ECE276A: Sensing \& Estimation in Robotics Lecture 4: Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Unconstrained Optimization

- Many problems we encounter in this course, lead to an unconstrained optimization problem over the Euclidean vector space \mathbb{R}^{d} :

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

- A global minimizer $\mathbf{x}^{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{d}$. The value $f\left(\mathbf{x}^{*}\right)$ is called global minimum.
- A local minimizer $\mathbf{x}^{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}\left(\mathbf{x}^{*}\right)$, where $\mathcal{N}\left(\mathbf{x}^{*}\right) \subset \mathbb{R}^{d}$ is a neighborhood around \mathbf{x}^{*} (e.g., an open ball with small radius centered at \mathbf{x}^{*}). The value $f\left(\mathbf{x}^{*}\right)$ is called local minimum.
- The objective function $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ is differentiable if the gradient:

$$
\nabla f(\mathbf{x}):=\left[\begin{array}{lll}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_{d}}
\end{array}\right]^{\top} \in \mathbb{R}^{d}
$$

exists at each $\mathbf{x} \in \mathbb{R}^{d}$

- A critical point $\overline{\mathbf{x}} \in \mathbb{R}^{d}$ satisfies $\nabla f(\overline{\mathbf{x}})=0$ or $\nabla f(\overline{\mathbf{x}})=$ undefined
- All minimizers are critical points but not all critical points are minimizers. A critical point is either a local maximizer, a local minimizer, or neither (saddle point).

Convexity

- A set $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \mathcal{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- A convex set contains the line segment between any two points in it

Convex set

Non - convex set

- A function $f: \mathcal{D} \mapsto \mathbb{R}$ with $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if:
- \mathcal{D} is a convex set
- $f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- First-order convexity condition: a differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex of $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$
- Second-order convexity condition: a twice-differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex of $\nabla^{2} f(\mathbf{x}) \succeq 0$ for all $\mathbf{x} \in \mathcal{D}$

Descent Direction

- Consider the unconstrained optimization problem:

$$
\min _{x \in \mathbb{R}^{d}} f(\mathbf{x})
$$

Descent Direction Theorem

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\exists \delta \mathbf{x}$ such that $\nabla f(\overline{\mathbf{x}})^{\top} \delta \mathbf{x}<0$, then $\exists \epsilon>0$ such that $f(\overline{\mathbf{x}}+\alpha \delta \mathbf{x})<f(\overline{\mathbf{x}})$ for all $\alpha \in(0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a descent direction
- The theorem states that if a descent direction exists at $\overline{\mathbf{x}}$, then it is possible to move to a new point that has a lower f value
- Steepest descent direction: $\delta \mathbf{x}:=-\frac{\nabla f(\overline{\mathbf{x}})}{\|\nabla f(\overline{\mathbf{x}})\|}$
- Based on this theorem, we can derive conditions for determining the optimality of $\overline{\mathbf{x}}$

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succ 0$, then $\overline{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If f is convex, then $\overline{\mathbf{x}}$ is a global minimizer if and only if $\nabla f(\overline{\mathbf{x}})=0$.

Descent Optimization Methods

- A critical point of f can be obtained by solving $\nabla f(\mathbf{x})=0$ but an explicit solution may be difficult to derive
- Descent methods: iterative methods to obtain a solution of $\nabla f(\mathbf{x})=0$
- Given an initial guess $\mathbf{x}^{(k)}$, take a step of size $\alpha^{(k)}>0$ along a descent direction $\delta \mathbf{x}^{(k)}$:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)}
$$

- Different methods differ in the way $\delta \mathbf{x}^{(k)}$ and $\alpha^{(k)}$ are chosen
- $\delta \mathbf{x}^{(k)}$ needs to be a descent direction: $\nabla f\left(\mathbf{x}^{(k)}\right)^{\top} \delta \mathbf{x}^{(k)}<0, \forall \mathbf{x}^{(k)} \neq \mathbf{x}^{*}$
- $\alpha^{(k)}$ needs to ensure sufficient decrease in f to guarantee convergence:
- The best step size choice is $\alpha^{(k)} \in \arg \min f\left(\mathbf{x}^{(k)}+\alpha \delta \mathbf{x}^{(k)}\right)$

$$
\alpha>0
$$

- In practice, $\alpha^{(k)}$ is obtained via approximate line search methods

Gradient Descent (First-Order Method)

- Idea: $-\nabla f\left(\mathbf{x}^{(k)}\right)$ points in the direction of steepest local descent
- Gradient descent: let $\delta \mathbf{x}^{(k)}:=-\nabla f\left(\mathbf{x}^{(k)}\right)$ and iterate:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

- Step size: a good choice for $\alpha^{(k)}$ is $\frac{1}{L}$, where $L>0$ is the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f(\mathbf{x})-\nabla f\left(\mathbf{x}^{\prime}\right)\right\| \leq L\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \quad \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

Newton's Method (Second-Order Method)

- Newton's method: iteratively approximates f by a quadratic function
- Since $\delta \mathbf{x}$ is a 'small' change to the initial guess $\mathbf{x}^{(k)}$, we can approximate f using a Taylor-series expansion:

$$
\begin{aligned}
f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) & \approx f\left(\mathbf{x}^{(k)}\right)+\underbrace{\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)}_{\text {Gradient Transpose }} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top} \underbrace{\left(\frac{\partial^{2} f(\mathbf{x})}{\left.\left.\partial \mathbf{x} \partial \mathbf{x}^{\top}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)} \delta \mathbf{x}\right.}_{\text {Hessian }} \\
& =: \underbrace{q\left(\delta \mathbf{x}, \mathbf{x}^{(k)}\right)}_{\text {quadratic function in } \delta \mathbf{x}}
\end{aligned}
$$

- The symmetric Hessian matrix $\nabla^{2} f\left(\mathbf{x}^{(k)}\right)$ needs to be positive-definite for this method to work.

Newton's Method (Second-Order Method)

Newton's Method (Second-Order Method)

- Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right)$
- Since this is an unconstrained optimization problem, $\delta \mathbf{x}$ can be determined by setting the derivative with respect to $\delta \mathbf{x}$ to zero:

$$
\begin{aligned}
0=\frac{\partial q\left(\delta \mathbf{x}, \mathbf{x}^{(k)}\right)}{\partial \delta \mathbf{x}} & =\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)+\delta \mathbf{x}^{\top}\left(\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
& \Rightarrow\left(\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}
\end{aligned}
$$

- The above is a linear system of equations and can be solved when the Hessian is invertible, i.e., $\nabla^{2} f\left(\mathbf{x}^{(k)}\right) \succ 0$:

$$
\delta \mathbf{x}=-\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

- Newton's method:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)}\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right)
$$

Newton's Method (Comments)

- Newton's method, like any other descent method, converges only to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimal point, the function value is decreased sublinearly, i.e., the step sizes $\alpha^{(k)}$ are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e., $\alpha^{(k)}=1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian, which can be numerically ill-conditioned or very computationally expensive in high-dimensional problems

Gauss-Newton's Method

- Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{e}(\mathbf{x}) \quad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^{m}
$$

- The Jacobian and Hessian matrices are:

$$
\begin{array}{rlrl}
\text { Jacobian: } & & \left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}= & \mathbf{e}\left(\mathbf{x}^{(k)}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
\text { Hessian: } & & \left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}= & \left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \\
& & +\sum_{i=1}^{m} e_{i}\left(\mathbf{x}^{(k)}\right)\left(\left.\frac{\partial^{2} e_{i}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)
\end{array}
$$

Gauss-Newton's Method

- Near the minimum of f, the second term in the Hessian is small relative to the first and the Hessian can be approximated according to:

$$
\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}} \approx\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)
$$

- The above does not involve any second derivatives
- Setting the gradient of this new quadratic approximation of f with respect to $\delta \mathbf{x}$ to zero, leads to the system:

$$
\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

- Gauss-Newton's method:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}
$$

Gauss-Newton's Method (Alternative Derivation)

- Another way to think about the Gauss-Newton method is to start with a Taylor expansion of $\mathbf{e}(\mathbf{x})$ instead of $f(\mathbf{x})$:

$$
\mathbf{e}\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) \approx \mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}
$$

- Substituting into f leads to:

$$
f\left(\mathbf{x}^{(k)}+\delta \mathbf{x}\right) \approx \frac{1}{2}\left(\mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}\right)^{\top}\left(\mathbf{e}\left(\mathbf{x}^{(k)}\right)+\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}\right)
$$

- Minimizing this with respect to $\delta \mathbf{x}$ leads to the same system as before:

$$
\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

Levenberg-Marquardt's Method

- The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$
\left(\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}(k)}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}(k)}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}(k)}\right)^{\top} \mathbf{e}\left(\mathbf{x}^{(k)}\right)
$$

- When $\lambda \geq 0$ is large, the descent vector $\delta \mathbf{x}$ corresponds to a very small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Levenberg-Marquardt's Method (Summary)

- An iterative optimization approach for the unconstrained problem:

$$
\min _{\mathbf{x}} f(\mathbf{x}):=\frac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x}) \quad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \mathbf{x} \in \mathbb{R}^{n}
$$

- Given an initial guess $\mathbf{x}^{(k)}$, determine a descent direction $\delta \mathbf{x}$ by solving:

$$
\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}^{(k)}\right)\right)
$$

where $J_{j}(\mathbf{x}):=\frac{\partial \mathbf{e}_{j}(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m_{j} \times n}, \lambda \geq 0, D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D=\boldsymbol{\operatorname { d i a g }}\left(\sum_{j} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)\right)$

- Obtain an updated estimate according to:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}
$$

Unconstrained Optimization Example

- Let $f(\mathbf{x}):=\frac{1}{2} \sum_{j=1}^{n}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}$ for $\mathbf{x} \in \mathbb{R}^{d}$ and assume $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$
- Solve the unconstrained optimization problem $\min _{\mathbf{x}} f(\mathbf{x})$ using:
- The necessary and sufficient optimality condition for convex function f
- Gradient descent
- Newton's method
- Gauss-Newton's method
- We will need $\nabla f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$:

$$
\begin{aligned}
\frac{d f(\mathbf{x})}{d \mathbf{x}} & =\frac{1}{2} \sum_{j=1}^{n} \frac{d}{d \mathbf{x}}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left(A_{j} \mathbf{x}+b_{j}\right)^{\top} A_{j} \\
\nabla f(\mathbf{x}) & =\frac{d f(\mathbf{x})^{\top}}{d \mathbf{x}}=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
\nabla^{2} f(\mathbf{x}) & =\frac{d}{d \mathbf{x}} \nabla f(\mathbf{x})=\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0
\end{aligned}
$$

Necessary and Sufficient Optimality Condition

- Solve $\nabla f(\mathbf{x})=0$ for \mathbf{x} :

$$
\begin{aligned}
& 0=\nabla f(\mathbf{x})=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
& \mathbf{x}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- The solution above is unique since we assumed that $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$

Gradient Descent

- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, gradient descent uses the descent direction $\delta \mathbf{x}^{(k)}=-\nabla f\left(\mathbf{x}^{(k)}\right)$
- Given arbitary $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{d}$, determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f\left(\mathbf{x}_{1}\right)-\nabla f\left(\mathbf{x}_{2}\right)\right\|=\left\|\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right\| \leq \underbrace{\left\|\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right\|}_{L}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|
$$

- Choose step size $\alpha^{(k)}=\frac{1}{L}$ and iterate:

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)} \\
& =\mathbf{x}^{(k)}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}^{(k)}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

Newton's Method

- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}^{(k)} & =-\left[\nabla^{2} f\left(\mathbf{x}^{(k)}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{(k)}\right) \\
& =-\mathbf{x}^{(k)}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

and updates the solution estimate via:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\delta \mathbf{x}^{(k)}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
$$

- Note that for this problem, Newton's method converges in one iteration!

Gauss-Newton's Method

$-f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x})$ for $\mathbf{e}_{j}(\mathbf{x}):=A_{j} \mathbf{x}+b_{j}$

- The Jacobian of $\mathbf{e}_{j}(\mathbf{x})$ is $J_{j}(\mathbf{x})=A_{j}$
- Start with an initial guess $\mathbf{x}^{(0)}=\mathbf{0}$
- At iteration k, Gauss-Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}^{(k)} & =-\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} J_{j}\left(\mathbf{x}^{(k)}\right)\right)^{-1}\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}^{(k)}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}^{(k)}\right)\right) \\
& =-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top}\left(A_{j} \mathbf{x}^{(k)}+b_{j}\right)\right) \\
& =-\mathbf{x}^{(k)}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- If $\alpha^{(k)}=1$, in this problem, Gauss-Newton's method behaves exactly like Newton's method and coverges in one iteration!

