#### ECE276A: Sensing & Estimation in Robotics Lecture 13: Visual-Inertial SLAM

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Qiaojun Feng: qjfeng@ucsd.edu Arash Asgharivaskasi: aasghari@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@ucsd.edu Rishabh Jangir: rjangir@ucsd.edu

# UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

# Visual-Inertial Localization and Mapping

- Input:
  - $\blacktriangleright$  IMU: linear acceleration  $\mathbf{a}_t \in \mathbb{R}^3$  and rotational velocity  $oldsymbol{\omega}_t \in \mathbb{R}^3$
  - ▶ Camera: features  $\mathbf{z}_{t,i} \in \mathbb{R}^4$  (left and right image pixels) for  $i = 1, ..., N_t$



Assumption: The transformation  $_O T_I \in SE(3)$  from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix  $K_s$  (intrinsic parameters) are known.

$$\mathcal{K}_{s} := \begin{bmatrix} fs_{u} & 0 & c_{u} & 0 \\ 0 & fs_{v} & c_{v} & 0 \\ fs_{u} & 0 & c_{u} & -fs_{u}b \\ 0 & fs_{v} & c_{v} & 0 \end{bmatrix}$$

f = focal length [m]  $s_u, s_v = \text{pixel scaling } [pixels/m]$   $c_u, c_v = \text{principal point } [pixels]$ b = stereo baseline [m]

# Visual-Inertial Localization and Mapping

- Output:
  - ▶ World-frame IMU pose  $_W T_I \in SE(3)$  over time (green)
  - ▶ World-frame coordinates  $\mathbf{m}_j \in \mathbb{R}^3$  of the j = 1, ..., M point landmarks (black) that generated the visual features  $\mathbf{z}_{t,i} \in \mathbb{R}^4$



# Visual Mapping

- Consider the mapping-only problem first
- ▶ Assumption: the IMU pose  $T_t := {}_W T_{I,t} \in SE(3)$  is known
- **Objective**: given the observations  $\mathbf{z}_t := \begin{bmatrix} \mathbf{z}_{t,1}^\top & \cdots & \mathbf{z}_{t,N_t}^\top \end{bmatrix}^\top \in \mathbb{R}^{4N_t}$  for  $t = 0, \dots, T$ , estimate the coordinates  $\mathbf{m} := \begin{bmatrix} \mathbf{m}_1^\top & \cdots & \mathbf{m}_M^\top \end{bmatrix}^\top \in \mathbb{R}^{3M}$  of the landmarks that generated them
- ▶ Assumption: the data association  $\Delta_t : \{1, ..., M\} \rightarrow \{1, ..., N_t\}$ stipulating that landmark *j* corresponds to observation  $\mathbf{z}_{t,i} \in \mathbb{R}^4$  with  $i = \Delta_t(j)$  at time *t* is known or provided by an external algorithm
- Assumption: the landmarks m are static, i.e., it is not necessary to consider a motion model or a prediction step for m

# Visual Mapping via the EKF

**• Observation Model**: with measurement noise  $\mathbf{v}_{t,i} \sim \mathcal{N}(0, V)$ 

$$\mathbf{z}_{t,i} = h(T_t, \mathbf{m}_j) + \mathbf{v}_{t,i} := K_s \pi \left( {}_O T_I T_t^{-1} \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t,i}$$
  
Homogeneous coordinates:  $\underline{\mathbf{m}}_j := \begin{bmatrix} \mathbf{m}_j \\ 1 \end{bmatrix}$ 

Projection function and its derivative:

$$\pi(\mathbf{q}) := rac{1}{q_3} \mathbf{q} \in \mathbb{R}^4 \qquad \quad rac{d\pi}{d\mathbf{q}}(\mathbf{q}) = rac{1}{q_3} egin{bmatrix} 1 & 0 & -rac{q_1}{q_3} & 0 \ 0 & 1 & -rac{q_2}{q_3} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{q_4}{q_3} & 1 \end{bmatrix} \in \mathbb{R}^{4 imes 4}$$

▶ All observations, stacked as a  $4N_t$  vector, at time t with notation abuse:

$$\mathbf{z}_{t} = \mathcal{K}_{s}\pi\left({}_{O}\mathcal{T}_{I}\mathcal{T}_{t}^{-1}\underline{\mathbf{m}}\right) + \mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}\left(\mathbf{0}, I \otimes V\right) \quad I \otimes V := \begin{bmatrix} V & & \\ & \ddots & \\ & & V \end{bmatrix}$$

Visual Mapping via the EKF

▶ Prior: m |  $z_{0:t} \sim \mathcal{N}(\mu_t, \Sigma_t)$  with  $\mu_t \in \mathbb{R}^{3M}$  and  $\Sigma_t \in \mathbb{R}^{3M \times 3M}$ 

**EKF Update**: given a new observation  $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$ :

$$\mathcal{K}_{t+1} = \Sigma_t \mathcal{H}_{t+1}^{\top} \left( \mathcal{H}_{t+1} \Sigma_t \mathcal{H}_{t+1}^{\top} + I \otimes V \right)^{-1}$$
$$\mu_{t+1} = \mu_t + \mathcal{K}_{t+1} \left( \mathbf{z}_{t+1} - \underbrace{\mathcal{K}_s \pi \left( O \mathcal{T}_I \mathcal{T}_{t+1}^{-1} \underline{\mu}_t \right)}_{\tilde{\mathbf{z}}_{t+1}} \right)$$

$$\Sigma_{t+1} = (I - K_{t+1}H_{t+1})\Sigma_t$$

▶  $\tilde{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$  is the predicted observation based on the landmark position estimates  $\mu_t$  at time t

We need the observation model Jacobian H<sub>t+1</sub> ∈ ℝ<sup>4N<sub>t</sub>×3M</sup> evaluated at µ<sub>t</sub> with block elements H<sub>t+1,i,j</sub> ∈ ℝ<sup>4×3</sup>:

$$H_{t+1,i,j} := \begin{cases} \frac{\partial}{\partial \mathbf{m}_j} h(\mathcal{T}_{t+1}, \mathbf{m}_j) \Big|_{\mathbf{m}_j = \mu_{t,j}}, & \text{if } \Delta_t(j) = i, \\ \mathbf{0}, & \text{otherwise.} \end{cases}$$

### Stereo Camera Jacobian (by Chain Rule)

► Observation model:  $h(T_{t+1}, \mathbf{m}_j) = K_s \pi \left( {}_O T_I T_{t+1}^{-1} \underline{\mathbf{m}}_j \right)$ 

• How do we obtain 
$$\frac{\partial}{\partial \mathbf{m}_j} h(T_{t+1}, \mathbf{m}_j) \Big|_{\mathbf{m}_j = \mu_{t,j}}$$
?

• Let 
$$\mathbf{q}_{t+1,j} = {}_{O}T_{I}T_{t+1}^{-1}\mathbf{\underline{m}}_{j}$$
 and  $P = \begin{bmatrix} I & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 4}$ 

Apply the chain rule:

$$\begin{aligned} \frac{\partial}{\partial \mathbf{m}_{j}} h(T_{t+1}, \mathbf{m}_{j}) &= K_{s} \frac{\partial \pi}{\partial \mathbf{q}} (\mathbf{q}_{t+1,j}) \frac{\partial \mathbf{q}_{t+1,j}}{\partial \mathbf{m}_{j}} \\ &= K_{s} \frac{\partial \pi}{\partial \mathbf{q}} \left( {}_{O} T_{I} T_{t+1}^{-1} \underline{\mathbf{m}}_{j} \right) {}_{O} T_{I} T_{t+1}^{-1} \frac{\partial \underline{\mathbf{m}}_{j}}{\partial \mathbf{m}_{j}} \\ &= K_{s} \frac{\partial \pi}{\partial \mathbf{q}} \left( {}_{O} T_{I} T_{t+1}^{-1} \underline{\mathbf{m}}_{j} \right) {}_{O} T_{I} T_{t+1}^{-1} P^{\top} \end{aligned}$$

### Stereo Camera Jacobian (by Perturbation)

The Jacobian of a function f(x) can also be obtained using first-order Taylor series with perturbation δx:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}$$

- The Jacobian of f(x) is the part that is linear in δx in the first-order Taylor series expansion
- Consider a perturbation  $\delta \mu_{t,j} \in \mathbb{R}^3$  for the position of landmark j:

$$\mathbf{m}_j = \boldsymbol{\mu}_{t,j} + \delta \boldsymbol{\mu}_{t,j}$$

• The first-order Taylor series approximation of the observation model:

$$K_{s}\pi\left(_{O}T_{I}T_{t+1}^{-1}(\underline{\mu_{t,j}} + \delta\mu_{t,j})\right) = K_{s}\pi\left(_{O}T_{I}T_{t+1}^{-1}(\underline{\mu_{t,j}} + P^{\top}\delta\mu_{t,j})\right)$$
$$\approx \underbrace{K_{s}\pi\left(_{O}T_{I}T_{t+1}^{-1}\underline{\mu_{t,j}}\right)}_{\tilde{z}_{t+1,i}} + \underbrace{K_{s}\frac{d\pi}{d\mathbf{q}}\left(_{O}T_{I}T_{t+1}^{-1}\underline{\mu_{t,j}}\right)_{O}T_{I}T_{t+1}^{-1}P^{\top}}_{H_{t+1,i,j}}\delta\mu_{t,j}$$

Visual Mapping via the EKF (Summary)

- Prior:  $\boldsymbol{\mu}_t \in \mathbb{R}^{3M}$  and  $\boldsymbol{\Sigma}_t \in \mathbb{R}^{3M imes 3M}$
- Known: stereo calibration matrix K<sub>s</sub>, extrinsics <sub>O</sub>T<sub>I</sub> ∈ SE(3), IMU pose T<sub>t+1</sub> ∈ SE(3), new observation z<sub>t+1</sub> ∈ ℝ<sup>4N<sub>t+1</sub></sup>
- Predicted observations based on μ<sub>t</sub> and known correspondences Δ<sub>t+1</sub>:
   ž<sub>t+1,i</sub> := K<sub>s</sub>π (<sub>O</sub> T<sub>I</sub> T<sup>-1</sup><sub>t+1</sub>μ<sub>t,j</sub>) ∈ ℝ<sup>4</sup> for i = 1,..., N<sub>t+1</sub>
   Jacobian of ž<sub>t+1,i</sub> with respect to m<sub>i</sub> evaluated at μ<sub>t,i</sub>:

$$H_{t+1,i,j} = \begin{cases} \kappa_s \frac{d\pi}{d\mathbf{q}} \left( {}_O T_I T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t,j} \right) {}_O T_I T_{t+1}^{-1} P^\top & \text{if } \Delta_t(j) = i, \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

EKF update:

$$\begin{aligned} & \mathcal{K}_{t+1} = \Sigma_t \mathcal{H}_{t+1}^{\top} \left( \mathcal{H}_{t+1} \Sigma_t \mathcal{H}_{t+1}^{\top} + I \otimes V \right)^{-1} \\ & \boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t + \mathcal{K}_{t+1} \left( \mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1} \right) \\ & \boldsymbol{\Sigma}_{t+1} = \left( I - \mathcal{K}_{t+1} \mathcal{H}_{t+1} \right) \Sigma_t \end{aligned} \qquad I \otimes V := \begin{bmatrix} V \\ & \ddots \\ & V \end{bmatrix}$$

# Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- ▶ Assumption: linear velocity  $\mathbf{v}_t \in \mathbb{R}^3$  instead of linear acceleration  $\mathbf{a}_t \in \mathbb{R}^3$  measurements are available
- ▶ Assumption: known world-frame landmark coordinates  $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ Assumption: the data association  $\Delta_t : \{1, \ldots, M\} \rightarrow \{1, \ldots, N_t\}$ stipulating that landmark *j* corresponds to observation  $\mathbf{z}_{t,i} \in \mathbb{R}^4$  with  $i = \Delta_t(j)$  at time *t* is known or provided by an external algorithm
- ▶ **Objective**: given IMU measurements  $\mathbf{u}_{0:T}$  with  $\mathbf{u}_t := [\mathbf{v}_t^{\top}, \, \boldsymbol{\omega}_t^{\top}]^{\top} \in \mathbb{R}^6$ and feature observations  $\mathbf{z}_{0:T}$ , estimate the pose  $T_t := {}_W T_{I,t} \in SE(3)$ of the IMU over time

## How to deal with an SE(3) state in the EKF?

▶ Goal: estimate  $T_t \in SE(3)$  using an extended Kalman filter

Since T<sub>t</sub> is not a vector, we face multiple questions:

▶ How do we specify a "Gaussian" distribution over *T*<sub>t</sub>?

- What is the motion model for  $T_t$ ?
- How do we find derivatives with respect to T<sub>t</sub>?
- The axis-angle parametrizations of SO(3) plays a key role

# Exponential Map from $\mathfrak{so}(3)$ to SO(3)

• Axis-Angle:  $\theta \in \mathbb{R}^3$  specifying a rotation about an axis  $\eta := \frac{\theta}{\|\theta\|}$ through an angle  $\theta := \|\theta\|$ :

$$R = \exp(\hat{\theta}) = I + \hat{\theta} + \frac{1}{2!}\hat{\theta}^2 + \frac{1}{3!}\hat{\theta}^3 + \dots$$

 $\hat{\boldsymbol{\theta}} = \begin{bmatrix} 0 & -\theta_3 & \theta_2 \\ \theta_3 & 0 & -\theta_1 \\ -\theta_2 & \theta_1 & 0 \end{bmatrix} \text{ is a skew-symmetric matrix, i.e., } \hat{\boldsymbol{\theta}}^\top = -\hat{\boldsymbol{\theta}}$ 

• Every skew-symmetric matrix can be represented as  $\hat{ heta}$  for some  $heta \in \mathbb{R}^3$ 

- Space of skew-symmetric matrices:  $\mathfrak{so}(3) := \{ \hat{\theta} \in \mathbb{R}^{3 \times 3} \mid \theta \in \mathbb{R}^3 \}$
- The exponential map provides a mapping from the space of skew-symmetric matrices so(3) to the space of rotation matrices SO(3):

$$R = \exp(\hat{\theta}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{\theta})^n$$

## **Rotation Kinematics**

• The trajectory R(t) of a continuous rotation motion should satisfy:

$$R^ op(t) R(t) = I \quad \Rightarrow \quad \dot{R}^ op(t) R(t) + R^ op(t) \dot{R}(t) = 0.$$

▶ The matrix  $R^{\top}(t)\dot{R}(t)$  is **skew-symmetric**! There must exist some vector-valued function  $\omega(t) \in \mathbb{R}^3$  such that:

$$R^ op(t)\dot{R}(t)=\hat{\omega}(t) \quad \Rightarrow \quad \dot{R}(t)=R(t)\hat{\omega}(t)$$

A skew-symmetric matrix gives a first order approximation to a rotation matrix:

$$R(t+dt) pprox R(t) + R(t)\hat{\omega}(t)dt$$

# **Rotation Kinematics**

Let R ∈ SO(3) be the orientation of a rigid body rotating with angular velocity ω ∈ ℝ<sup>3</sup> with respect to the world frame.

#### Rotation kinematic equations of motion:

$$\dot{R} = R\hat{\omega}_B = \hat{\omega}_W R$$

where  $\omega_B$  and  $\omega_W := R\omega_B$  are the body-frame and world-frame coordinates of  $\omega$ , respectively.

Assuming ω is constant over a short period τ:

$$R(t + \tau) = R(t) \exp(\tau \hat{\omega}_B) = \exp(\tau \hat{\omega}_W) R(t)$$

Discrete Rotation Kinematics: let R<sub>k</sub> := R(t<sub>k</sub>), τ<sub>k</sub> := t<sub>k+1</sub> - t<sub>k</sub>, and ω<sub>k</sub> := ω<sub>B</sub>(t<sub>k</sub>) leading to:

$$R_{k+1} = R_k \exp(\tau_k \hat{\boldsymbol{\omega}}_k)$$

# Perturbation in $\mathbb{R}^3$ , $\mathfrak{so}(3)$ , and SO(3)

- $\blacktriangleright$  Perturbing a vector  $\textbf{x} \in \mathbb{R}^3$  can be done by addition:
  - perturbation in  $\mathbb{R}^3$ :  $\mathbf{x} + \delta \mathbf{x}$
- Perturbing a rotation matrix R = exp(∂̂) ∈ SO(3) should be done using the exponential map:
  - perturbation in  $\mathfrak{so}(3)$ : exp $((\theta + \delta \theta)^{\wedge})$
  - ▶ perturbation in SO(3):  $\underbrace{\exp(\hat{\delta\psi})R}_{\text{left perturbation}}$  or  $\underbrace{R\exp(\hat{\delta\psi})}_{\text{right perturbation}}$
- $\blacktriangleright$  Note that the perturbations  $\delta m{ heta}$  and  $\delta \psi$  are regular vectors in  $\mathbb{R}^3$
- Infinitesimal perturbations allow us to compute derivatives and define probability distributions in SO(3)

How do we specify a Gaussian distribution in SO(3)?

▶ In  $\mathbb{R}^3$  we can define a Gaussian distribution over a vector **x** as follows:

$$\mathbf{x} = oldsymbol{\mu} + oldsymbol{\epsilon} \qquad oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

where  $\mu\in\mathbb{R}^3$  is the deterministic mean and  $\epsilon\in\mathbb{R}^3$  is a zero-mean Gaussian random vector

In SO(3) we can define a Gaussian distribution over a rotation matrix R as follows:

$$R = \exp(\hat{\epsilon}) \mu \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

where  $\mu \in SO(3)$  is the deterministic mean and  $\epsilon \in \mathbb{R}^3$  is a zero-mean Gaussian random vector

#### Example: Rotation of a Random Rotation Variable

• Let 
$$Q \in SO(3)$$
 and  $\theta \in \mathbb{R}^3$ . Then:

$$Q \exp(\hat{\boldsymbol{ heta}}) Q^{ op} = \exp\left(Q \hat{\boldsymbol{ heta}} Q^{ op}
ight) = \exp\left((Q \boldsymbol{ heta})^{\wedge}
ight)$$

► Let  $R \in SO(3)$  be a random rotation with mean  $\mu \in SO(3)$  and covariance  $\Sigma \in \mathbb{R}^{3 \times 3}$ .

• The random variable  $Y = QR \in SO(3)$  satisfies:

$$egin{aligned} Y &= QR = Q\exp(\hat{\epsilon})\mu = \exp\left((Q\epsilon)^{\wedge}
ight)Q\mu \ \mathbb{E}[Y] &= Q\mu \ \mathbf{Var}[Y] &= \mathbf{Var}[Q\epsilon] = Q\Sigma Q^{ op} \end{aligned}$$

What is the motion model for a rotation matrix R?

#### Continuous-time rotation kinematics:

$$\dot{R}(t) = R(t)\hat{\omega}(t)$$

where the rotation R(t) is the **state** and the angular velocity  $\omega(t)$  is the **input** 

Discrete-time rotation kinematics:

$$R_{k+1} = R_k \exp(\tau_k \hat{\omega}_k)$$

where  $R_k = R(t_k)$ ,  $\tau_k = t_{k+1} - t_k$ ,  $\omega_k = \omega(t_k)$ , and  $\omega(t)$  is constant for  $t \in [t_k, t_{k+1})$ 

## How do we find derivatives with respect to a rotation R?

In ℝ<sup>3</sup>, the derivative of a function f(x) can be obtained using first-order Taylor series with perturbation δx ∈ ℝ<sup>3</sup>:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}$$

► In 
$$\mathbb{R}^3$$
, the derivative is  $\frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x} + \delta \mathbf{x}) \Big|_{\delta \mathbf{x} = 0}$ 

In SO(3), the derivative of a function f(R) can be obtained using first-order Taylor series with perturbation δψ ∈ ℝ<sup>3</sup>:

$$f(R\exp(\hat{\delta\psi})) pprox f(R) + \left[rac{\partial f}{\partial R}(R)
ight]\delta\psi$$

► In *SO*(3), the derivative is  $\frac{\partial}{\partial \delta \psi} f(R \exp(\delta \hat{\psi})))\Big|_{\delta \psi = 0}$ 

# Exponential Map from $\mathfrak{se}(3)$ to SE(3)

- ▶ In SO(3), an axis-angle vector  $\theta \in \mathbb{R}^3$  is mapped to a rotation matrix  $R = \exp(\hat{\theta})$  by the exponential map
- ▶ In *SE*(3), a position-rotation vector  $\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\theta} \end{bmatrix} \in \mathbb{R}^6$  is mapped to a pose matrix  $T = \exp(\hat{\boldsymbol{\xi}})$  by the exponential map
- Space of twist matrices:

$$\mathfrak{se}(3) := \left\{ \hat{oldsymbol{\xi}} := egin{bmatrix} \hat{oldsymbol{ heta}} & oldsymbol{
ho} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 imes 4} \middle| oldsymbol{\xi} = egin{bmatrix} oldsymbol{
ho} \\ oldsymbol{ heta} \end{bmatrix} \in \mathbb{R}^6 
ight\}$$

The exponential map provides a mapping from the space of twist matrices se(3) to the space of pose matrices SE(3):

$$T = \exp(\hat{\boldsymbol{\xi}}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{\boldsymbol{\xi}})^n$$

How do we specify a Gaussian distribution in SE(3)?

▶ In  $\mathbb{R}^3$  we can define a Gaussian distribution over a vector **x** as follows:

$$\mathbf{x} = oldsymbol{\mu} + oldsymbol{\epsilon} \qquad oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0}, \Sigma)$$

where  $\mu\in\mathbb{R}^3$  is the deterministic mean and  $\epsilon\in\mathbb{R}^3$  is a zero-mean Gaussian random vector

In SE(3) we can define a Gaussian distribution over a pose matrix T as follows:

$$\mathcal{T} = \exp(\hat{\epsilon}) oldsymbol{\mu} \qquad oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0}, \Sigma)$$

where  $\mu \in SE(3)$  is the deterministic mean and  $\epsilon \in \mathbb{R}^6$  is a zero-mean Gaussian random vector

What is the motion model for a pose matrix T?

Continuous-time pose kinematics:

$$\dot{T}(t) = T(t)\hat{\zeta}(t)$$

where the pose T(t) is the **state** and the generalized velocity  $\zeta(t) := \begin{bmatrix} \mathbf{v}(t) \\ \omega(t) \end{bmatrix} \in \mathbb{R}^6$  is the **input** 

Discrete-time pose kinematics:

$$T_{k+1} = T_k \exp(\tau_k \hat{\boldsymbol{\zeta}}_k)$$

where  $T_k = T(t_k)$ ,  $\tau_k = t_{k+1} - t_k$ ,  $\zeta_k = \zeta(t_k)$ , and  $\zeta(t)$  is constant for  $t \in [t_k, t_{k+1})$ 

#### How do we find derivatives with respect to a pose T?

In ℝ<sup>6</sup>, the derivative of a function f(x) can be obtained using first-order Taylor series with perturbation δx ∈ ℝ<sup>6</sup>:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}$$

► In 
$$\mathbb{R}^6$$
, the derivative is  $\frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x} + \delta \mathbf{x}) \Big|_{\delta \mathbf{x} = 0}$ 

In SE(3), the derivative of a function f(T) can be obtained using first-order Taylor series with perturbation δψ ∈ ℝ<sup>6</sup>:

$$f(T \exp(\hat{\delta \psi})) \approx f(T) + \left[\frac{\partial f}{\partial T}(T)\right] \delta \psi$$

► In SE(3), the derivative is  $\frac{\partial}{\partial \delta \psi} f(T \exp(\hat{\delta \psi})))\Big|_{\delta \psi = 0}$ 

# Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations
- ▶ Assumption: linear velocity  $\mathbf{v}_t \in \mathbb{R}^3$  instead of linear acceleration  $\mathbf{a}_t \in \mathbb{R}^3$  measurements are available
- ▶ Assumption: known world-frame landmark coordinates  $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ Assumption: the data association  $\Delta_t : \{1, \ldots, M\} \rightarrow \{1, \ldots, N_t\}$ stipulating that landmark *j* corresponds to observation  $\mathbf{z}_{t,i} \in \mathbb{R}^4$  with  $i = \Delta_t(j)$  at time *t* is known or provided by an external algorithm
- ▶ **Objective**: given IMU measurements  $\mathbf{u}_{0:T}$  with  $\mathbf{u}_t := [\mathbf{v}_t^{\top}, \, \boldsymbol{\omega}_t^{\top}]^{\top} \in \mathbb{R}^6$ and feature observations  $\mathbf{z}_{0:T}$ , estimate the pose  $T_t := {}_W T_{I,t} \in SE(3)$ of the IMU over time

#### Pose Kinematics with Perturbation

• Motion model for the continuous-time IMU pose T(t) with noise w(t):

$$\dot{\mathcal{T}} = \mathcal{T} \left( \hat{\mathbf{u}} + \hat{\mathbf{w}} 
ight) \qquad \qquad \mathbf{u}(t) := \begin{bmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}(t) \end{bmatrix} \in \mathbb{R}^6$$

To consider a Gaussian distribution over *T*, express it as a nominal pose µ ∈ SE(3) with small perturbation δµ ∈ se(3):

$$T = \mu \exp(\hat{\delta \mu}) \approx \mu \left(I + \hat{\delta \mu}\right)$$

Substitute the nominal + perturbed pose in the kinematic equations:

$$\dot{\mu}\left(l+\hat{\delta\mu}\right)+\mu\left(\hat{\delta\mu}\right)=\mu\left(l+\hat{\delta\mu}\right)\left(\hat{\mathbf{u}}+\hat{\mathbf{w}}\right)$$
$$\dot{\mu}+\dot{\mu}\hat{\delta\mu}+\mu\left(\hat{\delta\mu}\right)=\mu\hat{\mathbf{u}}+\mu\hat{\mathbf{w}}+\mu\hat{\delta\mu}\hat{\mathbf{u}}+\mu\hat{\delta\mu}\hat{\mathbf{w}}^{0}$$
$$\dot{\mu}=\mu\hat{\mathbf{u}}\qquad\mu\hat{\mathbf{u}}\hat{\delta\mu}+\mu\left(\hat{\delta\mu}\right)=\mu\hat{\mathbf{w}}+\mu\hat{\delta\mu}\hat{\mathbf{u}}$$
$$\dot{\mu}=\mu\hat{\mathbf{u}}\qquad\hat{\delta\mu}=\hat{\delta\mu}\hat{\mathbf{u}}-\hat{\mathbf{u}}\hat{\delta\mu}+\hat{\mathbf{w}}=\left(-\hat{\mathbf{u}}\delta\mu\right)^{\wedge}+\hat{\mathbf{w}}$$

# Pose Kinematics with Perturbation

▶ Using 
$$T = \mu \exp(\hat{\delta \mu}) \approx \mu \left(I + \hat{\delta \mu}\right)$$
, the pose kinematics  
 $\dot{T} = T \left(\hat{\mathbf{u}} + \hat{\mathbf{w}}\right)$  can be split into nominal and perturbation kinematics:

$$\begin{array}{ll} \mathsf{nominal}: \quad \dot{\boldsymbol{\mu}} = \boldsymbol{\mu} \hat{\mathbf{u}} \\ \hat{\mathbf{u}} := \begin{bmatrix} \hat{\boldsymbol{\omega}} & \hat{\mathbf{v}} \\ \mathbf{0} & \hat{\boldsymbol{\omega}} \end{bmatrix} \in \mathbb{R}^{6 \times 6} \\ \end{array}$$

ln discrete-time with discretization  $\tau_t$ , the above becomes:

nominal : 
$$\boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t \exp(\tau_t \hat{\mathbf{u}}_t)$$
  
perturbation :  $\delta \boldsymbol{\mu}_{t+1} = \exp(-\tau_t \overset{\downarrow}{\mathbf{u}}_t) \delta \boldsymbol{\mu}_t + \mathbf{w}_t$ 

This is useful to separate the effect of the noise w<sub>t</sub> from the motion of the deterministic part of T<sub>t</sub>. See Barfoot Ch. 7.2 for details.

#### **EKF** Prediction Step

- ► Prior:  $T_t | \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{t|t}, \boldsymbol{\Sigma}_{t|t})$  with  $\boldsymbol{\mu}_{t|t} \in SE(3)$  and  $\boldsymbol{\Sigma}_{t|t} \in \mathbb{R}^{6 \times 6}$
- This means that  $T_t = \mu_{t|t} \exp(\hat{\delta \mu}_{t|t})$  with  $\delta \mu_{t|t} \sim \mathcal{N}(0, \Sigma_{t|t})$
- ►  $\Sigma_{t|t}$  is 6 × 6 because only the 6 degrees of freedom of  $T_t$  are changing
- Motion Model: nominal kinematics of μ<sub>t|t</sub> and perturbation kinematics of δμ<sub>t|t</sub> with time discretization τ<sub>t</sub>:

$$\mu_{t+1|t} = \mu_{t|t} \exp\left(\tau_t \hat{\mathbf{u}}_t\right)$$
$$\delta \mu_{t+1|t} = \exp\left(-\tau_t \overset{\wedge}{\mathbf{u}}_t\right) \delta \mu_{t|t} + \mathbf{w}_t$$

**EKF Prediction Step** with  $\mathbf{w}_t \sim \mathcal{N}(0, W)$ :

$$\mu_{t+1|t} = \mu_{t|t} \exp\left(\tau_{t} \hat{\mathbf{u}}_{t}\right)$$
$$\Sigma_{t+1|t} = \mathbb{E}[\delta\mu_{t+1|t}\delta\mu_{t+1|t}^{\top}] = \exp\left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t|t} \exp\left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top} + W$$

where

$$\mathbf{u}_t := \begin{bmatrix} \mathbf{v}_t \\ \boldsymbol{\omega}_t \end{bmatrix} \in \mathbb{R}^6 \quad \hat{\mathbf{u}}_t := \begin{bmatrix} \hat{\boldsymbol{\omega}}_t & \mathbf{v}_t \\ \mathbf{0}^\top & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{4 \times 4} \quad \dot{\mathbf{u}}_t := \begin{bmatrix} \hat{\boldsymbol{\omega}}_t & \hat{\mathbf{v}}_t \\ \mathbf{0} & \hat{\boldsymbol{\omega}}_t \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$
27

# EKF Update Step

- ▶ Prior:  $T_{t+1|z_{0:t}}, u_{0:t} \sim \mathcal{N}(\mu_{t+1|t}, \Sigma_{t+1|t})$  with  $\mu_{t+1|t} \in SE(3)$  and  $\Sigma_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- **Observation Model**: with measurement noise  $\mathbf{v}_t \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t+1,i} = h(T_{t+1}, \mathbf{m}_j) + \mathbf{v}_{t+1,i} := K_s \pi \left( {}_O T_I T_{t+1}^{-1} \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t+1,i}$$

- ▶ The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose  $T_{t+1} \in SE(3)$  instead of the landmark positions  $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ We need the observation model Jacobian  $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$  with respect to the IMU pose  $T_{t+1}$ , evaluated at  $\mu_{t+1|t}$

#### EKF Update Step

- ▶ Let the elements of  $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$  corresponding to different observations *i* be  $H_{t+1,i} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time t + 1 using an IMU pose perturbation δμ is:

$$\mathbf{z}_{t+1,i} = \mathcal{K}_{s}\pi \left( {}_{O}\mathcal{T}_{I} \left( \boldsymbol{\mu}_{t+1|t} \exp\left( \hat{\delta \boldsymbol{\mu}} \right) \right)^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$\approx \mathcal{K}_{s}\pi \left( {}_{O}\mathcal{T}_{I} \left( I - \hat{\delta \boldsymbol{\mu}} \right) \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$= \mathcal{K}_{s}\pi \left( {}_{O}\mathcal{T}_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} - {}_{O}\mathcal{T}_{I} \left( \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot} \delta \boldsymbol{\mu} \right) + \mathbf{v}_{t+1,i}$$

$$\approx \underbrace{\mathcal{K}_{s}\pi \left( {}_{O}\mathcal{T}_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)}_{\tilde{z}_{t+1,i}} \underbrace{-\mathcal{K}_{s} \frac{d\pi}{d\mathbf{q}} \left( {}_{O}\mathcal{T}_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) {}_{O}\mathcal{T}_{I} \left( \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot}}_{\mathcal{H}_{t+1,i}} \delta \boldsymbol{\mu} + \mathbf{v}_{t+1,i}$$

where for homogeneous coordinates  $\underline{s} \in \mathbb{R}^4$  and  $\hat{\boldsymbol{\xi}} \in \mathfrak{se}(3)$ :

$$\hat{\boldsymbol{\xi}} \underline{\mathbf{s}} = \underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \qquad \begin{bmatrix} \mathbf{s} \\ 1 \end{bmatrix}^{\odot} := \begin{bmatrix} I & -\hat{\mathbf{s}} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 6}$$

# EKF Update Step

• Prior: 
$$\mu_{t+1|t} \in SE(3)$$
 and  $\Sigma_{t+1|t} \in \mathbb{R}^{6 imes 6}$ 

- Known: stereo calibration matrix K<sub>s</sub>, extrinsics <sub>O</sub>T<sub>I</sub> ∈ SE(3), landmark positions m ∈ ℝ<sup>3M</sup>, new observations z<sub>t+1</sub> ∈ ℝ<sup>4N<sub>t+1</sub></sup>
- Predicted observation based on  $\mu_{t+1|t}$  and known correspondences  $\Delta_t$ :

$$ilde{\mathbf{z}}_{t+1,i} := \mathcal{K}_{\mathbf{s}} \pi \left( {}_{\mathcal{O}} \mathcal{T}_{l} \boldsymbol{\mu}_{t+1|t}^{-1} \mathbf{\underline{m}}_{j} 
ight) \qquad ext{for } i = 1, \dots, \mathcal{N}_{t+1}$$

▶ Jacobian of  $\tilde{z}_{t+1,i}$  with respect to  $T_{t+1}$  evaluated at  $\mu_{t+1|t}$ :

$$H_{t+1,i} = -K_s \frac{d\pi}{d\mathbf{q}} \left( {}_O T_I \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_j \right) {}_O T_I \left( \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_j \right)^{\odot} \in \mathbb{R}^{4 \times 6}$$

Perform the EKF update:

$$\begin{split} & \mathcal{K}_{t+1} = \Sigma_{t+1|t} \mathcal{H}_{t+1}^{\top} \left( \mathcal{H}_{t+1} \Sigma_{t+1|t} \mathcal{H}_{t+1}^{\top} + I \otimes V \right)^{-1} \\ & \mu_{t+1|t+1} = \mu_{t+1|t} \exp\left( (\mathcal{K}_{t+1} (\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1}))^{\wedge} \right) \qquad \mathcal{H}_{t+1} = \begin{bmatrix} \mathcal{H}_{t+1,1} \\ \vdots \\ \mathcal{H}_{t+1,N_{t+1}} \end{bmatrix} \\ & \Sigma_{t+1|t+1} = (I - \mathcal{K}_{t+1} \mathcal{H}_{t+1}) \Sigma_{t+1|t} \end{split}$$