ECE276A: Sensing & Estimation in Robotics Lecture 4: Unconstrained Optimization

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Qiaojun Feng: qjfeng@ucsd.edu Arash Asgharivaskasi: aasghari@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@ucsd.edu Rishabh Jangir: rjangir@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Unconstrained Optimization

Many problems we encounter in this course, lead to an unconstrained optimization problem over the Euclidean vector space R^d:

$$\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$$

- ▶ A global minimizer $\mathbf{x}^* \in \mathbb{R}^d$ satisfies $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^d$. The value $f(\mathbf{x}^*)$ is called global minimum.
- ▶ A local minimizer $\mathbf{x}^* \in \mathbb{R}^d$ satisfies $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}(\mathbf{x}^*)$, where $\mathcal{N}(\mathbf{x}^*) \subset \mathbb{R}^d$ is a neighborhood around \mathbf{x}^* (e.g., an open ball with small radius centered at \mathbf{x}^*). The value $f(\mathbf{x}^*)$ is called local minimum.
- The objective function $f : \mathbb{R}^d \mapsto \mathbb{R}$ is **differentiable** if the gradient:

$$abla f(\mathbf{x}) := \begin{bmatrix} rac{\partial f(\mathbf{x})}{\partial x_1} & \cdots & rac{\partial f(\mathbf{x})}{\partial x_d} \end{bmatrix}^{ op} \in \mathbb{R}^d$$

exists at each $\mathbf{x} \in \mathbb{R}^d$

A critical point x

 € ℝ^d satisfies ∇f(x
) = 0 or ∇f(x
) = undefined

 All minimizers are critical points but not all critical points are
 minimizers. A critical point is either a local maximizer, a local
 minimizer, or neither (saddle point).

Convexity

▶ A set $\mathcal{D} \subseteq \mathbb{R}^d$ is convex if $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathcal{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, $\lambda \in [0, 1]$

A convex set contains the line segment between any two points in it Convex set
Non - convex set

- A function $f : \mathcal{D} \mapsto \mathbb{R}$ with $\mathcal{D} \subseteq \mathbb{R}^d$ is **convex** if:
 - D is a convex set
 - ► $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, $\lambda \in [0, 1]$
- First-order convexity condition: a differentiable $f : \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex iff $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$
- Second-order convexity condition: a twice-differentiable f : D → ℝ with convex D is convex iff ∇²f(x) ≥ 0 for all x ∈ D

Descent Direction

Consider the **unconstrained optimization problem**:

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$

Descent Direction Theorem

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\exists \delta \mathbf{x}$ such that $\nabla f(\bar{\mathbf{x}})^{\top} \delta \mathbf{x} < 0$, then $\exists \epsilon > 0$ such that $f(\bar{\mathbf{x}} + \alpha \delta \mathbf{x}) < f(\bar{\mathbf{x}})$ for all $\alpha \in (0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a **descent direction**
- The theorem states that if a descent direction exists at x
 , then it is possible to move to a new point that has a lower f value
- Steepest descent direction: $\delta \mathbf{x} := -\frac{\nabla f(\bar{\mathbf{x}})}{\|\nabla f(\bar{\mathbf{x}})\|}$
- Based on this theorem, we can derive conditions for determining the optimality of x

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla f(\bar{\mathbf{x}}) = 0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then $\bar{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If f is **convex**, then $\bar{\mathbf{x}}$ is a global minimizer **if and only if** $\nabla f(\bar{\mathbf{x}}) = 0$.

Descent Optimization Methods

- A critical point of f can be obtained by solving ∇f(x) = 0 but an explicit solution may be difficult to derive
- **Descent methods**: iterative methods to obtain a solution of $\nabla f(\mathbf{x}) = 0$
- Given an initial guess x^(k), take a step of size α^(k) > 0 along a descent direction δx^(k):

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}^{(k)}$$

- ▶ Different methods differ in the way $\delta \mathbf{x}^{(k)}$ and $\alpha^{(k)}$ are chosen
- $\delta \mathbf{x}^{(k)}$ needs to be a descent direction: $\nabla f(\mathbf{x}^{(k)})^{\top} \delta \mathbf{x}^{(k)} < 0, \forall \mathbf{x}^{(k)} \neq \mathbf{x}^{*}$

▶ In practice, $\alpha^{(k)}$ is obtained via approximate line search methods

Gradient Descent (First-Order Method)

▶ Idea: $-\nabla f(\mathbf{x}^{(k)})$ points in the direction of steepest local descent

• Gradient descent: let $\delta \mathbf{x}^{(k)} := -\nabla f(\mathbf{x}^{(k)})$ and iterate:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla f(\mathbf{x}^{(k)})$$

Step size: a good choice for α^(k) is ¹/_L, where L > 0 is the Lipschitz constant of ∇f(x):

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}')\| \le L \|\mathbf{x} - \mathbf{x}'\| \qquad \forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$$

Newton's Method (Second-Order Method)

- ▶ Newton's method: iteratively approximates f by a quadratic function
- Since δx is a 'small' change to the initial guess x^(k), we can approximate f using a Taylor-series expansion:

► The symmetric Hessian matrix ∇²f(x^(k)) needs to be positive-definite for this method to work.

Newton's Method (Second-Order Method)

Newton's Method (Second-Order Method)

- Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f(\mathbf{x}^{(k)} + \delta \mathbf{x})$
- Since this is an unconstrained optimization problem, δx can be determined by setting the derivative with respect to δx to zero:

$$0 = \frac{\partial q(\delta \mathbf{x}, \mathbf{x}^{(k)})}{\partial \delta \mathbf{x}} = \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) + \delta \mathbf{x}^{\top} \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)$$
$$\Rightarrow \quad \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} = - \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)^{\top}$$

The above is a linear system of equations and can be solved when the Hessian is invertible, i.e., ∇²f(x^(k)) ≻ 0:

$$\delta \mathbf{x} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})$$

Newton's method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \nabla f(\mathbf{x}^{(k)})$$

Newton's Method (Comments)

- Newton's method, like any other descent method, converges only to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimal point, the function value is decreased sublinearly, i.e., the step sizes α^(k) are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e., $\alpha^{(k)} = 1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian, which can be numerically ill-conditioned or very computationally expensive in high-dimensional problems

Gauss-Newton's Method

Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$f(\mathbf{x}) = rac{1}{2} \mathbf{e}(\mathbf{x})^{ op} \mathbf{e}(\mathbf{x}) \qquad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^m$$

The Jacobian and Hessian matrices are:

Jacobian:
$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}} = \mathbf{e}(\mathbf{x}^{(k)})^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)$$

Hessian:
$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}} = \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)$$
$$+ \sum_{i=1}^{m} e_i(\mathbf{x}^{(k)}) \left(\frac{\partial^2 e_i(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)$$

Gauss-Newton's Method

Near the minimum of f, the second term in the Hessian is small relative to the first and the Hessian can be approximated according to:

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}} \bigg|_{\mathbf{x} = \mathbf{x}^{(k)}} \approx \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \mathbf{x}^{(k)}} \right)$$

The above does not involve any second derivatives

Setting the gradient of this new quadratic approximation of *f* with respect to δx to zero, leads to the system:

$$\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

Gauss-Newton's method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}$$

Gauss-Newton's Method (Alternative Derivation)

Another way to think about the Gauss-Newton method is to start with a Taylor expansion of e(x) instead of f(x):

$$\mathbf{e}(\mathbf{x}^{(k)} + \delta \mathbf{x}) \approx \mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}^{(k)}}\right) \delta \mathbf{x}$$

Substituting into f leads to:

$$f(\mathbf{x}^{(k)} + \delta \mathbf{x}) \approx \frac{1}{2} \left(\mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} \right)^{\top} \left(\mathbf{e}(\mathbf{x}^{(k)}) + \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}} \right) \delta \mathbf{x} \right)$$

• Minimizing this with respect to δx leads to the same system as before:

$$\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

Levenberg-Marquardt's Method

The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$\left(\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right) + \lambda D\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}^{(k)}}\right)^{\top} \mathbf{e}(\mathbf{x}^{(k)})$$

When λ ≥ 0 is large, the descent vector δx corresponds to a very small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Levenberg-Marquardt's Method (Summary)

An iterative optimization approach for the unconstrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x}) := \frac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x}) \qquad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \ \mathbf{x} \in \mathbb{R}^{n}$$

• Given an initial guess $\mathbf{x}^{(k)}$, determine a descent direction $\delta \mathbf{x}$ by solving:

$$\left(\sum_{j} J_j(\mathbf{x}^{(k)})^\top J_j(\mathbf{x}^{(k)}) + \lambda D\right) \delta \mathbf{x} = -\left(\sum_{j} J_j(\mathbf{x}^{(k)})^\top \mathbf{e}_j(\mathbf{x}^{(k)})\right)$$

where $J_j(\mathbf{x}) := \frac{\partial \mathbf{e}_j(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m_j \times n}$, $\lambda \ge 0$, $D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D = \operatorname{diag}\left(\sum_j J_j(\mathbf{x}^{(k)})^\top J_j(\mathbf{x}^{(k)})\right)$

Obtain an updated estimate according to:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}$$

Unconstrained Optimization Example

• Let $f(\mathbf{x}) := \frac{1}{2} \sum_{j=1}^{n} \|A_j \mathbf{x} + b_j\|_2^2$ for $\mathbf{x} \in \mathbb{R}^d$ and assume $\sum_{j=1}^{n} A_j^\top A_j \succ 0$

Solve the unconstrained optimization problem min_x f(x) using:

- The necessary and sufficient optimality condition for convex function f
- Gradient descent
- Newton's method
- Gauss-Newton's method

• We will need $\nabla f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$:

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \frac{1}{2} \sum_{j=1}^{n} \frac{d}{d\mathbf{x}} ||A_j \mathbf{x} + b_j||_2^2 = \sum_{j=1}^{n} (A_j \mathbf{x} + b_j)^\top A_j$$
$$\nabla f(\mathbf{x}) = \frac{df(\mathbf{x})}{d\mathbf{x}}^\top = \left(\sum_{j=1}^{n} A_j^\top A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^\top b_j\right)$$
$$\nabla^2 f(\mathbf{x}) = \frac{d}{d\mathbf{x}} \nabla f(\mathbf{x}) = \sum_{j=1}^{n} A_j^\top A_j \succ 0$$

Necessary and Sufficient Optimality Condition

Solve $\nabla f(\mathbf{x}) = 0$ for \mathbf{x} :

$$0 = \nabla f(\mathbf{x}) = \left(\sum_{j=1}^{n} A_j^{\top} A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$
$$\mathbf{x} = -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

▶ The solution above is unique since we assumed that $\sum_{j=1}^{n} A_j^{\top} A_j \succ 0$

Gradient Descent

Start with an initial guess x⁽⁰⁾ = 0

- At iteration k, gradient descent uses the descent direction δ**x**^(k) = -∇f(**x**^(k))
- Given arbitary $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^d$, determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$\|\nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_2)\| = \left\| \left(\sum_{j=1}^n A_j^\top A_j \right) (\mathbf{x}_1 - \mathbf{x}_2) \right\| \le \underbrace{\left\| \sum_{j=1}^n A_j^\top A_j \right\|}_{L} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

• Choose step size $\alpha^{(k)} = \frac{1}{L}$ and iterate:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}^{(k)}$$
$$= \mathbf{x}^{(k)} - \frac{1}{L} \left(\sum_{j=1}^{n} A_j^{\top} A_j \right) \mathbf{x}^{(k)} - \frac{1}{L} \left(\sum_{j=1}^{n} A_j^{\top} b_j \right)$$

Newton's Method

• Start with an initial guess $\mathbf{x}^{(0)} = \mathbf{0}$

At iteration k, Newton's method uses the descent direction:

$$\delta \mathbf{x}^{(k)} = -\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})$$
$$= -\mathbf{x}^{(k)} - \left(\sum_{j=1}^n A_j^\top A_j\right)^{-1} \left(\sum_{j=1}^n A_j^\top b_j\right)$$

and updates the solution estimate via:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)} = -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

Note that for this problem, Newton's method converges in one iteration!

Gauss-Newton's Method

- ► $f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_j(\mathbf{x})^\top \mathbf{e}_j(\mathbf{x})$ for $\mathbf{e}_j(\mathbf{x}) := A_j \mathbf{x} + b_j$
- The Jacobian of $\mathbf{e}_j(\mathbf{x})$ is $J_j(\mathbf{x}) = A_j$
- Start with an initial guess $\mathbf{x}^{(0)} = \mathbf{0}$
- ▶ At iteration k, Gauss-Newton's method uses the descent direction:

$$\delta \mathbf{x}^{(k)} = -\left(\sum_{j=1}^{n} J_j(\mathbf{x}^{(k)})^{\top} J_j(\mathbf{x}^{(k)})\right)^{-1} \left(\sum_{j=1}^{n} J_j(\mathbf{x}^{(k)})^{\top} \mathbf{e}_j(\mathbf{x}^{(k)})\right)$$
$$= -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} (A_j \mathbf{x}^{(k)} + b_j)\right)$$
$$= -\mathbf{x}^{(k)} - \left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

If α^(k) = 1, in this problem, Gauss-Newton's method behaves exactly like Newton's method and coverges in one iteration!

21