|t ∈ SE (3) and

Σt+1|t ∈ R6×6

I Observation Model: with measurement noise vt ∼ N (0,V )

zt+1,i = h(Tt+1,mj) + vt+1,i := Ksπ
(
OTIT

−1
t+1mj

)
+ vt+1,i

I The observation model is the same as in the visual mapping problem but
this time the variable of interest is the IMU pose Tt+1 ∈ SE (3) instead
of the landmark positions m ∈ R3M

I We need the observation model Jacobian Ht+1 ∈ R4Nt+1×6 with respect
to the IMU pose Tt+1, evaluated at µt+1|t
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EKF Update Step
I Let the elements of Ht+1 ∈ R4Nt+1×6 corresponding to different

observations i be Ht+1,i ∈ R4×6

I The first-order Taylor series approximation of observation i at time t + 1
using an IMU pose perturbation δµ is:

zt+1,i = Ksπ

(
OTI

(
µt+1|t exp

(
δ̂µ
))−1

mj

)
+ vt+1,i

≈ Ksπ
(
OTI

(
I − δ̂µ

)
µ−1t+1|tmj

)
+ vt+1,i

= Ksπ

(
OTIµ

−1
t+1|tmj − OTI

(
µ−1t+1|tmj

)�
δµ

)
+ vt+1,i

≈ Ksπ
(
OTIµ

−1
t+1|tmj

)
︸ ︷︷ ︸

z̃t+1,i

−Ks
dπ

dq

(
OTIµ

−1
t+1|tmj

)
OTI

(
µ−1t+1|tmj

)�
︸ ︷︷ ︸

Ht+1,i

δµ+ vt+1,i

where for homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3):

ξ̂s = s�ξ

[
s
1

]�
:=

[
I −ŝ
0 0

]
∈ R4×6
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EKF Update Step
I Prior: µt+1|t ∈ SE (3) and Σt+1|t ∈ R6×6

I Known: stereo calibration matrix Ks , extrinsics OTI ∈ SE (3), landmark
positions m ∈ R3M , new observations zt+1 ∈ R4Nt+1

I Predicted observation based on µt+1|t and known correspondences ∆t :

z̃t+1,i := Ksπ
(
OTIµ

−1
t+1|tmj

)
for i = 1, . . . ,Nt+1

I Jacobian of z̃t+1,i with respect to Tt+1 evaluated at µt+1|t :

Ht+1,i = −Ks
dπ

dq

(
OTIµ

−1
t+1|tmj

)
OTI

(
µ−1t+1|tmj

)�
∈ R4×6

I Perform the EKF update:

Kt+1 = Σt+1|tH
>
t+1

(
Ht+1Σt+1|tH

>
t+1 + I ⊗ V

)−1
µt+1|t+1 = µt+1|t exp

(
(Kt+1(zt+1 − z̃t+1))∧

)
Σt+1|t+1 = (I − Kt+1Ht+1)Σt+1|t

Ht+1 =

 Ht+1,1
...

Ht+1,Nt+1


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