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Visual-Inertial Localization and Mapping

» Input:
> IMU: linear acceleration a; € R3 and rotational velocity w, € R3

> Camera: features z,; € R* (left and right image pixels) for i = 1,..., N,
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» Assumption: The transformation o T; € SE(3) from the IMU to the
camera optical frame (extrinsic parameters) and the stereo camera
calibration matrix Ks (intrinsic parameters) are known.

s, 0 c, 0 f = focal length [m]
K. 0 fss, o« O su, Sy = pixel scaling [pixels/m]
T |fsu 0 ¢ —fsb ¢y, ¢, = principal point [pixels]

0 f5 o 0 b = stereo baseline [m]
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Visual-Inertial Localization and Mapping

» Qutput:
» World-frame IMU pose v T; € SE(3) over time (green)
> World-frame coordinates m; € R3 of the j = 1,..., M point landmarks

(black) that generated the visual features z;; € R*




Visual Mapping

» Consider the mapping-only problem first

» Assumption: the IMU pose T; := T+ € SE(3) is known

.. . : T
» Objective: given the observations z; := [ZII ZtT,Nt] € R*N: for
: . T
t=0,..., T, estimate the coordinates m := [mlT ‘.- m,\T/,] € R3M
of the landmarks that generated them
> Assumption: the data association A; : {1,..., M} — {1,..., N;}

stipulating that landmark j corresponds to observation z;; € R* with
i = A¢(j) at time t is known or provided by an external algorithm

» Assumption: the landmarks m are static, i.e., it is not necessary to
consider a motion model or a prediction step for m



Visual Mapping via the EKF

> Observation Model: with measurement noise v;; ~ N(0, V)

zei=h(Te,m)) +ve; =Ko (o Ty T, my) + vy

: m;
> Homogeneous coordinates: m; := [ 11}

» Projection function and its derivative:

dm 1

1
m(q) = —q€R* c RY4
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» All observations, stacked as a 4/N; vector, at time t with notation abuse:

1%
2. =K (o T Ty 'm) vy v ~N (0,10 V) IV =




Visual Mapping via the EKF
» Prior: m | zo.; ~ N (g, Z¢) with p, € R3M and ¥, € R3M*3M

» EKF Update: given a new observation z;y1 € R4Ne+1.

-1
Kep1 = TeH{ (Ht+1Z Hi + 1@ V)

Hep1 = P + Kepa <2t+1 Ksm (o T T;rllut))

Zin1

zt+1 = (/ - Kt+1Ht+1)Zt

» 7,1 € R*Nt+1 is the predicted observation based on the landmark
position estimates g, at time ¢

» We need the observation model Jacobian H;y; € R*V:X3M evaluated at
p; with block elements H; 11 ;; € R**3:
g N Tes, my) , ifA() =
Hit1ij = mi=p, ;
0, otherwise.



Stereo Camera Jacobian (by Chain Rule)
> Observation model: h(Ter1,m;) = Ksmm (0 T T;llmj)

?
mj=p; ;

» How do we obtain Th(TtH, m;)

> Let qer1j =0T/ T, ;ym;jand P=[I 0] e R¥*

» Apply the chain rule:

0 37T 0qty1
—h(T,
amJ ( t+1’mj) 8q (qt+1,J) 8mj
or _ 8m-
= Kso~ e (oTi Tt+1m )oTi Tt+18 y
or _
=Kso- (OT/ Tt+11mj) ofli Tt+1P

Jq



Stereo Camera Jacobian (by Perturbation)

» The Jacobian of a function f(x) can also be obtained using first-order
Taylor series with perturbation dx:

7x %)

» The Jacobian of f(x) is the part that is linear in dx in the first-order
Taylor series expansion

f(x 4+ 0x) =~ f(x) + [af } dx

» Consider a perturbation dp, ; € R3 for the position of landmark j:

mj = pj+ 0pe

» The first-order Taylor series approximation of the observation model:
Kom (0TI Tk (g + 0mey) ) = K (o Ti Tl (12, + P o1ey))

dm
~ (OTITH-lut,J)_'_stiq (OT/TH_I[L )oT/ t+1P 5“t,1

Zt41,i Heya,ij




Visual Mapping via the EKF (Summary)

>

>

Prior: pt, € R3M and ¥, € R3M*3M

Known: stereo calibration matrix Ks, extrinsics o T; € SE(3), IMU pose
Tev1 € SE(3), new observation z;,1 € RVt

Predicted observations based on p; and known correspondences A, 1:
~ —1 4 .
Zi1i= Ksm (O T, Tt+1HtJ> eR fori=1,..., N1
Jacobian of ;1 ; with respect to m; evaluated at e

o {stq (oTiTilims,,) oTiTAPT i A) =,
trlij = _
, otherwise

EKF update:

-1
Kep1 = SeH (Ht+1ZthT+1 e v) vV

o1 = e+ Keg1 (Ze41 — Ze41) @V = ’
Y= (/ - Kt+1Ht+1)zt



Visual-Inertial Odometry

>

>

Now, consider the localization-only problem

We will simplify the prediction step by using kinematic rather than
dynamic equations

Assumption: linear velocity v; € R3 instead of linear acceleration
a; € R3 measurements are available

Assumption: known world-frame landmark coordinates m € R3M

Assumption: the data association A : {1,..., M} — {1,... N}
stipulating that landmark j corresponds to observation z; ; € R* with
i = A¢(j) at time t is known or provided by an external algorithm

Objective: given IMU measurements ug.7 with u; == [v/, w/]" € R®
and feature observations zg.7, estimate the pose T; := w T} € SE(3)
of the IMU over time
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How to deal with an SE(3) state in the EKF?

» Goal: estimate T; € SE(3) using an extended Kalman filter

» Rotations: SO(3) := {R € R3x3

RTR =1, det(R) = 1}

R p

» Poses: SE(3) := {T = [OT 1

:| c R4X4

R € SO(3),p € R3}

» Since T; is not a vector, we face multiple questions:
» How do we specify a “Gaussian” distribution over T;?

» What is the motion model for T,?

» How do we find derivatives with respect to T;?

» The axis-angle parametrizations of SO(3) plays a key role
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Exponential Map from s0(3) to SO(3)
> Axis-Angle: 6 € R3 specifying a rotation about an axis 1 := ”%
through an angle 0 := ||0||:

~ ~ 1 ~ 1 ~
R=exp(@) =1+0+-0"+-8+..
2! 3!
A 0 -6 6, T A
> 0= | 03 0 —0p| is a skew-symmetric matrix, i.e., 8 = —0
-0, 64 0

» Every skew-symmetric matrix can be represented as 6 for some 0 ¢ R3
> Space of skew-symmetric matrices: s0(3) := {0 € R3%3 | 9 € R3}

» The exponential map provides a mapping from the space of
skew-symmetric matrices s0(3) to the space of rotation matrices SO(3):

R=exp(0) ="~ (B)"

n=0
12



Rotation Kinematics

» The trajectory R(t) of a continuous rotation motion should satisfy:
RT(R(t)=1 = R (t)R(t)+ R (t)R(t)=0.

» The matrix RT(t)R(t) is skew-symmetric! There must exist some
vector-valued function w(t) € R3 such that:

RT(t)R(t) =&(t) = |R(t) = R(t)&(t)

» A skew-symmetric matrix gives a first order approximation to a rotation
matrix:

R(t + dt) =~ R(t) + R(t)&(t)dt
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Rotation Kinematics

» Let R € SO(3) be the orientation of a rigid body rotating with angular
velocity w € R3 with respect to the world frame.

» Rotation kinematic equations of motion:

R = R&g = OwR

where wg and wyy := Rwpg are the body-frame and world-frame
coordinates of w, respectively.

» Assuming w is constant over a short period 7:
R(t+7) = R(t) exp(twp) = exp(t@w)R(t)

> Discrete Rotation Kinematics: let Ry := R(tx), T« := tk+1 — tk, and
wy = wp(tx) leading to:

’ Ri+1 = Ry eXP(Tk‘:Jk)‘
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Perturbation in R3, 50(3), and SO(3)

» Perturbing a vector x € R3 can be done by addition:
> perturbation in R3: x + 6x

> Perturbing a rotation matrix R = exp(#) € SO(3) should be done using
the exponential map:

> perturbation in s0(3): exp ((6 + 60)")

> perturbation in SO(3): exp(69))R or Rexp(dah)
——— ——
left perturbation right perturbation

» Note that the perturbations 56 and d) are regular vectors in R3

» Infinitesimal perturbations allow us to compute derivatives and define
probability distributions in SO(3)
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How do we specify a Gaussian distribution in SO(3)?

» In R3 we can define a Gaussian distribution over a vector x as follows:
x=p+e €~N(0,X)

where 1 € R3 is the deterministic mean and € € R® is a zero-mean
Gaussian random vector

» In SO(3) we can define a Gaussian distribution over a rotation matrix R
as follows:
R=exp(é)p  €~N(0,X)

where 1 € SO(3) is the deterministic mean and € € R3 is a zero-mean
Gaussian random vector
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Example: Rotation of a Random Rotation Variable

> Let @ € SO(3) and @ € R3. Then:
Qexp(A)Q' = exp (QéQT) = exp ((Q)")

> Let R € SO(3) be a random rotation with mean p € SO(3) and
covariance ¥ € R3*3,

» The random variable Y = QR € SO(3) satisfies:

Y = QR = Qexp(é)n = exp ((Qe)") Qu
E[Y]=Qu
Var[Y] = Var[Qe] = QX Q"

17



What is the motion model for a rotation matrix R7?

» Continuous-time rotation kinematics:

where the rotation R(t) is the state and the angular velocity w(t) is the
input

» Discrete-time rotation kinematics:
Rk+1 = Rk eXp(TkG\Jk)

where R = R(tx), Tk = tk+1 — tk, wk = w(tx), and w(t) is constant
for t € [tk, tk+1)
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How do we find derivatives with respect to a rotation R?

» In R3, the derivative of a function f(x) can be obtained using first-order

Taylor series with perturbation §x € R3:

F(x + 0x) ~ F(x) + [gi(x)} ox

» In R3, the derivative is 8?xf(x + x)

6x=0

» In SO(3), the derivative of a function f(R) can be obtained using
first-order Taylor series with perturbation d1p € R3:

F(Resp()) ~ F(R) + | 1 (R) | v

0 ~
> L
In SO(3), the derivative is 900 f(Rexp(dv)))

51p=0
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Exponential Map from se(3) to SE(3)

>

In SO(3), an axis-angle vector @ € R3 is mapped to a rotation matrix
R = exp(0) by the exponential map

p
0

matrix T = exp(é) by the exponential map

In SE(3), a position-rotation vector & = [ ] € R® is mapped to a pose

Space of twist matrices:

s {e- ) fexefe- ] ex]

The exponential map provides a mapping from the space of twist
matrices se(3) to the space of pose matrices SE(3):

=1
T:exp(£ Zn—
n=0

20



How do we specify a Gaussian distribution in SE(3)?

» In R3 we can define a Gaussian distribution over a vector x as follows:
x=p+e €~N(0,X)

where 1 € R3 is the deterministic mean and € € R® is a zero-mean
Gaussian random vector

» In SE(3) we can define a Gaussian distribution over a pose matrix T as

follows:
T =exp(é)p  €~N(0,X)

where p € SE(3) is the deterministic mean and € € R® is a zero-mean
Gaussian random vector
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What is the motion model for a pose matrix 77

» Continuous-time pose kinematics:

where the pose T(t) is the state and the generalized velocity

¢(t) = [:)((?)] € RO is the input

» Discrete-time pose kinematics:
Tir1 = Teexp(miCy)

where T = T(tk), Tk = b1 — bk, Ck = C(tk), and C(t) is constant
for t € [tk, tk+1)
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How do we find derivatives with respect to a pose T7

» In R, the derivative of a function f(x) can be obtained using first-order

Taylor series with perturbation 6x € R®:

F(x + 0x) ~ f(x) + [gi(x)} ox

» In RY, the derivative is 8?xf(x + x)

6x=0

» In SE(3), the derivative of a function f(T) can be obtained using
first-order Taylor series with perturbation d1p € R®:

AT exp(0) = £(T) + | 57.(T)| o

0 ~
> T
In SE(3), the derivative is 550 f(T exp(dv))))

59p=0

23



Visual-Inertial Odometry

>

>

Now, consider the localization-only problem

We will simplify the prediction step by using kinematic rather than
dynamic equations

Assumption: linear velocity v; € R3 instead of linear acceleration
a; € R3 measurements are available

Assumption: known world-frame landmark coordinates m € R3M

Assumption: the data association A : {1,..., M} — {1,... N}
stipulating that landmark j corresponds to observation z; ; € R* with
i = A¢(j) at time t is known or provided by an external algorithm

Objective: given IMU measurements ug.7 with u; == [v/, w/]" € R®
and feature observations zg.7, estimate the pose T; := w T} € SE(3)
of the IMU over time
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Pose Kinematics with Perturbation
> Motion model for the continuous-time IMU pose T(t) with noise w(t):

T=T(@+w) u(t) == [;’J((?)] c R

» To consider a Gaussian distribution over T, express it as a nominal pose
p € SE(3) with small perturbation dpu € se(3):

T = pexp(dp) ~ (/ + 5Au)

» Substitute the nominal + perturbed pose in the kinematic equations:
p(l+5ﬁ) +u(5p) :u</+5ﬁ) (0 + W)
. X 0
p+u<m+u(5u) =l i+ S+ SR
jo=pd pddu 4+ p (5'”) = W + pdpi
o ~ ~ A
o=l O = Sul— a6+ W = (—ﬁéu) W
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Pose Kinematics with Perturbation

> Using T = pexp(dp) ~ p (/ + 571) the pose kinematics

T = T (0 + W) can be split into nominal and perturbation kinematics:

nominal :  f = pi

A w v
u:= [ A] € RO
0 w

) . A
perturbation : dp = —udp +w
» |n discrete-time with discretization 7+, the above becomes:

nominal : g, = p,exp (7¢li¢)

perturbation :  dp,,; = exp (—Ttﬁt) Opty + Wy

» This is useful to separate the effect of the noise w; from the motion of
the deterministic part of T;. See Barfoot Ch. 7.2 for details.
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EKF Prediction Step
> Prior: Ti¢|zo:r, uo:e—1 ~ N (g, Zg)) With gy, € SE(3) and Zy; € R6*6

» This means that T; = ut|texp(5:ut|t) with Spay, ~ N(0,Z¢¢)
> Y. is 6 X 6 because only the 6 degrees of freedom of T; are changing

> Motion Model: nominal kinematics of i, and perturbation kinematics
of dpuy, with time discretization 7¢:

Hip1)e = Hyjr €XP (elie)
A
5Ht+1\t = exp (_Ttut) 5Ht\t + W
» EKF Prediction Step with w; ~ N(0, W):
Hit1)e = Hijt XP (¢0¢)

T A A\ T
Zt+1|t = E[5Ht+l|t(sut+1\t] = exp (_Tut) Zt|t €Xp (_Tut> + W

where R L
v . AFERY A AT
u; = [ t] cR® @, := [OTt Ot} cRY* u, = [Ot At} € R6%6
@t wi 27



EKF Update Step

> Prior: Tei1|zo:e, toie ~ N(Bepa)e, Teaje) with ey, € SE(3) and
Y,y € ROXO
t+1)t

> Observation Model: with measurement noise v; ~ N(0, V)
~1
zep1i = h(Tep1, ) +vep1j = Ko (0 Ty T ym;) + Ve

» The observation model is the same as in the visual mapping problem but
this time the variable of interest is the IMU pose T:;; € SE(3) instead
of the landmark positions m € R3M

» We need the observation model Jacobian H; i1 € R¥Vt+1X6 with respect
to the IMU pose Ti11, evaluated at pu, ),
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EKF Update Step

» Let the elements of H;y1 € R4Ne11x6 corresponding to different
observations / be Hey1; € R4*6

» The first-order Taylor series approximation of observation / at time t + 1
using an IMU pose perturbation g is:

~ -1
Zpy1,i = K <o T (Nt+1\r exp <5ﬂ)) mj) + Vi1

~ Ksm (o T, (I — 5;1) ut;ll‘tmj) + Vip1i

O]
Ksm <o Tipghym; —oTi (ut‘immj) 5#) T Vet

~ -1 dm -1 —1 ©s
~ Ksm (0 T/“r+1|tmj) Ka (0 Tl“r+1|tmj) ol (I’Lt+1|tmj) B+ Vet

Zt+1,i Ht+1,i

where for homogeneous coordinates s € R* and £ € se(3):

amve [ - dee
- 1] ~ [0 O
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EKF Update Step

| 2

>

Prior: p, 1), € SE(3) and T, q), € R®®

Known: stereo calibration matrix K, extrinsics o T; € SE(3), landmark
positions m € R3M  new observations Zi41 € R4Ne+1

Predicted observation based on ;. 4); and known correspondences A;:
5 : -1 :
Zi11 = Ksm (o T/“t+1\tmj> fori=1,..., Niy1

Jacobian of Z;,1 ; with respect to Ty11 evaluated at po, ),

Hep1i= —Ks ZZ (O T/“t+1\t ) ol <'ut_jl|tmj>® € R#®
Perform the EKF update:
Key1 = Z1:+1\t/"ltT+1 (Ht+1zt+1|thT+1 +1® V)il Het1
Pei1jer1 = Mer)e P ((Kepa(zepr — 2641))") Hepr = ;
Toperr = (I = KepaHep 1) T He 1N
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