ECE276A: Sensing \& Estimation in Robotics Lecture 3: Linear Algebra (Review)

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Field

- A field is a set F with two binary operations, $+: F \times F \mapsto F$ (addition) and $\cdot: F \times F \mapsto F$ (multiplication), which satisfy the following axioms:
- Associativity: $a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c, \forall a, b, c \in F$
- Commutativity: $a+b=b+a$ and $a b=b a, \forall a, b \in F$
- Identity: $\exists 1,0 \in F$ such that $a+0=a$ and $a 1=a, \forall a \in F$
- Inverse: $\forall a \in F, \exists-a \in F$ such that $a+(-a)=0$

$$
\forall a \in F \backslash\{0\}, \exists a^{-1} \in F \backslash\{0\} \text { such that } a a^{-1}=1
$$

- Distributivity: $a(b+c)=(a b)+(a c), \forall a, b, c \in F$
- Examples: real numbers \mathbb{R}, complex numbers \mathbb{C}, rational numbers \mathbb{Q}

Vector Space

- A vector space over a field F is a set V with two binary operations, $+: V \times V \mapsto V$ (addition) and $\cdot: F \times V \mapsto V$ (scalar multiplication), which satisfy the following axioms:
- Associativity: $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$
- Compatibility: $a(b \mathbf{x})=(a b) \mathbf{x}, \forall a, b \in F$ and $\forall \mathbf{x} \in V$
- Commutativity: $\mathbf{x}+\mathbf{y}=\mathbf{x}+\mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in V$
- Identity: $\exists \mathbf{0} \in V$ and $1 \in F$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $1 \mathbf{x}=\mathbf{x}, \forall \mathbf{x} \in V$
- Inverse: $\forall \mathbf{x} \in V, \exists-\mathbf{x} \in V$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
- Distributivity: $a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+b \mathbf{y}$ and $(a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{x}, \forall a, b \in F$ and $\forall \mathbf{x}, \mathbf{y} \in V$
- Examples: real vectors \mathbb{R}^{d}, complex vectors \mathbb{C}^{d}, rational vectors \mathbb{Q}^{d}, functions $\mathbb{R}^{d} \mapsto \mathbb{R}$

Basis and Dimension

- A basis of a vector space V over a field F is a set $B \subseteq V$ that satisfies:
- linear independence: for all finite $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subseteq B$, if $a_{1} \mathbf{x}_{1}+\cdots+a_{m} \mathbf{x}_{m}=0$ for some $a_{1}, \ldots, a_{m} \in F$, then $a_{1}=\cdots=a_{m}=0$
- B spans $V: \forall \mathbf{x} \in V, \exists \mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in B$ and unique $a_{1}, \ldots, a_{d} \in F$ such that $\mathbf{x}=a_{1} \mathbf{x}_{1}+\cdots+a_{d} \mathbf{x}_{d}$
- The dimension d of a vector space V is the cardinality of its bases

Inner Product and Norm

- An inner product on a vector space V over a field F is a function $\langle\cdot, \cdot\rangle: V \times V \mapsto F$ such that for all $a \in F$ and all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$:
$-\langle a \mathbf{x}, \mathbf{y}\rangle=a\langle\mathbf{x}, \mathbf{y}\rangle$
- $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$
- $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$
- $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
- $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if $\mathbf{x}=\mathbf{0}$
(homogeneity)
(additivity)
(conjugate symmetry)
(non-negativity)
(definiteness)
- A norm on a vector space V over a field F is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $a \in F$ and all $\mathbf{x}, \mathbf{y} \in V$:
- $\|a \mathbf{x}\|=|a|\|\mathbf{x}\|$
(absolute homogeneity)
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (triangle inequality)
- $\|x\| \geq 0$
(non-negativity)
- $\|\mathbf{x}\|=0$ if $\mathbf{x}=0$
(definiteness)

Euclidean Vector Space

- A Euclidean vector space \mathbb{R}^{d} is a vector space with finite dimension d over the real numbers \mathbb{R}
- A Euclidean vector $\mathbf{x} \in \mathbb{R}^{d}$ is a collection of scalars $x_{i} \in \mathbb{R}$ for $i=1, \ldots, d$ organized as a column:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- The transpose of $\mathbf{x} \in \mathbb{R}^{d}$ is organized as a row: $\mathbf{x}^{\top}=\left[\begin{array}{lll}x_{1} & \cdots & x_{d}\end{array}\right]$
- The Euclidean inner product between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ is:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{d} x_{i} y_{i}
$$

- The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^{d}$ is $\|\mathbf{x}\|_{2}:=\sqrt{\mathbf{x}^{\top} \mathbf{x}}$ and satisfies:
- $\max _{1 \leq i \leq d}\left|x_{i}\right| \leq\|\mathbf{x}\|_{2} \leq \sqrt{d} \max _{1 \leq i \leq d}\left|x_{i}\right|$
- $\left|\mathbf{x}^{\top} \mathbf{y}\right| \leq\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}$ (Cauchy-Schwarz Inequality)

Matrices

- A matrix $A \in \mathbb{R}^{m \times n}$ is a rectangular array of scalars $A_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$
- The entries of the transpose $A^{\top} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are $A_{i j}^{\top}=A_{j i}$. The transpose satisfies: $(A B)^{\top}=B^{\top} A^{\top}$
- The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} A_{i i} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
$$

- The Frobenius inner product between two matrices $X, Y \in \mathbb{R}^{m \times n}$ is:

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

- The Frobenius norm of a matrix $X \in \mathbb{R}^{m \times n}$ is: $\|X\|_{F}:=\sqrt{\operatorname{tr}\left(X^{\top} X\right)}$

Matrix Determinant and Inverse

- The determinant of a matrix $A \in \mathbb{R}^{n \times n}$ is:

$$
\operatorname{det}(A):=\sum_{j=1}^{n} A_{i j} \operatorname{cof}_{i j}(A)
$$

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)
$$

where $\operatorname{cof}_{i j}(A)$ is the cofactor of the entry $A_{i j}$ and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times(n-1)$ submatrix that results when the $i^{\text {th }}$-row and $j^{\text {th }}$-col of A are removed. This recursive definition uses the fact that the determinant of a scalar is the scalar itself.

- The adjugate is the transpose of the cofactor matrix:

$$
\operatorname{adj}(A):=\operatorname{cof}(A)^{\top}
$$

- The inverse A^{-1} of A exists iff $\operatorname{det}(A) \neq 0$ and satisfies:

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)} \quad(A B)^{-1}=B^{-1} A^{-1}
$$

Matrix Inversion Lemma

- Square completion:

$$
\frac{1}{2} x^{\top} A x+b^{\top} x+c=\frac{1}{2}\left(x+A^{-1} b\right)^{\top} A\left(x+A^{-1} b\right)+c-\frac{1}{2} b^{\top} A^{-1} b
$$

- Woodbury matrix identity:

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(C A^{-1} B+D^{-1}\right)^{-1} C A^{-1}
$$

- Block matrix inversion:

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]^{-1}\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right]\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
\end{aligned}
$$

Eigenvalue Decomposition

- For any $A \in \mathbb{R}^{n \times n}$, if there exists $\mathbf{q} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ and $\lambda \in \mathbb{C}$ such that:

$$
A \mathbf{q}=\lambda \mathbf{q}
$$

then \mathbf{q} is an eigenvector corresponding to the eigenvalue λ.

- A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs.
- Eigenvectors are not unique since for any $c \in \mathbb{C} \backslash\{0\}, c q$ is an eigenvector corresponding to the same eigenvalue.
- The n eigenvalues of $A \in \mathbb{R}^{n \times n}$ are precisely the n roots of the characteristic polynomial of A :

$$
p(\lambda):=\operatorname{det}(\lambda I-A)
$$

Eigenvalue Decomposition

- Diagonalizable matrix: n linearly independent eigenvectors \mathbf{q}_{i} can be found for $A \in \mathbb{R}^{n \times n}: A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$ for $i=1, \ldots, n$
- If the eigenvalues λ_{i} of A are distinct, then A is diagonalizable
- Eigen decomposition: if A is diagonalizable, we can stack all n equations $A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$ to obtain an eigen decomposition of A :

$$
A=Q \wedge Q^{-1}
$$

- Jordan decomposition: any A can be decomposed using an invertible matrix Q of generalized eigenvectors and an upper-triangular matrix J :

$$
A=Q J Q^{-1}
$$

- Jordan form J of A : an upper-triangular block-diagonal matrix:

$$
J=\operatorname{diag}\left(B\left(\lambda_{1}, m_{1}\right), \ldots, B\left(\lambda_{k}, m_{k}\right)\right)
$$

$$
\text { where } \lambda_{1}, \ldots, \lambda_{k} \text { are the eigenvalues }
$$ of A and $m_{1}+\cdots+m_{k}=n$.

$$
B(\lambda, m)=\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
\vdots & \ddots & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]_{11}
$$

Eigenvalue Decomposition

- The roots of a polynomial are continuous functions of its coefficients and hence the eigenvalues of a matrix are continuous functions of its entries.

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \lambda_{i} \quad \operatorname{det}(A):=\prod_{i=1}^{n} \lambda_{i}
$$

- A^{\top} has the same eigenvalues and eigenvectors as A
- $A^{\top} A$ has the same eigenvectors as A but its eigenvalues are λ^{2}
- A^{k} for $k=1,2, \ldots$ has the same eigenvectors as A but its eigenvalues are λ^{k}
- A^{-1} has the same eigenvectors as A but its eigenvalues are λ^{-1}
- The eigenvalues of A are invariant under any unitary transformation $U^{*} A U$ for $U^{*} U=U U^{*}=I$
- If A is symmetric, $A^{\top}=A$, then all its eigenvalues are real and all its eigenvectors may be chosen orthogonal: $Q^{-1}=Q^{\top}$

Singular Value Decomposition

- An eigen-decomposition does not exist for $A \in \mathbb{R}^{m \times n}$
- $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$ can be diagonalized by two orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ via singular value decomposition:

$$
A=U \Sigma V^{\top} \quad \Sigma=\left[\begin{array}{lll}
& \ddots & \\
& & \sigma_{r} \\
& &
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- U contains the m orthogonal eigenvectors of the symmetric matrix $A A^{\top} \in \mathbb{R}^{m \times m}$ and satisfies $U^{\top} U=U U^{\top}=I$
- V contains the n orthogonal eigenvectors of the symmetric matrix $A^{\top} A \in \mathbb{R}^{n \times n}$ and satisfies $V^{\top} V=V V^{\top}=I$
- Σ contains the singular values $\sigma_{i}=\sqrt{\lambda_{i}}$, equal to the square roots of the r non-zero eigenvalues λ_{i} of $A A^{\top}$ or $A^{\top} A$, on its diagonal
- If A is normal $\left(A^{\top} A=A A^{\top}\right)$, its singular values are related to its eigenvalues via $\sigma_{i}=\left|\lambda_{i}\right|$

Matrix Pseudo Inverse

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of $A \in \mathbb{R}^{m \times n}$ can be obtained from its SVD $A=U \Sigma V^{\top}$:

$$
A^{\dagger}=V \Sigma^{\dagger} U^{T} \quad \Sigma^{\dagger}=\left[\begin{array}{ccc}
1 / \sigma_{1} & & \\
& \ddots & \\
& & 1 / \sigma_{r} \\
& &
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ satisfies the Moore-Penrose conditions:
- $A A^{\dagger} A=A$
- $A^{\dagger} A A^{\dagger}=A^{\dagger}$
- $\left(A A^{\dagger}\right)^{\top}=A A^{\dagger}$
- $\left(A^{\dagger} A\right)^{\top}=A^{\dagger} A$

Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- The column space or image of A is $i m(A) \subseteq \mathbb{R}^{m}$ and is spanned by the r columns of U corresponding to non-zero singular values
- The null space or kernel of A is $\operatorname{ker}(A) \subseteq \mathbb{R}^{n}$ and is spanned by the $n-r$ columns of V corresponding to zero singular values
- The row space or co-image of A is $i m\left(A^{\top}\right) \subseteq \mathbb{R}^{n}$ and is spanned by the r columns of V corresponding to non-zero singular values
- The left null space or co-kernel of A is $\operatorname{ker}\left(A^{\top}\right) \subseteq \mathbb{R}^{m}$ and is spanned by the $m-r$ columns of U corresponding to zero singular values
- The domain of A is $\mathbb{R}^{n}=\operatorname{ker}(A) \oplus i m\left(A^{\top}\right)$
- The co-domain of A is $\mathbb{R}^{m}=\operatorname{ker}\left(A^{\top}\right) \oplus i m(A)$

Solution of Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- If $\mathbf{b} \in \operatorname{im}(A)$, i.e., $\mathbf{b}^{\top} \mathbf{v}=0$ for all $\mathbf{v} \in \operatorname{ker}\left(A^{\top}\right)$, then $A \mathbf{x}=\mathbf{b}$ has one or infinitely many solutions $\mathbf{x}=A^{\dagger} \mathbf{b}+\left(I-A^{\dagger} A\right) \mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{n}$
- If $\mathbf{b} \notin i m(A)$, then no solution exists and $\mathbf{x}=A^{\dagger} \mathbf{b}$ is an approximate solution with minimum $\|\mathbf{x}\|$ and $\|A \mathbf{x}-\mathbf{b}\|$ norms
- If $m=n=r$, then $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{\dagger} \mathbf{b}=A^{-1} \mathbf{b}$

Positive Semidefinite Matrices

- The product $\mathbf{x}^{\top} A \mathbf{x}$ for $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ is called a quadratic form and A can be assumed symmetric, $A=A^{\top}$, because:

$$
\frac{1}{2} \mathbf{x}^{\top}\left(A+A^{\top}\right) \mathbf{x}=\mathbf{x}^{\top} A \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if $\mathbf{x}^{\top} A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if it is positive semidefinite and if $\mathbf{x}^{\top} A \mathbf{x}=0$ implies $\mathbf{x}=0$.
- All eigenvalues of a symmetric positive semidefinite matrix are non-negative.
- All eigenvalues of a symmetric positive definite matrix are positive.

Schur Complement

- The Schur complement of block D of $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is $S_{D}=A-B D^{-1} C$
- The Schur complement of block A of $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is $S_{A}=D-C A^{-1} B$
- Let $M=\left[\begin{array}{cc}A & B \\ B^{\top} & D\end{array}\right]$ be symmetric. Then:
- $M \succ 0 \Leftrightarrow A \succ 0, S_{A}=D-B^{\top} A^{-1} B \succ 0$
- $M \succ 0 \Leftrightarrow D \succ 0, S_{D}=A-B D^{-1} B^{\top} \succ 0$
- $M \succeq 0 \Leftrightarrow A \succeq 0, S_{A} \succeq 0,\left(I-A A^{\dagger}\right) B=0$
- $M \succeq 0 \Leftrightarrow D \succeq 0, S_{D} \succeq 0,\left(I-D D^{\dagger}\right) B^{\top}=0$

Derivatives (numerator layout)

- Derivatives of $\mathbf{y} \in \mathbb{R}^{m}$ and $Y \in \mathbb{R}^{m \times n}$ by scalar $x \in \mathbb{R}$:

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
\frac{d y_{1}}{d x} \\
\vdots \\
\frac{d y_{m}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times 1} \quad \frac{d Y}{d x}=\left[\begin{array}{ccc}
\frac{d Y_{11}}{d x} & \cdots & \frac{d Y_{1 n}}{d x} \\
\vdots & \ddots & \vdots \\
\frac{d Y_{m 1}}{d x} & \cdots & \frac{d Y_{m n}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- Derivatives of $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^{m}$ by vector $\mathbf{x} \in \mathbb{R}^{p}$:

$$
\frac{d y}{d \mathbf{x}}=\underbrace{\left[\begin{array}{lll}
\frac{d y}{d x_{1}} & \cdots & \frac{d y}{d x_{p}}
\end{array}\right]}_{\left[\nabla_{\times} y\right]^{\top} \text { (gradient transpose) }} \in \mathbb{R}^{1 \times p} \quad \frac{d \mathbf{y}}{d \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{d y_{1}}{d x_{1}} & \cdots & \frac{d y_{1}}{d x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{d y_{m}}{d x_{1}} & \cdots & \frac{d y_{m}}{d x_{p}}
\end{array}\right]}_{\text {Jacobian }} \in \mathbb{R}^{m \times p}
$$

- Derivative of $y \in \mathbb{R}$ by matrix $X \in \mathbb{R}^{p \times q}$:

$$
\frac{d y}{d X}=\left[\begin{array}{ccc}
\frac{d y}{d X_{11}} & \cdots & \frac{d y}{d X_{p 1}} \\
\vdots & \ddots & \vdots \\
\frac{d y}{d X_{1 q}} & \cdots & \frac{d y}{d X_{p q}}
\end{array}\right] \in \mathbb{R}^{q \times p}
$$

Matrix Derivatives Example

$-\frac{d}{d X_{i j}} X=\mathbf{e}_{i} \mathbf{e}_{j}^{\top}$

- $\frac{d}{d x} A x=A$
$-\frac{d}{d \mathbf{x}} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top}\left(A+A^{\top}\right)$
- $\frac{d}{d x} M^{-1}(x)=-M^{-1}(x) \frac{d M(x)}{d x} M^{-1}(x)$
- $\frac{d}{d X} \operatorname{tr}\left(A X^{-1} B\right)=-X^{-1} B A X^{-1}$
- $\frac{d}{d X} \log \operatorname{det} X=X^{-1}$

Matrix Derivatives Example

- $\frac{d}{d x} A \mathbf{x}=\left[\begin{array}{ccc}\frac{d}{d x_{1}} \sum_{j=1}^{n} A_{1 j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{1 j} x_{j} \\ \vdots & \ddots & \vdots \\ \frac{d}{d x_{1}} \sum_{j=1}^{n} A_{m j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{m j} x_{j}\end{array}\right]=\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 n} \\ \vdots & \ddots & \vdots \\ A_{m 1} & \cdots & A_{m n}\end{array}\right]$
- $\frac{d}{d x} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} A^{\top} \frac{d \mathbf{x}}{d x}+\mathbf{x}^{\top} \frac{d A \mathbf{x}}{d \mathbf{x}}=\mathbf{x}^{\top}\left(A^{\top}+A\right)$
- $M(x) M^{-1}(x)=1 \Rightarrow 0=\left[\frac{d}{d x} M(x)\right] M^{-1}(x)+M(x)\left[\frac{d}{d x} M^{-1}(x)\right]$
- $\frac{d}{d X_{i j}} \operatorname{tr}\left(A X^{-1} B\right)=\operatorname{tr}\left(A \frac{d}{d X_{i j}} X^{-1} B\right)=-\operatorname{tr}\left(A X^{-1} \mathbf{e}_{i} \mathbf{e}_{j}^{\top} X^{-1} B\right)$

$$
=-\mathbf{e}_{j}^{\top} X^{-1} B A X^{-1} \mathbf{e}_{i}=-\mathbf{e}_{i}^{\top}\left(X^{-1} B A X^{-1}\right)^{\top} \mathbf{e}_{j}
$$

$$
\begin{aligned}
\frac{d}{d X_{i j}} \log \operatorname{det} X & =\frac{1}{\operatorname{det}(X)} \frac{d}{d X_{i j}} \sum_{k=1}^{n} X_{i k} \operatorname{cof}_{i k}(X) \\
& =\frac{1}{\operatorname{det}(X)} \operatorname{cof}_{i j}(X)=\frac{1}{\operatorname{det}(X)} \operatorname{adj}_{j i}(X)=\mathbf{e}_{i}^{\top} X^{-\top} \mathbf{e}_{j}
\end{aligned}
$$

