
ECE276A: Sensing & Estimation in Robotics
Lecture 4: Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:qjfeng@ucsd.edu
mailto:aasghari@ucsd.edu
mailto:ezobeidi@ucsd.edu
mailto:rjangir@ucsd.edu

Unconstrained Optimization
I Many problems we encounter in this course, lead to an unconstrained

optimization problem over the Euclidean vector space Rd :

min
x∈Rd

f (x)

I A global minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ Rd . The
value f (x∗) is called global minimum.

I A local minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ N (x∗),
where N (x∗) ⊂ Rd is a neighborhood around x∗ (e.g., an open ball with
small radius centered at x∗). The value f (x∗) is called local minimum.

I The objective function f : Rd 7→ R is differentiable if the gradient:

∇f (x) :=
[
∂f (x)
∂x1

· · · ∂f (x)
∂xd

]>
∈ Rd

exists at each x ∈ Rd

I A critical point x̄ ∈ Rd satisfies ∇f (x̄) = 0 or ∇f (x̄) = undefined
I All minimizers are critical points but not all critical points are

minimizers. A critical point is either a local maximizer, a local
minimizer, or neither (saddle point).

2

Convexity
I A set D ⊆ Rd is convex if λx + (1− λ)y ∈ D for all x, y ∈ D, λ ∈ [0, 1]

I A convex set contains the line segment between any two points in it

I A function f : D 7→ R with D ⊆ Rd is convex if:
I D is a convex set
I f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for all x, y ∈ D, λ ∈ [0, 1]

I First-order convexity condition: a differentiable f : D 7→ R with
convex D is convex iff f (y) ≥ f (x) +∇f (x)>(y − x) for all x, y ∈ D

I Second-order convexity condition: a twice-differentiable f : D 7→ R
with convex D is convex iff ∇2f (x) � 0 for all x ∈ D

3

Descent Direction
I Consider the unconstrained optimization problem:

min
x∈Rd

f (x)

Descent Direction Theorem

Suppose f is differentiable at x̄. If ∃ δx such that ∇f (x̄)>δx < 0, then
∃ ε > 0 such that f (x̄ + αδx) < f (x̄) for all α ∈ (0, ε).

I The vector δx is called a descent direction

I The theorem states that if a descent direction exists at x̄, then it is
possible to move to a new point that has a lower f value

I Steepest descent direction: δx := − ∇f (x̄)
‖∇f (x̄)‖

I Based on this theorem, we can derive conditions for determining the
optimality of x̄

4

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at x̄. If x̄ is a local minimizer, then
∇f (x̄) = 0 and ∇2f (x̄) � 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at x̄. If ∇f (x̄) = 0 and ∇2f (x̄) � 0, then x̄
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x̄. If f is convex, then x̄ is a global minimizer
if and only if ∇f (x̄) = 0.

5

Descent Optimization Methods

I A critical point of f can be obtained by solving ∇f (x) = 0 but an
explicit solution may be difficult to derive

I Descent methods: iterative methods to obtain a solution of ∇f (x) = 0

I Given an initial guess x(k), take a step of size α(k) > 0 along a descent
direction δx(k):

x(k+1) = x(k) + α(k)δx(k)

I Different methods differ in the way δx(k) and α(k) are chosen

I δx(k) needs to be a descent direction: ∇f (x(k))>δx(k) < 0, ∀x(k) 6= x∗

I α(k) needs to ensure sufficient decrease in f to guarantee convergence:
I The best step size choice is α(k) ∈ arg min

α>0
f (x(k) + αδx(k))

I In practice, α(k) is obtained via approximate line search methods

6

Gradient Descent (First-Order Method)

I Idea: −∇f (x(k)) points in the direction of steepest local descent

I Gradient descent: let δx(k) := −∇f (x(k)) and iterate:

x(k+1) = x(k) − α(k)∇f (x(k))

I Step size: a good choice for α(k) is 1
L , where L > 0 is the Lipschitz

constant of ∇f (x):

‖∇f (x)−∇f (x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ Rd

7

Newton’s Method (Second-Order Method)

I Newton’s method: iteratively approximates f by a quadratic function

I Since δx is a ‘small‘ change to the initial guess x(k), we can approximate
f using a Taylor-series expansion:

f (x(k) + δx) ≈ f (x(k)) +

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸
Gradient Transpose

δx +
1

2
δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
︸ ︷︷ ︸

Hessian

δx

=: q(δx, x(k))︸ ︷︷ ︸
quadratic function in δx

I The symmetric Hessian matrix ∇2f (x(k)) needs to be positive-definite
for this method to work.

8

Newton’s Method (Second-Order Method)

9

Newton’s Method (Second-Order Method)
I Find δx that minimizes the quadratic approximation to f (x(k) + δx)

I Since this is an unconstrained optimization problem, δx can be
determined by setting the derivative with respect to δx to zero:

0 =
∂q(δx, x(k))

∂δx
=

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)
+ δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
⇒

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

)
δx = −

(
∂f (x)

∂x

∣∣∣∣
x=x(k)

)>
I The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., ∇2f (x(k)) � 0:

δx = −
[
∇2f (x(k))

]−1
∇f (x(k))

I Newton’s method:

x(k+1) = x(k) − α(k)
[
∇2f (x(k))

]−1
∇f (x(k))

10

Newton’s Method (Comments)

I Newton’s method, like any other descent method, converges only to a
local minimum

I Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes α(k) are small

I Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e., α(k) = 1, and
the function value converges quadratically to the optimum

I A disadvantage of Newton’s method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high-dimensional problems

11

Gauss-Newton’s Method

I Gauss-Newton is an approximation to Newton’s method that avoids
computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f (x) =
1

2
e(x)>e(x) e(x) ∈ Rm

I The Jacobian and Hessian matrices are:

Jacobian:
∂f (x)

∂x

∣∣∣∣
x=x(k)

= e(x(k))>
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
Hessian:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

=

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+

m∑
i=1

ei (x(k))

(
∂2ei (x)

∂x∂x>

∣∣∣∣
x=x(k)

)

12

Gauss-Newton’s Method

I Near the minimum of f , the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

∂2f (x)

∂x∂x>

∣∣∣∣
x=x(k)

≈
(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
I The above does not involve any second derivatives

I Setting the gradient of this new quadratic approximation of f with
respect to δx to zero, leads to the system:(

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I Gauss-Newton’s method:

x(k+1) = x(k) + α(k)δx

13

Gauss-Newton’s Method (Alternative Derivation)

I Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f (x):

e(x(k) + δx) ≈ e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

I Substituting into f leads to:

f (x(k) + δx) ≈ 1

2

(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)>(
e(x(k)) +

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx

)
I Minimizing this with respect to δx leads to the same system as before:(

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

14

Levenberg-Marquardt’s Method

I The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian
approximation:((

∂e(x)

∂x

∣∣∣∣
x=x(k)

)>(∂e(x)

∂x

∣∣∣∣
x=x(k)

)
+ λD

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=x(k)

)>
e(x(k))

I When λ ≥ 0 is large, the descent vector δx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

15

Levenberg-Marquardt’s Method (Summary)
I An iterative optimization approach for the unconstrained problem:

min
x

f (x) :=
1

2

∑
j

ej(x)>ej(x) ej(x) ∈ Rmj , x ∈ Rn

I Given an initial guess x(k), determine a descent direction δx by solving:∑
j

Jj(x(k))>Jj(x(k)) + λD

 δx = −

∑
j

Jj(x(k))>ej(x(k))

where Jj(x) :=

∂ej (x)
∂x ∈ Rmj×n, λ ≥ 0, D ∈ Rn×n is a positive diagonal

matrix, e.g., D = diag
(∑

j Jj(x(k))>Jj(x(k))
)

I Obtain an updated estimate according to:

x(k+1) = x(k) + α(k)δx

16

Unconstrained Optimization Example
I Let f (x) := 1

2

∑n
j=1 ‖Ajx + bj‖2

2 for x ∈ Rd and assume
∑n

j=1 A
>
j Aj � 0

I Solve the unconstrained optimization problem minx f (x) using:
I The necessary and sufficient optimality condition for convex function f
I Gradient descent
I Newton’s method
I Gauss-Newton’s method

I We will need ∇f (x) and ∇2f (x):

df (x)

dx
=

1

2

n∑
j=1

d

dx
‖Ajx + bj‖2

2 =
n∑

j=1

(Ajx + bj)
> Aj

∇f (x) =
df (x)

dx

>
=

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj

∇2f (x) =

d

dx
∇f (x) =

n∑
j=1

A>j Aj � 0

17

Necessary and Sufficient Optimality Condition

I Solve ∇f (x) = 0 for x:

0 = ∇f (x) =

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj

x = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj

I The solution above is unique since we assumed that

∑n
j=1 A

>
j Aj � 0

18

Gradient Descent
I Start with an initial guess x(0) = 0

I At iteration k , gradient descent uses the descent direction
δx(k) = −∇f (x(k))

I Given arbitary x1, x2 ∈ Rd , determine the Lipschitz constant of ∇f (x):

‖∇f (x1)−∇f (x2)‖ =

∥∥∥∥(n∑
j=1

A>j Aj

)
(x1 − x2)

∥∥∥∥ ≤ ∥∥∥∥ n∑
j=1

A>j Aj

∥∥∥∥︸ ︷︷ ︸
L

‖x1 − x2‖

I Choose step size α(k) = 1
L and iterate:

x(k+1) = x(k) + α(k)δx(k)

= x(k) − 1

L

 n∑
j=1

A>j Aj

 x(k) − 1

L

 n∑
j=1

A>j bj

19

Newton’s Method

I Start with an initial guess x(0) = 0

I At iteration k , Newton’s method uses the descent direction:

δx(k) = −
[
∇2f (x(k))

]−1
∇f (x(k))

= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj

and updates the solution estimate via:

x(k+1) = x(k) + δx(k) = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj

I Note that for this problem, Newton’s method converges in one iteration!

20

Gauss-Newton’s Method
I f (x) is of the form 1

2

∑n
j=1 ej(x)>ej(x) for ej(x) := Ajx + bj

I The Jacobian of ej(x) is Jj(x) = Aj

I Start with an initial guess x(0) = 0

I At iteration k , Gauss-Newton’s method uses the descent direction:

δx(k) = −

 n∑
j=1

Jj(x(k))>Jj(x(k))

−1 n∑
j=1

Jj(x(k))>ej(x(k))

= −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j (Ajx
(k) + bj)

= −x(k) −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj

I If α(k) = 1, in this problem, Gauss-Newton’s method behaves exactly

like Newton’s method and coverges in one iteration! 21

