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Field

> A field is a set F with two binary operations, + : F x F — F (addition)
and - : F x F — F (multiplication), which satisfy the following axioms:

> Associativity: a+ (b+ c) = (a+ b) + ¢ and a(bc) = (ab)c, Va, b,c € F
» Commutativity: a+b=b+ aand ab=ba, Va,b € F
> Identity: 31,0 € F such that a+0=aand al =3, Vae F

> Inverse: Va € F,3—a € F such that a+ (—a) =0
Vaec F\{0},3a7t € F\ {0} such that aa=* =1

> Distributivity: a(b+ c¢) = (ab) + (ac), Va, b,c € F

» Examples: real numbers R, complex numbers C, rational numbers Q



Vector Space

» A vector space over a field F is a set V with two binary operations,
+:V x V— V (addition) and - : F x V — V (scalar multiplication),
which satisfy the following axioms:

> Associativity: x+ (y+2z) = (x+y)+ 2z Vx,y,ze V

» Compatibility: a(bx) = (ab)x, Va,b € F and Vx € V
Commutativity: x+y=x+y, Vx,y € V

Identity: 30 € V and 1€ F such that x+0=xand Ix=x, V¥x € V
Inverse: ¥x € V,3—x € V such that x + (—x) =0

vV v.v Yy

Distributivity: a(x +y) = ax + by and (a+ b)x = ax + bx, Va,b € F
and Vx,y € V

» Examples: real vectors R?, complex vectors C?, rational vectors Q9,
functions RY — R



Basis and Dimension

» A basis of a vector space V over a field F is a set B C V that satisfies:

> linear independence: for all finite {x1,...,x,} C B,
if a1x1 + -+ amXm = 0 for some a1,...,an € F,thena; =---=a, =0
» Bspans V: Vx € V, 3x1,...,xq € B and unique ai,...,aq € F such

that x = a;x; + - -+ + agXq

» The dimension d of a vector space V is the cardinality of its bases



Inner Product and Norm

» An inner product on a vector space V over a field F is a function
(-,-) 1 V x V= F such that for all a € F and all x,y,z € V:

> (ax,y) = a(x,y) (homogeneity)
> (x+vy,z) =(x,z)+(y,z) (additivity)
> (x,y) = (y,Xx) (conjugate symmetry)
> (x,x) >0 (non-negativity)
> (x,x)=0iffx=20 (definiteness)
» A norm on a vector space V over a field F is a function || - || : V = R

such that for all a € F and all x,y € V:

> |lax|| = |a]||x]| (absolute homogeneity)
> |x+yl < ||x||+|lyl]l (triangle inequality)

> |x||>0 (non-negativity)

> |[x]|=0iffx=0 (definiteness)



Euclidean Vector Space

» A Euclidean vector space R? is a vector space with finite dimension d
over the real numbers R

» A Euclidean vector x € R? is a collection of scalars x; € R for

i=1,...,d organized as a column:
X1
X =
Xd
> The transpose of x € RY is organized as a row: x' = [xl xd]

» The Euclidean inner product between two vectors x,y € R? is
d
-
<X7Y> =XYy= in)’i
i=1

» The Euclidean norm of a vector x € R9 is [|x|2 := vx x and satisfies:

> max x| < [lx|l> < Vd max |x|

> [x"y| < [x]2]lyl2 (Cauchy-Schwarz Inequality)



Matrices

»> A matrix A € R™ " is a rectangular array of scalars A;; € R for
i=1,....mandj=1,...,n

> The entries of the transpose AT € R"*™ of a matrix A € R™*" are
AI-JT- = Aji. The transpose satisfies: (AB)" = BTAT

» The trace of a matrix A € R"*" is the sum of its diagonal entries:
n
tr(A) = A tr(ABC) = tr(BCA) = tr(CAB)
i=1

» The Frobenius inner product between two matrices X, Y € R™*" is:
(X,Y)=tr(XTY)

» The Frobenius norm of a matrix X € R™*" is: || X||r := /tr(XT X)



Matrix Determinant and Inverse

» The determinant of a matrix A € R™*" is:
det(A) := Z Ajicofii(A) det(AB) = det(A) det(B) = det(BA)
j=1

where cofj;(A) is the cofactor of the entry A; and is equal to (—1)'*/
times the determinant of the (n — 1) x (n — 1) submatrix that results
when the it"-row and jt"-col of A are removed. This recursive definition
uses the fact that the determinant of a scalar is the scalar itself.

» The adjugate is the transpose of the cofactor matrix:
adj(A) := cof(A)"
> The inverse A~! of A exists iff det(A) # 0 and satisfies:

-1 _ adj(A)
det(A)

(AB)"! =B71A!



Matrix Inversion Lemma

» Square completion:

%XTAX—F b'x+c= % (X—l—A_lb)TA (x+ A_lb) +c— %bTA_lb

» Woodbury matrix identity:
(A+BDC) ' =A1-AB(CAB+D V) tcal

» Block matrix inversion:

A Bl [ 1 o '[A-BDlC o] '[I BD Y
c bl ~|ptc i 0 D| o I
[ 1 0[(A-BDC)" o ][I -BD7!
~|-ptc 0 p-ijlo 1
[ (a-BD0) —(A-BD"'C) ' BD!
- |-Dpc(A-BDIC)T D1+ DIC(A-BDIC) T BD




Eigenvalue Decomposition
» For any A € R™", if there exists q € C" \ {0} and X € C such that:
Aq = \q
then q is an eigenvector corresponding to the eigenvalue .

» A real matrix can have complex eigenvalues and eigenvectors, which
appear in conjugate pairs.

» Eigenvectors are not unique since for any ¢ € C\ {0}, cq is an
eigenvector corresponding to the same eigenvalue.

» The n eigenvalues of A € R™ " are precisely the n roots of the
characteristic polynomial of A:

p(\) :=det(Al — A)
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Eigenvalue Decomposition

» Diagonalizable matrix: n linearly independent eigenvectors q; can be
found for A€ R™"™" Aq; = Aiq; fori=1,...,n

» If the eigenvalues \; of A are distinct, then A is diagonalizable

» Eigen decomposition: if A is diagonalizable, we can stack all n
equations Aq; = \;q; to obtain an eigen decomposition of A:

A=QAQ!

» Jordan decomposition: any A can be decomposed using an invertible
matrix @ of generalized eigenvectors and an upper-triangular matrix J:

A=QJQT
» Jordan form J of A: an upper-triangular block-diagonal matrix:

_ A1 0 O

J= dlag(B()‘L ml)? s B(A/o mk))
0 -0

. B(x, m) =

where A1,..., Ag are the eigenvalues a1
of Aand my + -+ myg = n. 0 0 0 2\
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Eigenvalue Decomposition

» The roots of a polynomial are continuous functions of its coefficients and
hence the eigenvalues of a matrix are continuous functions of its entries.

n
=> X det(A H by
i=1
> AT has the same eigenvalues and eigenvectors as A

> AT A has the same eigenvectors as A but its eigenvalues are \2

> A for k =1,2,... has the same eigenvectors as A but its eigenvalues
are \K

» A~! has the same eigenvectors as A but its eigenvalues are A\~!

» The eigenvalues of A are invariant under any unitary transformation
U*AU for U*U = UU* =

> If Ais symmetric, AT = A, then all its eigenvalues are real and all its
eigenvectors may be chosen orthogonal: Q=1 = QT
12



Singular Value Decomposition
» An eigen-decomposition does not exist for A € R™*"
> A€ R™" with rank r < min {m, n} can be diagonalized by two

orthogonal matrices U € R™*™ and V € R™" via singular value
decomposition: o1

A=UsVT Y= c RMXN

Or

» U contains the m orthogonal eigenvectors of the symmetric matrix
AAT € R™*™ and satisfies UTU = UUT = |

» V contains the n orthogonal eigenvectors of the symmetric matrix
ATA € R™" and satisfies V'V = W T =1

» Y contains the singular values o; = v/, equal to the square roots of
the r non-zero eigenvalues \; of AAT or AT A, on its diagonal

» If Ais normal (ATA = AAT), its singular values are related to its
eigenvalues via o; = ||
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Matrix Pseudo Inverse

> The pseudo-inverse AT € R™*™ of A € R™*" can be obtained from its
SVD A= UxVT':

1/01

A= vsfyT st = c RMXm
1/o,

» The pseudo-inverse AT € R"™*™ satisfies the Moore-Penrose conditions:
> AATA=A
> ATAAT = Af
> (AAD) T = AAf
> (ATA)T = ATA
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Linear System of Equations

» Consider the linear system of equations Ax = b for x € R”, b € R™, and
A€ R™" with SVD A= UZVT and rank r

» The column space or image of A is im(A) C R™ and is spanned by the
r columns of U corresponding to non-zero singular values

» The null space or kernel of A is ker(A) C R” and is spanned by the
n — r columns of V' corresponding to zero singular values

» The row space or co-image of A is im(A") C R" and is spanned by
the r columns of V corresponding to non-zero singular values

» The left null space or co-kernel of A is ker(AT) C R™ and is spanned
by the m — r columns of U corresponding to zero singular values

» The domain of A is R" = ker(A) @ im(AT)

» The co-domain of A is R™ = ker(AT) @ im(A)
15



Solution of Linear System of Equations

» Consider the linear system of equations Ax = b for x € R", b € R™, and
A€ R™" with SVD A= UZVT and rank r

» If b € im(A), i.e., bTv =0 for all v € ker(AT), then Ax = b has one or
infinitely many solutions x = Afb 4 (/ — ATA)y for any y € R”

> If b ¢ im(A), then no solution exists and x = Ab is an approximate
solution with minimum ||x|| and ||Ax — b|| norms

» If m=n=r, then Ax = b has a unique solution x = ATlb = A~1b
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Positive Semidefinite Matrices

» The product x' Ax for A € R™" and x € R" is called a quadratic form
and A can be assumed symmetric, A= AT, because:

1
EXT(A +ANx = x"Ax, Vx € R"

> A symmetric matrix A € R"™" is positive semidefinite if x" Ax > 0 for
all x € R".

» A symmetric matrix A € R"*" is positive definite if it is positive
semidefinite and if x" Ax = 0 implies x = 0.

» All eigenvalues of a symmetric positive semidefinite matrix are
non-negative.

» All eigenvalues of a symmetric positive definite matrix are positive.
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Schur Complement
A B|. 1
» The Schur complement of block D of M = c pl's Sp=A—BD~*C

» The Schur complement of block A of M = [é\. [B;} is SA=D—CA™'B

A B .
> Let M = [BT D] be symmetric. Then:
> M=0&A=0,Sa=D—-BTA1B~0
> M-0<D>0,Sp=A—BD BT »~0
> M=0& A=0,S4=0,(/ — AANB =0
> M=0< D>=0,Sp>=0,(/ — DDT)BT =0
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Derivatives (numerator layout)

» Derivatives of y € R™ and Y € R™*" by scalar x € R:

%
dy || g @Y
dx 0 dx
9Ym
dx

» Derivatives of y € R and y € R™ by vector x € RP:

e dr] e gixe
dx dxy dxp
—_————

[Vxy]" (gradient transpose)

» Derivative of y € R by matrix X € RP*9:

dy
Xml

dy | .
dX dy
dXig

dvy dYi,
dx dx
. c Rmxn
dYm dYmn
dx dx
dyr dyi
dxy dx,
dy ’ -
[ p— c R P
dx . .
dym dYm
dX1 pr
Jacobian
dy
dXp1
© | e RI¥P
dy
dXpq
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Matrix Derivatives Example

d ¥ —a.al
> dXin_e,eJ-

> dAx=A

> IxTAx=x"(A+AT)

> M7 (x) = =M () B M (x)
> L tr(AXT1B) = —X1BAX"!

> & logdet X = X!

20



Matrix Derivatives Example

CIX1 ZJ lAl./)(J
d —
| g an =

d n e
dxi Zj:l AmjXj

-
bdxAx

> M(x)MY(x)=1 = 0= [

d 1 d ., 4 1 Ty-1
L ax; TAXTIB) = A o XTB) = —tr(AX eief X 1B)
—e] X7 1BAX e, = —e] (X1BAX1)'
d 1
log det X = Xjccof;
dX; 2o T det(X) dx,JZ keofi(X)
> J—
1 1
fi(X dj;(X)=e/ X" T
= Gerx) <10 = Gy 2 (%) = e

TAde+XTdAx —

dx,, ZJ 1 A1jXj A1
di,, Zf:l AmjX; Am1
x"(AT 4+ A)

LM(x)] M7 (x) + M(x) [ M
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