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Field

I A field is a set F with two binary operations, + : F × F 7→ F (addition)
and · : F × F 7→ F (multiplication), which satisfy the following axioms:

I Associativity: a + (b + c) = (a + b) + c and a(bc) = (ab)c , ∀a, b, c ∈ F

I Commutativity: a + b = b + a and ab = ba, ∀a, b ∈ F

I Identity: ∃1, 0 ∈ F such that a + 0 = a and a1 = a, ∀a ∈ F

I Inverse: ∀a ∈ F ,∃−a ∈ F such that a + (−a) = 0
∀a ∈ F \ {0},∃a−1 ∈ F \ {0} such that aa−1 = 1

I Distributivity: a(b + c) = (ab) + (ac), ∀a, b, c ∈ F

I Examples: real numbers R, complex numbers C, rational numbers Q
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Vector Space

I A vector space over a field F is a set V with two binary operations,
+ : V × V 7→ V (addition) and · : F × V 7→ V (scalar multiplication),
which satisfy the following axioms:

I Associativity: x + (y + z) = (x + y) + z, ∀x, y, z ∈ V

I Compatibility: a(bx) = (ab)x, ∀a, b ∈ F and ∀x ∈ V

I Commutativity: x + y = x + y, ∀x, y ∈ V

I Identity: ∃ 0 ∈ V and 1 ∈ F such that x + 0 = x and 1x = x, ∀x ∈ V

I Inverse: ∀x ∈ V ,∃−x ∈ V such that x + (−x) = 0

I Distributivity: a(x + y) = ax + by and (a + b)x = ax + bx, ∀a, b ∈ F
and ∀x, y ∈ V

I Examples: real vectors Rd , complex vectors Cd , rational vectors Qd ,
functions Rd 7→ R
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Basis and Dimension

I A basis of a vector space V over a field F is a set B ⊆ V that satisfies:
I linear independence: for all finite {x1, . . . , xm} ⊆ B,

if a1x1 + · · ·+ amxm = 0 for some a1, . . . , am ∈ F , then a1 = · · · = am = 0

I B spans V : ∀x ∈ V , ∃ x1, . . . , xd ∈ B and unique a1, . . . , ad ∈ F such
that x = a1x1 + · · ·+ adxd

I The dimension d of a vector space V is the cardinality of its bases
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Inner Product and Norm
I An inner product on a vector space V over a field F is a function
〈·, ·〉 : V × V 7→ F such that for all a ∈ F and all x, y, z ∈ V :

I 〈ax, y〉 = a〈x, y〉 (homogeneity)

I 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

I 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

I 〈x, x〉 ≥ 0 (non-negativity)

I 〈x, x〉 = 0 iff x = 0 (definiteness)

I A norm on a vector space V over a field F is a function ‖ · ‖ : V → R
such that for all a ∈ F and all x, y ∈ V :

I ‖ax‖ = |a|‖x‖ (absolute homogeneity)

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I ‖x‖ ≥ 0 (non-negativity)

I ‖x‖ = 0 iff x = 0 (definiteness)
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Euclidean Vector Space
I A Euclidean vector space Rd is a vector space with finite dimension d

over the real numbers R

I A Euclidean vector x ∈ Rd is a collection of scalars xi ∈ R for
i = 1, . . . , d organized as a column:

x =

x1...
xd


I The transpose of x ∈ Rd is organized as a row: x> =

[
x1 · · · xd

]
I The Euclidean inner product between two vectors x, y ∈ Rd is:

〈x, y〉 = x>y =
d∑

i=1

xiyi

I The Euclidean norm of a vector x ∈ Rd is ‖x‖2 :=
√

x>x and satisfies:
I max

1≤i≤d
|xi | ≤ ‖x‖2 ≤

√
d max

1≤i≤d
|xi |

I |x>y| ≤ ‖x‖2‖y‖2 (Cauchy-Schwarz Inequality)
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Matrices

I A matrix A ∈ Rm×n is a rectangular array of scalars Aij ∈ R for
i = 1, . . . ,m and j = 1, . . . , n

I The entries of the transpose A> ∈ Rn×m of a matrix A ∈ Rm×n are
A>ij = Aji . The transpose satisfies: (AB)> = B>A>

I The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC ) = tr(BCA) = tr(CAB)

I The Frobenius inner product between two matrices X ,Y ∈ Rm×n is:

〈X ,Y 〉 = tr(X>Y )

I The Frobenius norm of a matrix X ∈ Rm×n is: ‖X‖F :=
√

tr(X>X )
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Matrix Determinant and Inverse
I The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j

times the determinant of the (n − 1)× (n − 1) submatrix that results
when the i th-row and j th-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.

I The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)>

I The inverse A−1 of A exists iff det(A) 6= 0 and satisfies:

A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1
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Matrix Inversion Lemma
I Square completion:

1

2
x>Ax + b>x + c =

1

2

(
x + A−1b

)>
A
(
x + A−1b

)
+ c − 1

2
b>A−1b

I Woodbury matrix identity:

(A + BDC )−1 = A−1 − A−1B
(
CA−1B + D−1

)−1
CA−1

I Block matrix inversion:[
A B
C D

]−1
=

[
I 0

D−1C I

]−1 [
A− BD−1C 0

0 D

]−1 [
I BD−1

0 I

]−1
=

[
I 0

−D−1C I

] [(
A− BD−1C

)−1
0

0 D−1

] [
I −BD−1
0 I

]
=

[ (
A− BD−1C

)−1 −
(
A− BD−1C

)−1
BD−1

−D−1C
(
A− BD−1C

)−1
D−1 + D−1C

(
A− BD−1C

)−1
BD−1

]
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Eigenvalue Decomposition

I For any A ∈ Rn×n, if there exists q ∈ Cn \ {0} and λ ∈ C such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ.

I A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs.

I Eigenvectors are not unique since for any c ∈ C \ {0}, cq is an
eigenvector corresponding to the same eigenvalue.

I The n eigenvalues of A ∈ Rn×n are precisely the n roots of the
characteristic polynomial of A:

p(λ) := det(λI − A)
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Eigenvalue Decomposition
I Diagonalizable matrix: n linearly independent eigenvectors qi can be

found for A ∈ Rn×n: Aqi = λiqi for i = 1, . . . , n

I If the eigenvalues λi of A are distinct, then A is diagonalizable

I Eigen decomposition: if A is diagonalizable, we can stack all n
equations Aqi = λiqi to obtain an eigen decomposition of A:

A = QΛQ−1

I Jordan decomposition: any A can be decomposed using an invertible
matrix Q of generalized eigenvectors and an upper-triangular matrix J:

A = QJQ−1

I Jordan form J of A: an upper-triangular block-diagonal matrix:

J = diag(B(λ1,m1), . . . ,B(λk ,mk))

where λ1, . . . , λk are the eigenvalues
of A and m1 + · · ·+ mk = n.

B(λ,m) =


λ 1 0 0

0
. . .

. . . 0
...

. . . λ 1
0 0 0 λ
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Eigenvalue Decomposition
I The roots of a polynomial are continuous functions of its coefficients and

hence the eigenvalues of a matrix are continuous functions of its entries.

tr(A) :=
n∑

i=1

λi det(A) :=
n∏

i=1

λi

I A> has the same eigenvalues and eigenvectors as A

I A>A has the same eigenvectors as A but its eigenvalues are λ2

I Ak for k = 1, 2, . . . has the same eigenvectors as A but its eigenvalues
are λk

I A−1 has the same eigenvectors as A but its eigenvalues are λ−1

I The eigenvalues of A are invariant under any unitary transformation
U∗AU for U∗U = UU∗ = I

I If A is symmetric, A> = A, then all its eigenvalues are real and all its
eigenvectors may be chosen orthogonal: Q−1 = Q>
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Singular Value Decomposition
I An eigen-decomposition does not exist for A ∈ Rm×n

I A ∈ Rm×n with rank r ≤ min {m, n} can be diagonalized by two
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n via singular value
decomposition:

A = UΣV> Σ =


σ1

. . .

σr

 ∈ Rm×n

I U contains the m orthogonal eigenvectors of the symmetric matrix
AA> ∈ Rm×m and satisfies U>U = UU> = I

I V contains the n orthogonal eigenvectors of the symmetric matrix
A>A ∈ Rn×n and satisfies V>V = VV> = I

I Σ contains the singular values σi =
√
λi , equal to the square roots of

the r non-zero eigenvalues λi of AA> or A>A, on its diagonal

I If A is normal (A>A = AA>), its singular values are related to its
eigenvalues via σi = |λi | 13



Matrix Pseudo Inverse

I The pseudo-inverse A† ∈ Rn×m of A ∈ Rm×n can be obtained from its
SVD A = UΣV>:

A† = VΣ†UT Σ† =


1/σ1

. . .

1/σr

 ∈ Rn×m

I The pseudo-inverse A† ∈ Rn×m satisfies the Moore-Penrose conditions:
I AA†A = A
I A†AA† = A†

I
(
AA†

)>
= AA†

I
(
A†A

)>
= A†A
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Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I The column space or image of A is im(A) ⊆ Rm and is spanned by the
r columns of U corresponding to non-zero singular values

I The null space or kernel of A is ker(A) ⊆ Rn and is spanned by the
n − r columns of V corresponding to zero singular values

I The row space or co-image of A is im(A>) ⊆ Rn and is spanned by
the r columns of V corresponding to non-zero singular values

I The left null space or co-kernel of A is ker(A>) ⊆ Rm and is spanned
by the m − r columns of U corresponding to zero singular values

I The domain of A is Rn = ker(A)⊕ im(A>)

I The co-domain of A is Rm = ker(A>)⊕ im(A)
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Solution of Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I If b ∈ im(A), i.e., b>v = 0 for all v ∈ ker(A>), then Ax = b has one or
infinitely many solutions x = A†b + (I − A†A)y for any y ∈ Rn

I If b /∈ im(A), then no solution exists and x = A†b is an approximate
solution with minimum ‖x‖ and ‖Ax− b‖ norms

I If m = n = r , then Ax = b has a unique solution x = A†b = A−1b
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Positive Semidefinite Matrices

I The product x>Ax for A ∈ Rn×n and x ∈ Rn is called a quadratic form
and A can be assumed symmetric, A = A>, because:

1

2
x>(A + A>)x = x>Ax, ∀x ∈ Rn

I A symmetric matrix A ∈ Rn×n is positive semidefinite if x>Ax ≥ 0 for
all x ∈ Rn.

I A symmetric matrix A ∈ Rn×n is positive definite if it is positive
semidefinite and if x>Ax = 0 implies x = 0.

I All eigenvalues of a symmetric positive semidefinite matrix are
non-negative.

I All eigenvalues of a symmetric positive definite matrix are positive.
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Schur Complement

I The Schur complement of block D of M =

[
A B
C D

]
is SD =A−BD−1C

I The Schur complement of block A of M =

[
A B
C D

]
is SA =D−CA−1B

I Let M =

[
A B
B> D

]
be symmetric. Then:

I M � 0⇔ A � 0,SA = D − B>A−1B � 0

I M � 0⇔ D � 0,SD = A− BD−1B> � 0

I M � 0⇔ A � 0,SA � 0, (I − AA†)B = 0

I M � 0⇔ D � 0,SD � 0, (I − DD†)B> = 0
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Derivatives (numerator layout)
I Derivatives of y ∈ Rm and Y ∈ Rm×n by scalar x ∈ R:

dy

dx
=


dy1
dx
...

dym
dx

 ∈ Rm×1 dY

dx
=


dY11
dx · · · dY1n

dx
...

. . .
...

dYm1
dx · · · dYmn

dx

 ∈ Rm×n

I Derivatives of y ∈ R and y ∈ Rm by vector x ∈ Rp:

dy

dx
=

[
dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy ]
> (gradient transpose)

∈ R1×p dy

dx
=


dy1
dx1

· · · dy1
dxp

...
. . .

...
dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

∈ Rm×p

I Derivative of y ∈ R by matrix X ∈ Rp×q:

dy

dX
=


dy
dX11

· · · dy
dXp1

...
. . .

...
dy

dX1q
· · · dy

dXpq

 ∈ Rq×p
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Matrix Derivatives Example

I d
dXij

X = eie
>
j

I d
dxAx = A

I d
dxx>Ax = x>(A + A>)

I d
dxM

−1(x) = −M−1(x)dM(x)
dx M−1(x)

I d
dX tr(AX−1B) = −X−1BAX−1

I d
dX log detX = X−1

20



Matrix Derivatives Example

I d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn


I d

dxx>Ax = x>A> dx
dx + x> dAx

dx = x>(A> + A)

I M(x)M−1(x) = I ⇒ 0 =
[
d
dxM(x)

]
M−1(x) + M(x)

[
d
dxM

−1(x)
]

I

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

>
j X
−1B)

= −e>j X
−1BAX−1ei = −e>i

(
X−1BAX−1

)>
ej

I

d

dXij
log detX =

1

det(X )

d

dXij

n∑
k=1

Xikcof ik(X )

=
1

det(X )
cof ij(X ) =

1

det(X )
adjji (X ) = e>i X

−Tej
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