ECE276A: Sensing \& Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Visual-Inertial Localization and Mapping

- Input:
- IMU: linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ and rotational velocity $\boldsymbol{\omega}_{t} \in \mathbb{R}^{3}$
- Camera: features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ (left and right image pixels) for $i=1, \ldots, N_{t}$

- Assumption: The transformation $o T_{I} \in S E(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix K_{s} (intrinsic parameters) are known.

$$
K_{s}:=\left[\begin{array}{cccc}
f s_{u} & 0 & c_{u} & 0 \\
0 & f s_{v} & c_{V} & 0 \\
f s_{u} & 0 & c_{u} & -f s_{u} b \\
0 & f s_{v} & c_{v} & 0
\end{array}\right] \quad \begin{aligned}
f & =\text { focal length }[\mathrm{m}] \\
s_{u}, s_{v} & =\text { pixel scaling }[\text { pixels } / \mathrm{m}] \\
c_{u}, c_{v} & =\text { principal point }[\text { pixels] } \\
b & =\text { stereo baseline }[\mathrm{m}]
\end{aligned}
$$

Visual-Inertial Localization and Mapping

- Output:
- World-frame IMU pose ${ }_{w} T_{\text {I }} \in S E(3)$ over time (green)
- World-frame coordinates $\mathbf{m}_{j} \in \mathbb{R}^{3}$ of the $j=1, \ldots, M$ point landmarks (black) that generated the visual features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$

Visual Mapping

- Consider the mapping-only problem first
- Assumption: the IMU pose $T_{t}:=w T_{l, t} \in S E(3)$ is known
- Objective: given the observations $\mathbf{z}_{t}:=\left[\begin{array}{lll}\mathbf{z}_{t, 1}^{\top} & \cdots & \mathbf{z}_{t, N_{t}}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{4 N_{t}}$ for $t=0, \ldots, T$, estimate the coordinates $\mathbf{m}:=\left[\begin{array}{lll}\mathbf{m}_{1}^{\top} & \cdots & \mathbf{m}_{M}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{3 M}$ of the landmarks that generated them
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Assumption: the landmarks \mathbf{m} are static, ie., it is not necessary to consider a motion model or a prediction step for \mathbf{m}

Visual Mapping via the EKF

- Observation Model: with measurement noise $\mathbf{v}_{t, i} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t, i}=h\left(T_{t}, \mathbf{m}_{j}\right)+\mathbf{v}_{t, i}:=K_{s} \pi\left(o T_{I} T_{t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t, i}
$$

- Homogeneous coordinates: $\underline{\mathbf{m}}_{j}:=\left[\begin{array}{c}\mathbf{m}_{j} \\ 1\end{array}\right]$
- Projection function and its derivative:

$$
\pi(\mathbf{q}):=\frac{1}{q_{3}} \mathbf{q} \in \mathbb{R}^{4} \quad \frac{d \pi}{d \mathbf{q}}(\mathbf{q})=\frac{1}{q_{3}}\left[\begin{array}{cccc}
1 & 0 & -\frac{q_{1}}{q_{3}} & 0 \\
0 & 1 & -\frac{q_{2}}{q_{3}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{q_{4}}{q_{3}} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

- All observations, stacked as a $4 N_{t}$ vector, at time t with notation abuse:

$$
\mathbf{z}_{t}=K_{s} \pi\left(o T_{l} T_{t}^{-1} \underline{\mathbf{m}}\right)+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, I \otimes V) \quad I \otimes V:=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

Visual Mapping via the EKF

- Prior: $\mathbf{m} \mid \mathbf{z}_{0: t} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$ with $\mu_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- EKF Update: given a new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$:

$$
\begin{aligned}
& K_{t+1}=\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
& \mu_{t+1}=\mu_{t}+K_{t+1}(\mathbf{z}_{t+1}-\underbrace{K_{s} \pi\left(o T_{I} T_{t+1}^{-1} \underline{\mu}_{t}\right)}_{\tilde{\mathbf{z}}_{t+1}}) \\
& \Sigma_{t+1}=\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{aligned}
$$

- $\tilde{\mathbf{z}}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$ is the predicted observation based on the landmark position estimates μ_{t} at time t
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t} \times 3 M}$ evaluated at μ_{t} with block elements $H_{t+1, i, j} \in \mathbb{R}^{4 \times 3}$:

$$
H_{t+1, i, j}:= \begin{cases}\left.\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right)\right|_{\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}}, & \text { if } \Delta_{t}(j)=i \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

Stereo Camera Jacobian (by Chain Rule)

- Observation model: $h\left(T_{t+1}, \mathbf{m}_{j}\right)=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right)$
- How do we obtain $\left.\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right)\right|_{\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}}$?
- Let $\mathbf{q}_{t+1, j}=o T_{I} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}$ and $P=\left[\begin{array}{ll}I & 0\end{array}\right] \in \mathbb{R}^{3 \times 4}$
- Apply the chain rule:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right) & =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(\mathbf{q}_{t+1, j}\right) \frac{\partial \mathbf{q}_{t+1, j}}{\partial \mathbf{m}_{j}} \\
& =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l} T_{t+1}^{-1} \frac{\partial \underline{\mathbf{m}}_{j}}{\partial \mathbf{m}_{j}} \\
& =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l} T_{t+1}^{-1} P^{\top}
\end{aligned}
$$

Stereo Camera Jacobian (by Perturbation)

- The Jacobian of a function $f(\mathbf{x})$ can also be obtained using first-order Taylor series with perturbation $\delta \mathbf{x}$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- The Jacobian of $f(\mathbf{x})$ is the part that is linear in $\delta \mathbf{x}$ in the first-order Taylor series expansion
- Consider a perturbation $\delta \boldsymbol{\mu}_{t, j} \in \mathbb{R}^{3}$ for the position of landmark j :

$$
\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}
$$

- The first-order Taylor series approximation of the observation model:

$$
\left.\begin{array}{rl}
K_{s} \pi & \left(o T_{l} T_{t+1}^{-1}\left(\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}\right)\right.
\end{array}\right)=K_{s} \pi\left(o T_{l} T_{t+1}^{-1}\left(\underline{\boldsymbol{\mu}}_{t, j}+P^{\top} \delta \boldsymbol{\mu}_{t, j}\right)\right), \underbrace{K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right)}_{\tilde{z}_{t+1, i}}+\underbrace{K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} T_{t+1}^{-1} P^{\top}}_{H_{t+1, i, j}} \delta \boldsymbol{\mu}_{t, j})
$$

Visual Mapping via the EKF (Summary)

- Prior: $\mu_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- Known: stereo calibration matrix K_{s}, extrinsics $o T_{l} \in S E(3)$, IMU pose $T_{t+1} \in S E(3)$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observations based on μ_{t} and known correspondences Δ_{t+1} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\mu}_{t, j}\right) \in \mathbb{R}^{4} \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to \mathbf{m}_{j} evaluated at $\boldsymbol{\mu}_{t, j}$:

$$
H_{t+1, i, j}= \begin{cases}K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mu}_{t, j}\right) o T_{l} T_{t+1}^{-1} P^{\top} & \text { if } \Delta_{t}(j)=i, \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

- EKF update:

$$
\begin{aligned}
K_{t+1} & =\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
\mu_{t+1} & =\mu_{t}+K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right) \\
\Sigma_{t+1} & =\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{aligned}
$$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 M}$
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Objective: given IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top} \in \mathbb{R}^{6}$ and feature observations $\mathbf{z}_{0: T}$, estimate the pose $T_{t}:=w T_{l, t} \in S E(3)$ of the IMU over time

How to deal with an $S E(3)$ state in the EKF?

- Goal: estimate $T_{t} \in S E(3)$ using an extended Kalman filter
- Rotations: $S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=I, \operatorname{det}(R)=1\right\}$
- Poses: $S E(3):=\left\{\left.T=\left[\begin{array}{rr}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\}$
- Since T_{t} is not a vector, we face multiple questions:
- How do we specify a "Gaussian" distribution over T_{t} ?
- What is the motion model for T_{t} ?
- How do we find derivatives with respect to T_{t} ?
- The axis-angle parametrizations of $S O(3)$ plays a key role

Exponential Map from $\mathfrak{s o (3)}$ to $S O(3)$

- Axis-Angle: $\boldsymbol{\theta} \in \mathbb{R}^{3}$ specifying a rotation about an axis $\boldsymbol{\eta}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}$ through an angle $\theta:=\|\boldsymbol{\theta}\|$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=I+\hat{\boldsymbol{\theta}}+\frac{1}{2!} \hat{\boldsymbol{\theta}}^{2}+\frac{1}{3!} \hat{\boldsymbol{\theta}}^{3}+\ldots
$$

- $\hat{\boldsymbol{\theta}}=\left[\begin{array}{ccc}0 & -\theta_{3} & \theta_{2} \\ \theta_{3} & 0 & -\theta_{1} \\ -\theta_{2} & \theta_{1} & 0\end{array}\right]$ is a skew-symmetric matrix, i.e., $\hat{\boldsymbol{\theta}}^{\top}=-\hat{\boldsymbol{\theta}}$
- Every skew-symmetric matrix can be represented as $\hat{\boldsymbol{\theta}}$ for some $\boldsymbol{\theta} \in \mathbb{R}^{3}$
- Space of skew-symmetric matrices: $\mathfrak{s o}(3):=\left\{\hat{\boldsymbol{\theta}} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^{3}\right\}$
- The exponential map provides a mapping from the space of skew-symmetric matrices $\mathfrak{s o}(3)$ to the space of rotation matrices $S O(3)$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\theta}})^{n}
$$

Rotation Kinematics

- The trajectory $R(t)$ of a continuous rotation motion should satisfy:

$$
R^{\top}(t) R(t)=I \quad \Rightarrow \quad \dot{R}^{\top}(t) R(t)+R^{\top}(t) \dot{R}(t)=0
$$

- The matrix $R^{\top}(t) \dot{R}(t)$ is skew-symmetric! There must exist some vector-valued function $\boldsymbol{\omega}(t) \in \mathbb{R}^{3}$ such that:

$$
R^{\top}(t) \dot{R}(t)=\hat{\omega}(t) \Rightarrow \dot{R}(t)=R(t) \hat{\omega}(t)
$$

- A skew-symmetric matrix gives a first order approximation to a rotation matrix:

$$
R(t+d t) \approx R(t)+R(t) \hat{\omega}(t) d t
$$

Rotation Kinematics

- Let $R \in S O(3)$ be the orientation of a rigid body rotating with angular velocity $\omega \in \mathbb{R}^{3}$ with respect to the world frame.
- Rotation kinematic equations of motion:

$$
\dot{R}=R \hat{\omega}_{B}=\hat{\omega}_{W} R
$$

where $\boldsymbol{\omega}_{B}$ and $\boldsymbol{\omega}_{W}:=R \boldsymbol{\omega}_{B}$ are the body-frame and world-frame coordinates of ω, respectively.

- Assuming $\boldsymbol{\omega}$ is constant over a short period τ :

$$
R(t+\tau)=R(t) \exp \left(\tau \hat{\omega}_{B}\right)=\exp \left(\tau \hat{\omega}_{W}\right) R(t)
$$

- Discrete Rotation Kinematics: let $R_{k}:=R\left(t_{k}\right), \tau_{k}:=t_{k+1}-t_{k}$, and $\boldsymbol{\omega}_{k}:=\boldsymbol{\omega}_{B}\left(t_{k}\right)$ leading to:

$$
R_{k+1}=R_{k} \exp \left(\tau_{k} \hat{\boldsymbol{\omega}}_{k}\right)
$$

Perturbation in $\mathbb{R}^{3}, \mathfrak{s o}(3)$, and $S O(3)$

- Perturbing a vector $\mathbf{x} \in \mathbb{R}^{3}$ can be done by addition:
- perturbation in $\mathbb{R}^{3}: \mathbf{x}+\delta \mathbf{x}$
- Perturbing a rotation matrix $R=\exp (\hat{\boldsymbol{\theta}}) \in S O(3)$ should be done using the exponential map:
- perturbation in $\mathfrak{s o}(3): \exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right)$
- perturbation in $S O(3): \underbrace{\exp (\delta \hat{\psi}) R}_{\text {left perturbation }}$ or $\underbrace{R \exp (\delta \hat{\psi})}_{\text {right perturbation }}$
- Note that the perturbations $\delta \boldsymbol{\theta}$ and $\delta \boldsymbol{\psi}$ are regular vectors in \mathbb{R}^{3}
- Infinitesimal perturbations allow us to compute derivatives and define probability distributions in $\mathrm{SO}(3)$

How do we specify a Gaussian distribution in $S O(3)$?

- In \mathbb{R}^{3} we can define a Gaussian distribution over a vector \mathbf{x} as follows:

$$
\mathbf{x}=\boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{3}$ is the deterministic mean and $\boldsymbol{\epsilon} \in \mathbb{R}^{3}$ is a zero-mean Gaussian random vector

- In $S O(3)$ we can define a Gaussian distribution over a rotation matrix R as follows:

$$
R=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in S O(3)$ is the deterministic mean and $\epsilon \in \mathbb{R}^{3}$ is a zero-mean Gaussian random vector

Example: Rotation of a Random Rotation Variable

- Let $Q \in S O(3)$ and $\boldsymbol{\theta} \in \mathbb{R}^{3}$. Then:

$$
Q \exp (\hat{\boldsymbol{\theta}}) Q^{\top}=\exp \left(Q \hat{\boldsymbol{\theta}} Q^{\top}\right)=\exp \left((Q \boldsymbol{\theta})^{\wedge}\right)
$$

- Let $R \in S O$ (3) be a random rotation with mean $\mu \in S O(3)$ and covariance $\Sigma \in \mathbb{R}^{3 \times 3}$.
- The random variable $Y=Q R \in S O(3)$ satisfies:

$$
\begin{aligned}
Y & =Q R=Q \exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu}=\exp \left((Q \boldsymbol{\epsilon})^{\wedge}\right) Q \boldsymbol{\mu} \\
\mathbb{E}[Y] & =Q \boldsymbol{\mu} \\
\operatorname{Var}[Y] & =\operatorname{Var}[Q \epsilon]=Q \Sigma Q^{\top}
\end{aligned}
$$

What is the motion model for a rotation matrix R ?

- Continuous-time rotation kinematics:

$$
\dot{R}(t)=R(t) \hat{\omega}(t)
$$

where the rotation $R(t)$ is the state and the angular velocity $\boldsymbol{\omega}(t)$ is the input

- Discrete-time rotation kinematics:

$$
R_{k+1}=R_{k} \exp \left(\tau_{k} \hat{\boldsymbol{\omega}}_{k}\right)
$$

where $R_{k}=R\left(t_{k}\right), \tau_{k}=t_{k+1}-t_{k}, \boldsymbol{\omega}_{k}=\boldsymbol{\omega}\left(t_{k}\right)$, and $\boldsymbol{\omega}(t)$ is constant for $t \in\left[t_{k}, t_{k+1}\right)$

How do we find derivatives with respect to a rotation R ?

- In \mathbb{R}^{3}, the derivative of a function $f(\mathbf{x})$ can be obtained using first-order Taylor series with perturbation $\delta \mathbf{x} \in \mathbb{R}^{3}$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- $\ln \mathbb{R}^{3}$, the derivative is $\left.\frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x}+\delta \mathbf{x})\right|_{\delta \mathbf{x}=0}$
- In $S O(3)$, the derivative of a function $f(R)$ can be obtained using first-order Taylor series with perturbation $\delta \boldsymbol{\psi} \in \mathbb{R}^{3}$:

$$
f(R \exp (\hat{\delta} \hat{\boldsymbol{\psi}})) \approx f(R)+\left[\frac{\partial f}{\partial R}(R)\right] \delta \boldsymbol{\psi}
$$

- In $S O(3)$, the derivative is $\left.\frac{\partial}{\partial \delta \psi} f(R \exp (\delta \hat{\psi}))\right)\left.\right|_{\delta \psi=0}$

Exponential Map from $\mathfrak{s e}(3)$ to $S E(3)$

- In $S O$ (3), an axis-angle vector $\boldsymbol{\theta} \in \mathbb{R}^{3}$ is mapped to a rotation matrix $R=\exp (\hat{\boldsymbol{\theta}})$ by the exponential map
$-\operatorname{In} S E(3)$, a position-rotation vector $\boldsymbol{\xi}=\left[\begin{array}{l}\boldsymbol{\rho} \\ \boldsymbol{\theta}\end{array}\right] \in \mathbb{R}^{6}$ is mapped to a pose matrix $T=\exp (\hat{\boldsymbol{\xi}})$ by the exponential map
- Space of twist matrices:

$$
\mathfrak{s e}(3):=\left\{\hat{\boldsymbol{\xi}}: \left.=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{\xi}=\left[\begin{array}{c}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6}\right\}
$$

- The exponential map provides a mapping from the space of twist matrices $\mathfrak{s e}(3)$ to the space of pose matrices $S E(3)$:

$$
T=\exp (\hat{\boldsymbol{\xi}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\xi}})^{n}
$$

How do we specify a Gaussian distribution in $S E(3)$?

- In \mathbb{R}^{3} we can define a Gaussian distribution over a vector \mathbf{x} as follows:

$$
\mathbf{x}=\boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{3}$ is the deterministic mean and $\boldsymbol{\epsilon} \in \mathbb{R}^{3}$ is a zero-mean Gaussian random vector

- In $S E(3)$ we can define a Gaussian distribution over a pose matrix T as follows:

$$
T=\exp (\hat{\boldsymbol{\epsilon}}) \boldsymbol{\mu} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in S E(3)$ is the deterministic mean and $\epsilon \in \mathbb{R}^{6}$ is a zero-mean Gaussian random vector

What is the motion model for a pose matrix T ?

- Continuous-time pose kinematics:

$$
\dot{T}(t)=T(t) \hat{\boldsymbol{\zeta}}(t)
$$

where the pose $T(t)$ is the state and the generalized velocity $\boldsymbol{\zeta}(t):=\left[\begin{array}{c}\mathbf{v}(t) \\ \boldsymbol{\omega}(t)\end{array}\right] \in \mathbb{R}^{6}$ is the input

- Discrete-time pose kinematics:

$$
T_{k+1}=T_{k} \exp \left(\tau_{k} \hat{\boldsymbol{\zeta}}_{k}\right)
$$

where $T_{k}=T\left(t_{k}\right), \tau_{k}=t_{k+1}-t_{k}, \boldsymbol{\zeta}_{k}=\boldsymbol{\zeta}\left(t_{k}\right)$, and $\boldsymbol{\zeta}(t)$ is constant for $t \in\left[t_{k}, t_{k+1}\right)$

How do we find derivatives with respect to a pose T ?

- In \mathbb{R}^{6}, the derivative of a function $f(\mathbf{x})$ can be obtained using first-order Taylor series with perturbation $\delta \mathbf{x} \in \mathbb{R}^{6}$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- $\operatorname{In} \mathbb{R}^{6}$, the derivative is $\left.\frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x}+\delta \mathbf{x})\right|_{\delta \mathbf{x}=0}$
- In $S E(3)$, the derivative of a function $f(T)$ can be obtained using first-order Taylor series with perturbation $\delta \boldsymbol{\psi} \in \mathbb{R}^{6}$:

$$
f(T \exp (\hat{\boldsymbol{\psi}})) \approx f(T)+\left[\frac{\partial f}{\partial T}(T)\right] \delta \boldsymbol{\psi}
$$

- In $S E(3)$, the derivative is $\left.\frac{\partial}{\partial \delta \psi} f(T \exp (\delta \hat{\psi}))\right)\left.\right|_{\delta \psi=0}$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 M}$
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Objective: given IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top} \in \mathbb{R}^{6}$ and feature observations $\mathbf{z}_{0: T}$, estimate the pose $T_{t}:=w T_{l, t} \in S E(3)$ of the IMU over time

Pose Kinematics with Perturbation

- Motion model for the continuous-time IMU pose $T(t)$ with noise $\mathbf{w}(t)$:

$$
\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \quad \mathbf{u}(t):=\left[\begin{array}{c}
\mathbf{v}(t) \\
\boldsymbol{\omega}(t)
\end{array}\right] \in \mathbb{R}^{6}
$$

- To consider a Gaussian distribution over T, express it as a nominal pose $\boldsymbol{\mu} \in S E(3)$ with small perturbation $\hat{\boldsymbol{\mu}} \in \mathfrak{s e}(3)$:

$$
T=\mu \exp (\hat{\delta \mu}) \approx \mu(I+\hat{\boldsymbol{\mu}})
$$

- Substitute the nominal + perturbed pose in the kinematic equations:

$$
\begin{aligned}
& \dot{\boldsymbol{\mu}}(I+\hat{\delta \boldsymbol{\mu}})+\boldsymbol{\mu}(\hat{\delta \dot{\boldsymbol{\mu}}})=\boldsymbol{\mu}(I+\hat{\delta \boldsymbol{\mu}})(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \\
& \dot{\boldsymbol{\mu}}+\dot{\boldsymbol{\mu}} \hat{\delta} \boldsymbol{\mu}+\boldsymbol{\mu}(\hat{\delta} \boldsymbol{\mu})=\boldsymbol{\mu} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta} \hat{\mu} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\delta} \hat{\boldsymbol{\mu}} \hat{\mathbf{w}}^{0} \\
& \dot{\boldsymbol{\mu}}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \boldsymbol{\mu} \hat{\mathbf{u}} \hat{\boldsymbol{\mu}}+\boldsymbol{\mu}(\hat{\delta} \boldsymbol{\mu})=\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta} \boldsymbol{\mu} \hat{\mathbf{u}} \\
& \dot{\boldsymbol{\mu}}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \hat{\delta} \boldsymbol{\mu}=\hat{\delta} \boldsymbol{\mu} \hat{\mathbf{u}}-\hat{\mathbf{u}} \hat{\delta} \boldsymbol{\mu}+\hat{\mathbf{w}}=(-\hat{\mathbf{u}} \delta \boldsymbol{\mu})^{\wedge}+\hat{\mathbf{w}}
\end{aligned}
$$

Pose Kinematics with Perturbation

- Using $T=\boldsymbol{\mu} \exp (\delta \hat{\mu}) \approx \mu(I+\hat{\delta \mu})$, the pose kinematics
$\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}})$ can be split into nominal and perturbation kinematics:

$$
\text { nominal : } \dot{\mu}=\mu \hat{\mathbf{u}}
$$

perturbation: $\dot{\boldsymbol{\delta} \boldsymbol{\mu}}=-\hat{\mathbf{u}} \boldsymbol{\delta} \boldsymbol{\mu}+\boldsymbol{w}$

$$
\hat{\mathbf{u}}:=\left[\begin{array}{cc}
\hat{\omega} & \hat{\mathbf{v}} \\
0 & \hat{\boldsymbol{\omega}}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- In discrete-time with discretization τ_{t}, the above becomes:

$$
\begin{aligned}
\text { nominal : } & \boldsymbol{\mu}_{t+1} & =\boldsymbol{\mu}_{t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
\text { perturbation: } & \delta \boldsymbol{\mu}_{t+1} & =\exp \left(-\tau_{t} \mathbf{u}_{t}\right) \delta \boldsymbol{\mu}_{t}+\mathbf{w}_{t}
\end{aligned}
$$

- This is useful to separate the effect of the noise \mathbf{w}_{t} from the motion of the deterministic part of T_{t}. See Barfoot Ch. 7.2 for details.

EKF Prediction Step

- Prior: $T_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\mu_{t \mid t}, \Sigma_{t \mid t}\right)$ with $\mu_{t \mid t} \in S E(3)$ and $\Sigma_{t \mid t} \in \mathbb{R}^{6 \times 6}$
- This means that $T_{t}=\boldsymbol{\mu}_{t \mid t} \exp \left(\hat{\boldsymbol{\mu}}_{t \mid t}\right)$ with $\delta \boldsymbol{\mu}_{t \mid t} \sim \mathcal{N}\left(0, \Sigma_{t \mid t}\right)$
- $\Sigma_{t \mid t}$ is 6×6 because only the 6 degrees of freedom of T_{t} are changing
- Motion Model: nominal kinematics of $\boldsymbol{\mu}_{t \mid t}$ and perturbation kinematics of $\delta \boldsymbol{\mu}_{t \mid t}$ with time discretization τ_{t} :

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\boldsymbol{\mu}_{t \mid t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
\delta \boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau_{t} \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t \mid t}+\mathbf{w}_{t}
\end{aligned}
$$

- EKF Prediction Step with $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$:

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\boldsymbol{\mu}_{t \mid t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
\Sigma_{t+1 \mid t} & =\mathbb{E}\left[\delta \boldsymbol{\mu}_{t+1 \mid t} \delta \boldsymbol{\mu}_{t+1 \mid t}^{\top}\right]=\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t \mid t} \exp \left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top}+W
\end{aligned}
$$ where

$$
\mathbf{u}_{t}:=\left[\begin{array}{c}
\mathbf{v}_{t} \\
\boldsymbol{\omega}_{t}
\end{array}\right] \in \mathbb{R}^{6} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \mathbf{v}_{t} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\mathbf{u}}_{t}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \hat{\mathbf{v}}_{t} \\
0 & \hat{\boldsymbol{\omega}}_{t}
\end{array}\right] \in \mathbb{R}_{2 \times 6}^{6 \times 6}
$$

EKF Update Step

- Prior: $T_{t+1} \mid z_{0: t}, u_{0: t} \sim \mathcal{N}\left(\mu_{t+1 \mid t}, \Sigma_{t+1 \mid t}\right)$ with $\mu_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Observation Model: with measurement noise $\mathbf{v}_{t} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t+1, i}=h\left(T_{t+1}, \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}:=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}
$$

- The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose $T_{t+1} \in S E(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ with respect to the IMU pose T_{t+1}, evaluated at $\mu_{t+1 \mid t}$

EKF Update Step

- Let the elements of $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ corresponding to different observations i be $H_{t+1, i} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time $t+1$ using an IMU pose perturbation $\delta \boldsymbol{\mu}$ is:

$$
\begin{aligned}
\mathbf{z}_{t+1, i} & =K_{s} \pi\left(o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t} \exp (\hat{\delta \boldsymbol{\mu}})\right)^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& \approx K_{s} \pi\left(o T_{l}(I-\hat{\delta \boldsymbol{\mu}}) \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& =K_{s} \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}-o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot} \delta \boldsymbol{\mu}\right)+\mathbf{v}_{t+1, i} \\
& \approx \underbrace{K_{s} \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)}_{\tilde{\mathbf{z}}_{t+1, i}} \underbrace{-K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \mathbf{m}_{j}\right)^{\odot}}_{H_{t+1, i}} \delta \boldsymbol{\mu}+\mathbf{v}_{t+1, i}
\end{aligned}
$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^{4}$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$:

$$
\hat{\boldsymbol{\xi}} \underline{\mathbf{s}}=\underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \quad\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right]^{\odot}:=\left[\begin{array}{cc}
I & -\hat{\mathbf{s}} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 6}
$$

EKF Update Step

- Prior: $\mu_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Known: stereo calibration matrix K_{s}, extrinsics $o T_{I} \in S E(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$, new observations $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observation based on $\boldsymbol{\mu}_{t+1 \mid t}$ and known correspondences Δ_{t} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=K_{s} \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to T_{t+1} evaluated at $\boldsymbol{\mu}_{t+1 \mid t}$:

$$
H_{t+1, i}=-K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot} \in \mathbb{R}^{4 \times 6}
$$

- Perform the EKF update:

$$
\begin{aligned}
K_{t+1} & =\Sigma_{t+1 \mid t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t+1 \mid t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
t+1 \mid t+1 & =\mu_{t+1 \mid t} \exp \left(\left(K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right)\right)^{\wedge}\right) \\
t+1 \mid t+1 & =\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t+1 \mid t}
\end{aligned} \quad H_{t+1}=\left[\begin{array}{c}
H_{t+1,1} \\
\vdots \\
H_{t+1, N_{t+1}}
\end{array}\right]
$$

