ECE276A: Sensing \& Estimation in Robotics Lecture 14: SO(3) and SE(3) Geometry and Kinematics

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Special Orthogonal Group SO(3)

- The orientation R of a rigid body can be described by a matrix in the special orthogonal group:

$$
S O(3):=\{R \in \mathbb{R}^{3 \times 3} \mid \underbrace{R^{\top} R=1}_{\text {distances preserved }}, \underbrace{\operatorname{det}(R)=1}_{\text {no reflection }}\}
$$

- It can be verified that $S O(3)$ satisfies all requirements of a group:
- Closure: $R_{1} R_{2} \in S O$ (3)
- Identity: $I \in S O(3)$
- Inverse: $R^{-1}=R^{\top} \in S O(3)$
- Associativity: $\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$ for all $R_{1}, R_{2}, R_{3} \in S O(3)$

Parametrization of $S O(3)$

- Rotation Matrix: an element of the Special Orthogonal Group:

$$
R \in S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=I, \operatorname{det}(R)=1\right\}
$$

- Euler Angles: roll ϕ, pitch θ, yaw ψ specifying a rzyx rotation:

$$
R=R_{z}(\psi) R_{y}(\theta) R_{x}(\phi)
$$

- Axis-Angle: $\boldsymbol{\theta} \in \mathbb{R}^{3}$ specifying a rotation about an axis $\boldsymbol{\eta}:=\frac{\theta}{\|\boldsymbol{\theta}\|}$ through an angle $\theta:=\|\boldsymbol{\theta}\|$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=I+\hat{\boldsymbol{\theta}}+\frac{1}{2!} \hat{\boldsymbol{\theta}}^{2}+\frac{1}{3!} \hat{\theta}^{3}+\ldots
$$

- Unit Quaternion: $\mathbf{q}=\left[q_{s}, \mathbf{q}_{v}\right] \in\left\{q \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{\top} \mathbf{q}_{v}=1\right\}:$

$$
\begin{array}{ll}
R=E(\mathbf{q}) G(\mathbf{q})^{\top} & E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\hat{\mathbf{q}}_{v}\right] \\
& G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\hat{\mathbf{q}}_{v}\right]
\end{array}
$$

Special Euclidean Group $S E(3)$

- The pose T of a rigid body can be described by a matrix in the special Euclidean group:

$$
S E(3):=\left\{T: \left.=\left[\begin{array}{rr}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\}
$$

- It can be verified that $S E(3)$ satisfies all requirements of a group:
- Closure: $T_{1} T_{2}=\left[\begin{array}{cc}R_{1} & \mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right]\left[\begin{array}{cc}R_{2} & \mathbf{p}_{2} \\ \mathbf{0}^{\top} & 1\end{array}\right]=\left[\begin{array}{cc}R_{1} R_{2} & R_{1} \mathbf{p}_{2}+\mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$
- Identity: $\left[\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in S E(3)$
- Inverse: $\left[\begin{array}{cc}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}R^{\top} & -R^{\top} \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$
- Associativity: $\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$ for all $T_{1}, T_{2}, T_{3} \in \operatorname{SE}(3)$

Matrix Lie Group

- $S O$ (3) and $S E(3)$ are matrix Lie groups
- A group is a set of elements with an operation that combines any two elements to form a third element also in the set. A group satisfies four axioms: closure, associativity, identity, and invertibility
- A manifold is a topological space that is locally homeomorphic to Euclidean space but globally may have more complicated structure
- A Lie group is a group that is also a differentiable manifold with the property that the group operations are smooth
- A matrix Lie group further specifies that the group elements are matrices, the combination operation is matrix multiplication, and the inversion operation is matrix inversion
- The exponential map relates a matrix Lie group to its Lie algebra

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} \quad \log (A)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(A-I)^{n}
$$

Lie Algebra

- A Lie algebra is a vector space \mathbb{V} over some field \mathbb{F} with a binary operation, $[\cdot, \cdot]$, called a Lie bracket
- For all $X, Y, Z \in \mathbb{V}$ and $a, b \in \mathbb{F}$, the Lie bracket satisfies:
closure: $\quad[X, Y] \in \mathbb{V}$
bilinearity: $\quad[a X+b Y, Z]=a[X, Z]+b[Y, Z]$
$[Z, a X+b Y]=a[Z, X]+b[Z, Y]$
alternating : $\quad[X, X]=0$
Jacobi identity : $\quad[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$
- A Lie algebra may be associated with every Lie group. The vector space of a Lie algebra forms the tangent space to the Lie group at the identity element of the group.

Lie Group and Lie Algebra Visualization

- Lie Group: free of singularities but has constraints
- Lie Algebra: free of constraints but has singularities

Figure: $\operatorname{SE}(3)$ and the corresponding Lie algebra $\mathfrak{s e}(3)$ as tangent space at identity

SO(3) Geometry

Special Orthogonal Lie Algebra so(3)

- The Lie algebra of $S O(3)$ is the space of skew-symmetric matrices

$$
\mathfrak{s o}(3):=\left\{\hat{\boldsymbol{\theta}} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^{3}\right\}
$$

- The Lie bracket of $\mathfrak{s o (3)}$ is:

$$
\left[\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}\right]=\hat{\boldsymbol{\theta}}_{1} \hat{\boldsymbol{\theta}}_{2}-\hat{\boldsymbol{\theta}}_{2} \hat{\boldsymbol{\theta}}_{1}=\left(\hat{\boldsymbol{\theta}}_{1} \boldsymbol{\theta}_{2}\right)^{\wedge} \in \mathfrak{s o}(3)
$$

- Generators of $\mathfrak{s o}(3)$: derivatives of rotations around each standard axis:

$$
G_{x}=\left.\frac{d}{d \phi} R_{x}(\phi)\right|_{\phi=0}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad G_{y}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad G_{z}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- The elements $\hat{\boldsymbol{\theta}}=\theta_{1} G_{x}+\theta_{2} G_{y}+\theta_{3} G_{z} \in \mathfrak{s o}$ (3) are linear combinations of the generators

Exponential Map from $\mathfrak{s o (3)}$ to $S O(3)$

- The elements $R \in S O(3)$ are related to the elements $\hat{\boldsymbol{\theta}} \in \mathfrak{s o}$ (3) through the exponential map:

$$
R=\exp (\hat{\boldsymbol{\theta}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\theta}})^{n}
$$

- The exponential map is surjective but not injective, i.e., every element of $S O(3)$ can be generated from multiple elements of $\mathfrak{s o (3)}$
- Any vector $(\|\boldsymbol{\theta}\|+2 \pi k) \frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}$ for integer k leads to the same $R \in S O(3)$
- The exponential map is not commutative, $e^{\hat{\boldsymbol{\theta}}_{1}} e^{\hat{\boldsymbol{\theta}}_{2}} \neq e^{\hat{\boldsymbol{\theta}}_{2}} e^{\hat{\boldsymbol{\theta}}_{1}} \neq e^{\hat{\boldsymbol{\theta}}_{1}+\hat{\boldsymbol{\theta}}_{2}}$, unless $\left[\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}\right]=\hat{\boldsymbol{\theta}}_{1} \hat{\boldsymbol{\theta}}_{2}-\hat{\boldsymbol{\theta}}_{2} \hat{\boldsymbol{\theta}}_{1}=0$

Rodrigues Formula

- A closed-from expression for the exponential map from $\mathfrak{s o (3)}$ to $S O(3)$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2}
$$

- The formula is derived using that $\hat{\boldsymbol{\theta}}^{2 n+1}=\left(-\boldsymbol{\theta}^{\top} \boldsymbol{\theta}\right)^{n} \hat{\boldsymbol{\theta}}$:

$$
\begin{aligned}
\exp (\hat{\boldsymbol{\theta}}) & =I+\sum_{n=1}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\theta}}^{n} \\
& =I+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} \hat{\boldsymbol{\theta}}^{2 n+1}+\sum_{n=0}^{\infty} \frac{1}{(2 n+2)!} \hat{\boldsymbol{\theta}}^{2 n+2} \\
& =I+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\|\boldsymbol{\theta}\|^{2 n}}{(2 n+1)!}\right) \hat{\boldsymbol{\theta}}+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\|\boldsymbol{\theta}\|^{2 n}}{(2 n+2)!}\right) \hat{\boldsymbol{\theta}}^{2} \\
& =I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2}
\end{aligned}
$$

Logarithm Map from $S O(3)$ to $\mathfrak{s o}(3)$

- $\forall R \in S O$ (3), there exists a (non-unique) $\boldsymbol{\theta} \in \mathbb{R}^{3}$ such that $R=\exp (\hat{\boldsymbol{\theta}})$
- The logarithm map $\log : S O(3) \rightarrow \mathfrak{s o}(3)$ is the inverse of $\exp (\hat{\boldsymbol{\theta}})$:

$$
\begin{aligned}
& \theta=\|\boldsymbol{\theta}\|=\arccos \left(\frac{\operatorname{tr}(R)-1}{2}\right) \\
& \boldsymbol{\eta}=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}=\frac{1}{2 \sin (\|\boldsymbol{\theta}\|)}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right] \\
& \hat{\boldsymbol{\theta}}=\log (R)=\frac{\|\boldsymbol{\theta}\|}{2 \sin \|\boldsymbol{\theta}\|}\left(R-R^{\top}\right)
\end{aligned}
$$

- If $R=I$, then $\theta=0$ and $\boldsymbol{\eta}$ is undefined
- If $\operatorname{tr}(R)=-1$, then $\theta=\pi$ and for any $i \in\{1,2,3\}$:

$$
\eta=\frac{1}{\sqrt{2\left(1+e_{i}^{T} R e_{i}\right)}}(I+R) e_{i}
$$

- The log map has a singularity at $\theta=0$ because there are infinite choices of rotation axes or equivalently the exponential map is many-to-one.
- The matrix exponential "integrates" $\hat{\boldsymbol{\theta}} \in \mathfrak{s e}(3)$ for one second; the matrix logarithm "differentiates" $R \in S O(3)$ to obtain $\hat{\boldsymbol{\theta}} \in \mathfrak{s e}(3)$

SO(3) Jacobians

- The left Jacobian of $S O(3)$ is the matrix:

$$
J_{L}(\boldsymbol{\theta}):=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}(\hat{\boldsymbol{\theta}})^{n} \quad R=I+\hat{\boldsymbol{\theta}} J_{L}(\boldsymbol{\theta})
$$

- The right Jacobian of $S O(3)$ is the matrix:

$$
J_{R}(\boldsymbol{\theta}):=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}(-\hat{\boldsymbol{\theta}})^{n} \quad J_{R}(\boldsymbol{\theta})=J_{L}(-\boldsymbol{\theta})=J_{L}(\boldsymbol{\theta})^{\top}=R^{\top} J_{L}(\boldsymbol{\theta})
$$

- Baker-Campbell-Hausdorff Formulas: the $S O$ (3) Jacobians relate small perturbations in $\mathfrak{s o (3)}$ to small perturbations in $S O(3)$:

$$
\left.\begin{array}{rl}
\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right) & \approx \exp (\hat{\boldsymbol{\theta}}) \exp \left(\left(J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \\
& \approx \exp \left(\left(J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}})
\end{array}\right] \begin{array}{ll}
J_{L}\left(\boldsymbol{\theta}_{2}\right)^{-1} \boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2} & \text { if } \boldsymbol{\theta}_{1} \text { is small } \\
\log \left(\exp \left(\hat{\boldsymbol{\theta}}_{1}\right) \exp \left(\hat{\boldsymbol{\theta}}_{2}\right)\right)^{\vee} & \approx \begin{cases}\boldsymbol{\theta}_{1}+J_{R}\left(\boldsymbol{\theta}_{1}\right)^{-1} \boldsymbol{\theta}_{2} & \text { if } \boldsymbol{\theta}_{2} \text { is small }\end{cases}
\end{array}
$$

Closed-forms of the $S O(3)$ Jacobians

$$
\begin{aligned}
J_{L}(\boldsymbol{\theta}) & =I+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\theta}}^{2} \approx I+\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{L}(\boldsymbol{\theta})^{-1} & =I-\frac{1}{2} \hat{\boldsymbol{\theta}}+\left(\frac{1}{\|\boldsymbol{\theta}\|^{2}}-\frac{1+\cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2} \approx I-\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{R}(\boldsymbol{\theta}) & =I-\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\theta}}^{2} \approx I-\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{R}(\boldsymbol{\theta})^{-1} & =I+\frac{1}{2} \hat{\boldsymbol{\theta}}+\left(\frac{1}{\|\boldsymbol{\theta}\|^{2}}-\frac{1+\cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2} \approx I+\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{L}(\boldsymbol{\theta}) J_{L}(\boldsymbol{\theta})^{T} & =I+\left(1-2 \frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2} \succ 0 \\
\left(J_{L}(\boldsymbol{\theta}) J_{L}(\boldsymbol{\theta})^{T}\right)^{-1} & =I+\left(1-2 \frac{\|\boldsymbol{\theta}\|^{2}}{1-\cos \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2}
\end{aligned}
$$

Distances in $S O(3)$

- There are two ways to define the difference between two rotations:

$$
\boldsymbol{\theta}_{12}=\log \left(R_{1}^{\top} R_{2}\right)^{\vee} \quad \boldsymbol{\theta}_{21}=\log \left(R_{2} R_{1}^{\top}\right)^{\vee} \quad R_{1}, R_{2} \in S O(3)
$$

- Inner product on $\mathfrak{s o (3)}$:

$$
\left\langle\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}\right\rangle=\frac{1}{2} \operatorname{tr}\left(\hat{\boldsymbol{\theta}}_{1}^{\top} \hat{\boldsymbol{\theta}}_{2}\right)=\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{2}
$$

- The metric distance between two rotations may be defined in two ways as the magnitude of the rotation difference:

$$
\begin{aligned}
& \theta_{12}:=\sqrt{\left\langle\log \left(R_{1}^{\top} R_{2}\right), \log \left(R_{1}^{\top} R_{2}\right)\right\rangle}=\left\|\boldsymbol{\theta}_{12}\right\|_{2} \\
& \theta_{21}:=\sqrt{\left\langle\log \left(R_{2} R_{1}^{\top}\right), \log \left(R_{2} R_{1}^{\top}\right)\right\rangle}=\left\|\boldsymbol{\theta}_{21}\right\|_{2}
\end{aligned}
$$

Integration in $S O(3)$

- The distance between a rotation $R=\exp (\hat{\boldsymbol{\theta}})$ and a small perturbation $\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right)$ can be approximated using the BCH formulas:

$$
\begin{aligned}
& \log \left(\exp (\hat{\boldsymbol{\theta}})^{\top} \exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right)\right)^{\vee} \approx \log \left(R^{\top} R \exp \left(\left(J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right)\right)^{\vee}=J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta} \\
& \log \left(\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}})^{\top}\right)^{\vee} \approx \log \left(\exp \left(\left(J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) R R^{\top}\right)^{\vee}=J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}
\end{aligned}
$$

- Regardless of which distance metric we use, the infinitesimal volume element is the same:

$$
\operatorname{det}\left(J_{L}(\boldsymbol{\theta})\right)=\operatorname{det}\left(J_{R}(\boldsymbol{\theta})\right) \quad d R=|\operatorname{det}(J(\boldsymbol{\theta}))| d \boldsymbol{\theta}=2\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) d \boldsymbol{\theta}
$$

- Integrating functions of rotations can then be carried out as follows:

$$
\int_{S O(3)} f(R) d R=\int_{\|\boldsymbol{\theta}\|<\pi} f(\exp (\hat{\boldsymbol{\theta}}))|\operatorname{det}(J(\boldsymbol{\theta}))| d \boldsymbol{\theta}
$$

Derivatives in $S O(3)$

- Consider $\mathbf{s} \in \mathbb{R}^{3}$ rotated by a rotation matrix $R \in S O(3)$ to a new frame
- How do we compute the derivative of $R \mathbf{s}$ with respect to the rotation R ?
- Let $\boldsymbol{\theta} \in \mathbb{R}^{3}$ be the Lie algebra vector representing R, i.e., $R=\exp (\hat{\boldsymbol{\theta}})$
- We can compute derivatives with respect to the elements of $\boldsymbol{\theta}$:

$$
\begin{array}{r}
\frac{\partial R \mathbf{s}}{\partial \theta_{i}}=\lim _{h \rightarrow 0} \frac{\exp \left(\left(\boldsymbol{\theta}+h \mathbf{e}_{i}\right)^{\wedge}\right) \mathbf{s}-\exp (\hat{\boldsymbol{\theta}}) \mathbf{s}}{h} \\
\xlongequal[\text { Formula }]{\frac{\mathrm{BCH}}{}} \lim _{h \rightarrow 0} \frac{\exp \left(\left(h J_{L}(\boldsymbol{\theta}) \mathbf{e}_{i}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}}) \mathbf{s}-\exp (\hat{\boldsymbol{\theta}}) \mathbf{s}}{h} \\
\xlongequal{\exp (\hat{\boldsymbol{\theta}}) \approx I+\hat{\delta} \hat{\boldsymbol{\theta}}} \\
\lim _{h \rightarrow 0} \frac{\left(I+h\left(J_{L}(\boldsymbol{\theta}) \mathbf{e}_{i}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}}) \mathbf{s}-\exp (\hat{\boldsymbol{\theta}}) \mathbf{s}}{h} \\
=\left(J_{L}(\boldsymbol{\theta}) \mathbf{e}_{i}\right)^{\wedge} R \mathbf{s}=-(R \mathbf{s})^{\wedge} J_{L}(\boldsymbol{\theta}) \mathbf{e}_{i} \\
\text { Stacking the three directional derivatives: } \frac{\partial R \mathbf{s}}{\partial \boldsymbol{\theta}}=-(R \mathbf{s})^{\wedge} J_{L}(\boldsymbol{\theta})
\end{array}
$$

Derivatives in $S O(3)$

- Perturbation in $\mathfrak{s o}(3)$: the gradient can also be obtained via a small perturbation $\delta \boldsymbol{\theta}$ to the axis-angle vector $\boldsymbol{\theta}$:

$$
\begin{aligned}
&\left.\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right) \mathbf{s} \stackrel{\mathrm{BCH}}{\approx} \exp \left(\left(J_{L} \boldsymbol{\theta}\right) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}}) \mathbf{s} \\
& \approx\left(I+\left(J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}}) \mathbf{s} \\
&=R \mathbf{s}+\left(J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge} R \mathbf{s}=R \mathbf{s} \underbrace{-(R \mathbf{s})^{\wedge} J_{L}(\boldsymbol{\theta})}_{\frac{\partial R \mathbf{s}}{\partial \boldsymbol{\theta}}} \delta \boldsymbol{\theta}
\end{aligned}
$$

- This is the same as using first-order Taylor series to identify the Jacobian of a function $f(\mathbf{x})$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- Perturbation in $S O(3)$: a small perturbation $\boldsymbol{\psi}=J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}$ may also be applied directly to R :

$$
\exp (\hat{\psi}) R \mathbf{s} \approx(I+\hat{\psi}) R \mathbf{s}=R \mathbf{s}-(R \mathbf{s})^{\wedge} \boldsymbol{\psi}
$$

Gradient Descent in $S O(3)$

- Consider $\min _{\mathrm{x}} \mathrm{f}(\mathrm{x})$
- Gradient descent in \mathbb{R}^{d} : given an initial guess $\mathbf{x}^{(k)}$ take a step of size $\alpha^{(k)}>0$ along the descent direction $\delta \mathbf{x}^{(k)}=-\nabla f\left(\mathbf{x}^{(k)}\right)$:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)}
$$

- Consider $\min _{R} f(R \mathbf{s})$
- Gradient descent in $S O(3)$: given an initial guess $R^{(k)}$ take a step of size $\alpha^{(k)}>0$ along the descent direction $\boldsymbol{\psi}^{(k)}=-\boldsymbol{\delta}^{(k)}$:

$$
R^{(k+1)}=\exp \left(\alpha^{(k)} \hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)}
$$

where $\boldsymbol{\delta}^{(k)}$ should be the gradient of f wrt R evaluated at $R^{(k)} \mathbf{S}$

Choosing a Descent Direction in $S O(3)$

- Use a perturbation $\psi^{(k)}$ around the initial guess $R^{(k)}$ to determine the gradient $\boldsymbol{\delta}^{(k)}$:

$$
\begin{aligned}
f\left(\exp \left(\hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)} \mathbf{s}\right) & \approx f\left(\left(I+\hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)} \mathbf{s}\right) \\
& =f\left(R^{(k)} \mathbf{s}-\left(R^{(k)} \mathbf{s}\right)^{\wedge} \boldsymbol{\psi}^{(k)}\right) \\
& \approx f\left(R^{(k)} \mathbf{s}\right) \underbrace{-\nabla f\left(R^{(k)} \mathbf{s}\right)^{\top}\left(R^{(k)} \mathbf{s}\right)^{\wedge}}_{\boldsymbol{\delta}^{(k)} \top} \boldsymbol{\psi}^{(k)}
\end{aligned}
$$

- Gradient descent in $S O(3)$: given an initial guess $R^{(k)}$ take a step of size $\alpha^{(k)}>0$ along the descent direction $\boldsymbol{\psi}^{(k)}=-\boldsymbol{\delta}^{(k)}$:

$$
\begin{aligned}
\boldsymbol{\psi}^{(k)} & =-\left(R^{(k)} \mathbf{s}\right)^{\wedge} \nabla f\left(R^{(k)} \mathbf{s}\right) \\
R^{(k+1)} & =\exp \left(\alpha^{(k)} \hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)}
\end{aligned}
$$

Gauss-Newton Optimization in $S O(3)$

- Optimization problem:

$$
\min _{R} f(R):=\frac{1}{2} \sum_{j} \mathbf{e}_{j}\left(R \mathbf{s}_{j}\right)^{\top} \mathbf{e}_{j}\left(R \mathbf{s}_{j}\right)
$$

- Linearize $f(R)$ using $\mathbf{e}_{j}^{(k)}:=\mathbf{e}_{j}\left(R^{(k)} \mathbf{s}_{j}\right)$ and $J_{j}^{(k)}:=-\frac{d \mathbf{e}_{j}}{d \mathbf{x}}\left(R^{(k)} \mathbf{s}_{j}\right)\left(R^{(k)} \mathbf{s}_{j}\right)^{\wedge}$

$$
f\left(R^{(k+1)}\right)=f\left(\exp \left(\hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)}\right) \approx \frac{1}{2} \sum_{j}\left(\mathbf{e}_{j}^{(k)}+J_{j}^{(k)} \boldsymbol{\psi}^{(k)}\right)^{\top}\left(\mathbf{e}_{j}^{(k)}+J_{j}^{(k)} \boldsymbol{\psi}^{(k)}\right)
$$

- The cost is quadratic in $\psi^{(k)}$ and setting its gradient to zero leads to:

$$
\left(\sum_{j} J_{j}^{(k)}\left(J_{j}^{(k)}\right)^{\top}\right) \psi^{(k)}=-\sum_{j}\left(J_{j}^{(k)}\right)^{\top} \mathbf{e}_{j}^{(k)}
$$

- Apply the optimal perturbation $\boldsymbol{\psi}^{(k)}$ to the initial guess $R^{(k)}$ according to the left perturbation scheme:

$$
R^{(k+1)}=\exp \left(\alpha^{(k)} \hat{\boldsymbol{\psi}}^{(k)}\right) R^{(k)}
$$

Adjoints

- The adjoint operator of a Lie group linearly transforms tangent vectors from one tangent space to another
- The adjoint of $R \in S O(3)$ is $\operatorname{Ad}(R)=R$
- $\operatorname{Ad}(S O(3)):=S O(3)$ is a matrix Lie group
- The adjoint of the Lie algebra is the derivative of Ad at identity

$$
\operatorname{ad}(\hat{\boldsymbol{\theta}})=\hat{\boldsymbol{\theta}}
$$

- $\operatorname{ad}(\mathfrak{s o}(3)):=\mathfrak{s o}(3)$ is the Lie algebra associated with $\operatorname{Ad}(S O(3))$
- Ad and ad are related through the exponential map:

$$
\operatorname{Ad}(\exp (\hat{\boldsymbol{\theta}}))=\exp (\operatorname{ad}(\hat{\boldsymbol{\theta}}))
$$

$S O(3)$ and $\mathfrak{s o (3)}$ Identities

$$
\begin{array}{rlrl}
R=\exp (\hat{\boldsymbol{\theta}}) & =\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\theta}}^{n}=I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2} \approx I+\hat{\boldsymbol{\theta}} \\
R^{-1}=R^{\top} & =\exp (-\hat{\boldsymbol{\theta}})=\sum_{n=0}^{\infty} \frac{1}{n!}(-\hat{\boldsymbol{\theta}})^{n} \approx I-\hat{\boldsymbol{\theta}} \\
\operatorname{det}(R) & =1 & \hat{\boldsymbol{\theta}}^{\top} & =-\hat{\boldsymbol{\theta}} \\
\operatorname{tr}(R) & =2 \cos \|\boldsymbol{\theta}\|+1 & \hat{\boldsymbol{\theta}} \boldsymbol{\theta} & =0 \\
R \boldsymbol{\theta} & =\boldsymbol{\theta} & (\boldsymbol{A} \boldsymbol{\theta})^{\wedge} & =\hat{\boldsymbol{\theta}}(\operatorname{tr}(A) I-A)-A^{\top} \hat{\boldsymbol{\theta}}, \quad A \in \mathbb{R}^{3 \times 3} \\
R \hat{\boldsymbol{\theta}} & =\hat{\boldsymbol{\theta}} R & \hat{\boldsymbol{\theta}} \hat{\boldsymbol{\phi}} & =\phi \boldsymbol{\theta}^{\top}-\left(\boldsymbol{\theta}^{\top} \boldsymbol{\phi}\right) I, \quad \phi \in \mathbb{R}^{3} \\
(R \mathbf{s})^{\wedge} & =R \hat{\mathbf{s}} R^{\top}, \quad \mathbf{s} \in \mathbb{R}^{3} & \hat{\boldsymbol{\theta}}^{2 k+1} & =\left(-\boldsymbol{\theta}^{\top} \boldsymbol{\theta}\right)^{k} \hat{\boldsymbol{\theta}} \\
\exp \left((R \mathbf{s})^{\wedge}\right) & =R \exp (\hat{\mathbf{s}}) R^{\top} & {[\boldsymbol{\theta}, \boldsymbol{\phi}]} & =\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\phi}}-\hat{\boldsymbol{\phi}} \hat{\boldsymbol{\theta}}=(\hat{\boldsymbol{\theta}} \boldsymbol{\phi})^{\wedge}
\end{array}
$$

SE(3) Geometry

Special Euclidean Lie Algebra $\mathfrak{s e}(3)$

- The Lie algebra of $\operatorname{SE}(3)$ is the space of twist matrices:

$$
\mathfrak{s e}(3):=\left\{\hat{\boldsymbol{\xi}}: \left.=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{\xi}=\left[\begin{array}{c}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6}\right\}
$$

- The Lie bracket of $\mathfrak{s e}(3)$ is:

$$
\left[\hat{\boldsymbol{\xi}}_{1}, \hat{\boldsymbol{\xi}}_{2}\right]=\hat{\boldsymbol{\xi}}_{1} \hat{\boldsymbol{\xi}}_{2}-\hat{\boldsymbol{\xi}}_{2} \hat{\boldsymbol{\xi}}_{1}=\left(\hat{\boldsymbol{\xi}}_{1} \boldsymbol{\xi}_{2}\right)^{\wedge} \in \mathfrak{s e}(3) \quad \hat{\boldsymbol{\xi}}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
0 & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The elements $T \in S E(3)$ are related to the elements $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$ through the exponential map:

$$
T=\exp (\hat{\boldsymbol{\xi}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\xi}})^{n} \quad \boldsymbol{\xi}=\log (T)^{\vee}
$$

Exponential Map from $\mathfrak{s e}(3)$ to $S E(3)$

- The exponential map is surjective but not injective, i.e., every element of $S E(3)$ can be generated from multiple elements of $\mathfrak{s e}(3)$
- Rodrigues Formula: obtained using $\hat{\boldsymbol{\xi}}^{4}+\|\boldsymbol{\theta}\|^{2} \hat{\boldsymbol{\xi}}^{2}=0$:

$$
\begin{aligned}
T & =\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\xi}}^{n}= \\
& =I+\hat{\boldsymbol{\xi}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\xi}}^{2}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\xi}}^{3}
\end{aligned}
$$

- Logarithm map log : $S E(3) \rightarrow \mathfrak{s e}(3):$ for any $T \in S E(3)$, there exists a (non-unique) $\boldsymbol{\xi} \in \mathbb{R}^{6}$ such that:

$$
\boldsymbol{\xi}=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right]=\log (T)^{\vee}:= \begin{cases}\boldsymbol{\theta}=\log (R)^{\vee}, \boldsymbol{\rho}=J_{L}^{-1}(\boldsymbol{\theta}) \mathbf{p}, & \text { if } R \neq \boldsymbol{I} \\
\boldsymbol{\theta}=0, \boldsymbol{\rho}=\mathbf{p}, & \text { if } R=\boldsymbol{I}\end{cases}
$$

SE(3) Jacobians

- Left Jacobian of $\operatorname{SE}(3): \mathcal{J}_{L}(\xi)=\left[\begin{array}{cc}J_{L}(\boldsymbol{\theta}) & Q_{L}(\xi) \\ 0 & J_{L}(\boldsymbol{\theta})\end{array}\right]$
- Right Jacobian of $\operatorname{SE}(3): \mathcal{J}_{R}(\xi)=\left[\begin{array}{cc}J_{R}(\theta) & Q_{R}(\xi) \\ 0 & J_{R}(\theta)\end{array}\right]$
- Baker-Campbell-Hausdorff Formulas: the $S E(3)$ Jacobians relate small perturbations in $\mathfrak{s e}(3)$ to small perturbations in $S E(3)$:

$$
\begin{aligned}
\exp \left((\xi+\delta \boldsymbol{\xi})^{\wedge}\right) & \approx \exp (\hat{\xi}) \exp \left(\left(\mathcal{J}_{R}(\xi) \delta \boldsymbol{\xi}\right)^{\wedge}\right) \\
& \approx \exp \left(\left(\mathcal{J}_{L}(\xi) \delta \boldsymbol{\xi}\right)^{\wedge}\right) \exp (\hat{\xi}) \\
\log \left(\exp \left(\hat{\boldsymbol{\xi}}_{1}\right) \exp \left(\hat{\xi}_{2}\right)\right)^{\vee} & \approx \begin{cases}\mathcal{J}_{L}\left(\xi_{2}\right)^{-1} \xi_{1}+\xi_{2} & \text { if } \boldsymbol{\xi}_{1} \text { is small } \\
\xi_{1}+\mathcal{J}_{R}\left(\xi_{1}\right)^{-1} \xi_{2} & \text { if } \boldsymbol{\xi}_{2} \text { is small }\end{cases}
\end{aligned}
$$

Closed-forms of the $S E(3)$ Jacobians

$$
\begin{aligned}
\mathcal{J}_{L}(\boldsymbol{\xi})= & \sum_{n=0}^{\infty} \frac{1}{(n+1)!}(\hat{\boldsymbol{\xi}})^{n}=\left[\begin{array}{cc}
J_{L}(\boldsymbol{\theta}) & Q_{L}(\boldsymbol{\xi}) \\
0 & J_{L}(\boldsymbol{\theta})
\end{array}\right] \\
= & I+\left(\frac{4-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-4 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\xi}}+\left(\frac{4\|\boldsymbol{\theta}\|-5 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\xi}}^{2} \\
& +\left(\frac{2-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-2 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{4}}\right) \hat{\boldsymbol{\xi}}^{3}+\left(\frac{2\|\boldsymbol{\theta}\|-3 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{5}}\right) \hat{\boldsymbol{q}}^{4} \\
\approx & I+\frac{1}{2} \hat{\boldsymbol{\xi}} \\
\mathcal{J}_{L}(\boldsymbol{\xi})^{-1}= & {\left[\begin{array}{c}
J_{L}(\boldsymbol{\theta})^{-1} \\
\mathbf{0} \quad-J_{L}(\boldsymbol{\theta})^{-1} Q_{L}(\boldsymbol{\xi}) J_{L}(\boldsymbol{\theta})^{-1} \\
J_{L}(\boldsymbol{\theta})^{-1}
\end{array}\right] \approx I-\frac{1}{2} \hat{\boldsymbol{\xi}} } \\
Q_{L}(\boldsymbol{\xi})= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(n+m+2)!} \hat{\boldsymbol{\theta}}^{n} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}^{m} \\
= & \frac{1}{2} \hat{\boldsymbol{\rho}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right)(\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}+\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}})+\left(\frac{\|\boldsymbol{\theta}\|^{2}+2 \cos \|\boldsymbol{\theta}\|-2}{2\|\boldsymbol{\theta}\|^{4}}\right)\left(\hat{\boldsymbol{\theta}}^{2} \hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}^{2}-3 \hat{\boldsymbol{\theta}} \hat{\rho} \hat{\boldsymbol{\theta}}\right) \\
& +\left(\frac{2\|\boldsymbol{\theta}\|-3 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{5}}\right)\left(\hat{\boldsymbol{\theta}} \hat{\rho} \hat{\boldsymbol{\theta}}^{2}+\hat{\boldsymbol{\theta}}^{2} \hat{\rho} \hat{\boldsymbol{\theta}}\right)
\end{aligned}
$$

$$
Q_{R}(\xi)=Q_{L}(-\xi)=R Q_{L}(\xi)+\left(J_{L}(\theta) \rho\right)^{\wedge} R J_{L}(\theta)
$$

Adjoints

- The adjoint operator of a Lie group linearly transforms tangent vectors from one tangent space to another
- The adjoint of $T=\left[\begin{array}{cc}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$ is: $\operatorname{Ad}(T):=\left[\begin{array}{cc}R & \hat{\mathbf{p}} R \\ \mathbf{0} & R\end{array}\right] \in \mathbb{R}^{6 \times 6}$
- $\operatorname{Ad}(S E(3)):=\left\{\operatorname{Ad}(T) \in \mathbb{R}^{6 \times 6} \mid T \in S E(3)\right\}$ is a matrix Lie group
- The adjoint of $\hat{\boldsymbol{\xi}}=\left[\begin{array}{cc}\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\ \mathbf{0}^{\top} & 0\end{array}\right] \in \mathfrak{s e}(3)$ is:

$$
\operatorname{ad}(\hat{\boldsymbol{\xi}}):=\hat{\boldsymbol{\xi}}=\left[\begin{array}{ll}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- $\operatorname{ad}(\mathfrak{s e}(3)):=\left\{\operatorname{ad}(\hat{\boldsymbol{\xi}}) \in \mathbb{R}^{6 \times 6} \mid \hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)\right\}$ is the Lie algebra associated with $\operatorname{Ad}(S E(3))$
- The relationship between $\hat{\xi}$ and $\mathcal{T}:=\operatorname{Ad}(T)$ is specified by the exponential map:

$$
\begin{equation*}
\mathcal{T}=\exp (\hat{\boldsymbol{\xi}})=I+\hat{\boldsymbol{\xi}} \mathcal{J}_{L}(\boldsymbol{\xi}) \quad \mathcal{J}_{L}(\boldsymbol{\xi})=\mathcal{T} \mathcal{J}_{R}(\boldsymbol{\xi})=\mathcal{J}_{R}(-\boldsymbol{\xi}) \tag{29}
\end{equation*}
$$

Pose Lie Groups and Lie Algebras

$$
\begin{array}{cccc}
& \text { Lie algebra } & & \text { Lie group } \\
4 \times 4 & \boldsymbol{\xi}^{\wedge} \in \mathfrak{s c}(3) & \xrightarrow{\text { exp }} & \mathbf{T} \in S E(3) \\
& \downarrow \text { ad } & & \downarrow \operatorname{Ad} \\
6 \times 6 & \boldsymbol{\xi}^{\wedge} \in \operatorname{ad}(\mathfrak{s e}(3)) & \xrightarrow{\exp } \boldsymbol{\mathcal { T }} \in \operatorname{Ad}(\operatorname{SE}(3))
\end{array}
$$

$$
\begin{aligned}
\mathcal{T} & =\operatorname{Ad} \underbrace{(\exp (\hat{\xi}))}_{T}=\exp \underbrace{(\operatorname{ad}(\hat{\xi}))}_{\hat{\xi}} \quad \xi=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6} \\
& =\operatorname{Ad}\left(\exp \left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{T} & 0
\end{array}\right]\right)\right)=\exp \left(\operatorname{ad}\left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{T} & 0
\end{array}\right]\right)\right) \\
& =\operatorname{Ad}\left(\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]\right)=\exp \left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right]
\end{aligned}
$$

Rodrigues Formula for the Adjoint of $S E(3)$

- The exponential map is surjective but not injective, i.e., every element of $\operatorname{Ad}(S E(3))$ can be generated from multiple elements of $\operatorname{ad}(\mathfrak{s e}(3))$
- Rodrigues Formula: using $(\hat{\boldsymbol{\xi}})^{5}+2\|\boldsymbol{\theta}\|^{2}(\hat{\boldsymbol{\xi}})^{3}+\|\boldsymbol{\theta}\|^{4} \hat{\boldsymbol{\xi}}=0$ we can obtain a direct expression of $\mathcal{T} \in \operatorname{Ad}(\operatorname{SE}(3))$ in terms of $\boldsymbol{\xi}=\left[\begin{array}{c}\boldsymbol{\rho} \\ \boldsymbol{\theta}\end{array}\right] \in \mathbb{R}^{6}$:

$$
\begin{align*}
\mathcal{T}= & \operatorname{Ad}(T)=\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\xi}})^{n} \\
= & I+\left(\frac{3 \sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\xi}}+\left(\frac{4-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-4 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{2}}\right)(\hat{\boldsymbol{\xi}})^{2} \\
& +\left(\frac{\sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{3}}\right)(\hat{\boldsymbol{\xi}})^{3}+\left(\frac{2-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-2 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{4}}\right)(\hat{\boldsymbol{\xi}}) \tag{4}
\end{align*}
$$

Distances in $S E(3)$

- Two ways to define differences between $S E(3)$ and $\operatorname{Ad}(S E(3))$ elements:

$$
\begin{aligned}
& \boldsymbol{\xi}_{12}=\log \left(T_{1}^{-1} T_{2}\right)^{\vee}=\log \left(\mathcal{T}_{1}^{-1} \mathcal{T}_{2}\right)^{\curlyvee} \\
& \boldsymbol{\xi}_{21}=\log \left(T_{2} T_{1}^{-1}\right)^{\vee}=\log \left(\mathcal{T}_{2} \mathcal{T}_{1}^{-1}\right)^{\curlyvee}
\end{aligned}
$$

- Inner product on $\mathfrak{s e}(3)$ and $\operatorname{ad}(\mathfrak{s e}(3))$:

$$
\begin{aligned}
& \left\langle\hat{\boldsymbol{\xi}}_{1}, \hat{\boldsymbol{\xi}}_{2}\right\rangle=\operatorname{tr}\left(\hat{\boldsymbol{\xi}}_{1}\left[\begin{array}{cc}
\frac{1}{2} l & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \hat{\boldsymbol{\xi}}_{2}^{\top}\right)=\boldsymbol{\xi}_{1}^{\top} \boldsymbol{\xi}_{2} \\
& \left\langle\hat{\boldsymbol{\xi}}_{1}, \hat{\boldsymbol{\xi}}_{2}\right\rangle=\operatorname{tr}\left(\hat{\boldsymbol{\xi}}_{1}\left[\begin{array}{cc}
\frac{1}{4} I & \mathbf{0} \\
\mathbf{0} & \frac{1}{2} I
\end{array}\right] \hat{\boldsymbol{\xi}}_{2}^{\top}\right)=\boldsymbol{\xi}_{1}^{\top} \boldsymbol{\xi}_{2}
\end{aligned}
$$

- The right and left distances on $S E(3)$ and $\operatorname{Ad}(S E(3))$ are:

$$
\begin{aligned}
& \xi_{12}=\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{12}, \hat{\boldsymbol{\xi}}_{12}\right\rangle}=\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{12}, \hat{\boldsymbol{\xi}}_{12}\right\rangle}=\sqrt{\boldsymbol{\xi}_{12}^{\top} \boldsymbol{\xi}_{12}}=\left\|\boldsymbol{\xi}_{12}\right\|_{2} \\
& \xi_{21}=\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{21}, \hat{\boldsymbol{\xi}}_{21}\right\rangle}=\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{21}, \boldsymbol{\xi}_{21}\right\rangle}=\sqrt{\boldsymbol{\xi}_{21}^{\top} \boldsymbol{\xi}_{21}}=\left\|\boldsymbol{\xi}_{21}\right\|_{2}
\end{aligned}
$$

Integration in $S E(3)$

- The distance between a pose $T=\exp (\hat{\boldsymbol{\xi}})$ and a small perturbation $\exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right)$ can be approximated using the BCH formulas:

$$
\begin{aligned}
& \log \left(\exp (\hat{\boldsymbol{\xi}})^{-1} \exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right)\right)^{\vee} \approx \mathcal{J}_{R}(\boldsymbol{\xi}) \delta \boldsymbol{\xi} \\
& \log \left(\exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right) \exp (\hat{\boldsymbol{\xi}})^{-1}\right)^{\vee} \approx \mathcal{J}_{L}(\boldsymbol{\xi}) \delta \boldsymbol{\xi}
\end{aligned}
$$

- Regardless whether the left or the right distance metric is used, the infinitesimal volume element is:

$$
|\operatorname{det}(\mathcal{J}(\boldsymbol{\xi}))|=|\operatorname{det}(J(\boldsymbol{\theta}))|^{2}=4\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right)^{2}
$$

- Integrating functions of poses can then be carried out as follows:

$$
\int_{S E(3)} f(T) d T=\int_{\mathbb{R}^{3},\|\boldsymbol{\theta}\|<\pi} f(\exp (\hat{\boldsymbol{\xi}}))|\operatorname{det}(\mathcal{J}(\boldsymbol{\xi}))| d \boldsymbol{\xi}
$$

Lie Algebra $\mathfrak{s e}$ (3) Identities

$$
\begin{aligned}
& \hat{\boldsymbol{\xi}}=\left[\begin{array}{l}
\hat{\boldsymbol{\rho}} \\
\boldsymbol{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\xi}=\operatorname{ad}(\hat{\boldsymbol{\xi}})=\left[\begin{array}{l}
\hat{\boldsymbol{\rho}} \\
\boldsymbol{\theta}
\end{array}\right]=\left[\begin{array}{ll}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6} \\
& \hat{\zeta} \boldsymbol{\xi}=-\hat{\xi} \zeta \\
& \hat{\xi} \boldsymbol{\xi}=0 \\
& \hat{\xi}^{4}+\left(\mathbf{s}^{\top} \mathbf{s}\right) \hat{\xi}^{2}=0 \quad \mathbf{s} \in \mathbb{R}^{3} \\
& (\hat{\boldsymbol{\xi}})^{5}+2\left(\mathbf{s}^{\top} \mathbf{s}\right)(\hat{\boldsymbol{\xi}})^{3}+\left(\mathbf{s}^{\top} \mathbf{s}\right)^{2} \hat{\xi}=0 \\
& \boldsymbol{m}^{\odot}:=\left[\begin{array}{l}
\mathbf{s} \\
\lambda
\end{array}\right]^{\odot}=\left[\begin{array}{cc}
\lambda / & -\hat{\mathbf{s}} \\
\mathbf{0}^{\top} & \mathbf{0}^{\top}
\end{array}\right] \in \mathbb{R}^{4 \times 6} \quad \boldsymbol{m}^{\odot}:=\left[\begin{array}{c}
\mathbf{s} \\
\lambda
\end{array}\right]^{\odot}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{s} \\
-\hat{\mathbf{s}} & \mathbf{0}
\end{array}\right] \in \mathbb{R}^{6 \times 4} \\
& \hat{\boldsymbol{\xi}} \mathbf{m}=\mathbf{m}^{\odot} \boldsymbol{\xi} \\
& \mathbf{m}^{\top} \hat{\boldsymbol{\xi}}=\boldsymbol{\xi}^{\top} \mathbf{m}^{\odot}
\end{aligned}
$$

Lie Group $S E(3)$ Identities

$$
\begin{aligned}
T & =\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\xi}}^{n}=I+\hat{\boldsymbol{\xi}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\xi}}^{2}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\xi}}^{3} \approx I+\hat{\boldsymbol{\xi}} \\
T^{-1} & =\exp (-\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (-\hat{\boldsymbol{\theta}}) & -\exp (-\hat{\boldsymbol{\theta}}) J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!}(-\hat{\boldsymbol{\xi}})^{n} \approx I-\hat{\boldsymbol{\xi}} \\
\operatorname{det}(T) & =1 \\
\operatorname{tr}(T) & =2 \cos \|\boldsymbol{\theta}\|+2 \\
T \hat{\boldsymbol{\xi}} & =\hat{\boldsymbol{\xi}} T
\end{aligned}
$$

Lie Group $\operatorname{Ad}(S E(3))$ Identities

$$
\begin{aligned}
& \mathcal{T}=\operatorname{Ad}(T)=\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\xi}^{n}=I+\left(\frac{3 \sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|}\right) \hat{\xi}+\left(\frac{4-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-4 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{2}}\right)(\hat{\xi})^{2} \\
& +\left(\frac{\sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{3}}\right)(\hat{\xi})^{3}+\left(\frac{2-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-2 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{4}}\right)(\hat{\xi})^{4} \approx I+\hat{\boldsymbol{\xi}} \\
& \mathcal{T}^{-1}=\exp (-\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (-\hat{\boldsymbol{\theta}}) & -\exp (-\hat{\boldsymbol{\theta}})\left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \\
0 & \exp (-\hat{\boldsymbol{\theta}})
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!}(-\hat{\boldsymbol{\xi}})^{n} \approx I-\hat{\boldsymbol{\xi}} \\
& \mathcal{T} \boldsymbol{\xi}=\boldsymbol{\xi} \\
& (\mathcal{T} \zeta)^{\wedge}=T \hat{\zeta} T^{-1} \\
& \mathcal{T} \stackrel{\boldsymbol{\xi}}{ }=\hat{\boldsymbol{\xi}} \mathcal{T}
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left((\mathcal{T} \zeta)^{\wedge}\right)=T \exp (\hat{\boldsymbol{\zeta}}) T^{-1} \quad \exp ((\hat{\mathcal{T}} \boldsymbol{\zeta}))=\mathcal{T} \exp \left(\begin{array}{l}
\hat{\zeta}
\end{array}\right) \mathcal{T}^{-1} \\
& (T \mathbf{m})^{\odot}=T \mathbf{m}^{\odot} \mathcal{T}^{-1} \\
& \left((T \mathbf{m})^{\odot}\right)^{T}(T \mathbf{m})^{\odot}=\mathcal{T}^{-T}\left(\mathbf{m}^{\odot}\right)^{T} \mathbf{m}^{\odot} \mathcal{T}^{-1}
\end{aligned}
$$

SO(3) and SE(3) Kinematics

Rotation Kinematics

- The trajectory $R(t)$ of a continuous rotation motion should satisfy:

$$
R^{\top}(t) R(t)=I \quad \Rightarrow \quad \dot{R}^{\top}(t) R(t)+R^{\top}(t) \dot{R}(t)=0
$$

- The matrix $R^{\top}(t) \dot{R}(t)$ is skew-symmetric and there must exist some vector-valued function $\boldsymbol{\omega}(t) \in \mathbb{R}^{3}$ such that:

$$
R^{\top}(t) \dot{R}(t)=\hat{\omega}(t) \Rightarrow \dot{R}(t)=R(t) \hat{\omega}(t)
$$

- A skew-symmetric matrix gives a first order approximation to a rotation matrix:

$$
R(t+d t) \approx R(t)+R(t) \hat{\omega}(t) d t
$$

Rotation Kinematics

- Let $R \in S O(3)$ be the orientation of a rigid body rotating with angular velocity $\omega \in \mathbb{R}^{3}$ with respect to the world frame.
- Rotation kinematic equations of motion:

$$
\dot{R}=R \hat{\omega}_{B}=\hat{\omega}_{W} R
$$

where $\boldsymbol{\omega}_{B}$ and $\boldsymbol{\omega}_{W}:=R \boldsymbol{\omega}_{B}$ are the body-frame and world-frame coordinates of ω, respectively.

- Assuming $\boldsymbol{\omega}$ is constant over a short period τ :

$$
R(t+\tau)=R(t) \exp \left(\tau \hat{\omega}_{B}\right)=\exp \left(\tau \hat{\omega}_{W}\right) R(t)
$$

- Discrete Rotation Kinematics: let $R_{k}:=R\left(t_{k}\right), \tau_{k}:=t_{k+1}-t_{k}$, and $\boldsymbol{\omega}_{k}:=\boldsymbol{\omega}_{B}\left(t_{k}\right)$ leading to:

$$
R_{k+1}=R_{k} \exp \left(\tau_{k} \hat{\boldsymbol{\omega}}_{k}\right)
$$

Pose Kinematics

- Angular velocity: $R^{\top}(t) \dot{R}(t)=1 \quad \Rightarrow \quad R^{\top}(t) \dot{R}(t)=\hat{\boldsymbol{\omega}}(t) \in \mathfrak{s o}(3)$
- Twist: similarly for $T(t) \in S E(3)$ consider:

$$
T^{-1}(t) \dot{T}(t)=\left[\begin{array}{cc}
R^{\top}(t) \dot{R}(t) & R^{\top}(t) \dot{\mathbf{p}}(t) \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}(t) & \mathbf{v}(t) \\
0 & 0
\end{array}\right] \in \mathfrak{s e}(3)
$$

where $\hat{\boldsymbol{\omega}}(t):=R^{\top}(t) \dot{R}(t)$ and $\mathbf{v}(t):=R^{\top}(t) \dot{\mathbf{p}}(t)$ are the body-frame angular and linear velocities of the body

- Generalized velocity: $\boldsymbol{\zeta}(t):=\left[\begin{array}{c}\mathbf{v}(t) \\ \boldsymbol{\omega}(t)\end{array}\right] \in \mathbb{R}^{6}$
- $\boldsymbol{\zeta}(t)$ is the velocity of the body frame moving relative to the world frame as viewed in the body frame
- Continuous-time Pose Kinematics:

$$
\dot{T}(t)=T(t) \hat{\zeta}(t)
$$

- Discrete-time Pose Kinematics:

$$
T_{k+1}=T_{k} \exp \left(\tau_{k} \hat{\zeta}_{k}\right)
$$

Pose Kinematics

- Consider a moving body frame $\{B\}$ with pose $T(t) \in S E(3)$
- Let $\mathbf{s}_{B} \in \mathbb{R}^{3}$ be a point in the body frame with homogeneous coordinates $\underline{\mathbf{s}}_{B}$
- The velocity of \mathbf{s}_{B} with respect to the world frame $\{W\}$ can be determined as follows:

$$
\begin{aligned}
\underline{\mathbf{s}}_{W}(t) & =T(t) \underline{\mathbf{s}}_{B} \\
\underline{\mathbf{s}}_{W}(t) & =\dot{T}(t) \underline{\mathbf{s}}_{B}=\dot{T}(t) T(t)^{-1} \underline{\mathbf{s}}_{W}(t) \\
& =T(t) \hat{\boldsymbol{\zeta}}(t) T(t)^{-1} \underline{\mathbf{s}}_{W}(t) \\
& =\left[\begin{array}{cc}
R(t) \hat{\boldsymbol{\omega}}(t) R(t)^{\top} & R(t) \mathbf{v}(t)-R(t) \hat{\boldsymbol{\omega}}(t) R(t)^{\top} \mathbf{p}(t) \\
\mathbf{0}^{\top} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{W}(t) \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
(R(t) \boldsymbol{\omega}(t))^{\wedge}\left(\mathbf{s}_{W}(t)-\mathbf{p}(t)\right)+R(t) \mathbf{v}(t) \\
1
\end{array}\right.
\end{aligned}
$$

