ECE276A: Sensing & Estimation in Robotics
Lecture 4. Unconstrained Optimization

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidiQucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering



mailto:natanasov@ucsd.edu
mailto:qjfeng@ucsd.edu
mailto:aasghari@ucsd.edu
mailto:ezobeidi@ucsd.edu
mailto:rjangir@ucsd.edu

Unconstrained Optimization

» Many problems we encounter in this course, lead to an unconstrained
optimization problem over the Euclidean vector space RY:

w2

> A global minimizer x* € R satisfies f(x*) < f(x) for all x € R?. The
value f(x*) is called global minimum.

> A local minimizer x* € RY satisfies f(x*) < f(x) for all x € N(x*),
where NV(x*) C R9 is a neighborhood around x* (e.g., an open ball with
small radius centered at x*). The value f(x*) is called local minimum.

» The objective function f : RY — R is differentiable if the gradient:

-
Vi) = [% . 0] e

exists at each x € RY
> A critical point X € RY satisfies V£(X) = 0 or Vf(X) = undefined
» All minimizers are critical points but not all critical points are
minimizers. A critical point is either a local maximizer, a local
minimizer, or neither (saddle point).



Convexity
> Aset D C RYis convex if \x + (1 — )y € D for all x,y € D, A € [0, 1]

» A convex set contains the line segment between any two points in it
Convex set Non - convex set

» A function f : D — R with D C R is convex if:
» D is a convex set
> F(Ax+ (1—A)y) < A(x) 4 (1= A)f(y) for all x,y € D, X € [0,1]

» First-order convexity condition: a differentiable f : D +— R with
convex D is convex iff f(y) > f(x) + VF(x)"(y — x) for all x,y € D

» Second-order convexity condition: a twice-differentiable f : D +— R
with convex D is convex iff V2f(x) = 0 for all x € D



Descent Direction

» Consider the unconstrained optimization problem:

in f
2 ")

Descent Direction Theorem

Suppose f is differentiable at x. If 3 6x such that V£(x)"éx < 0, then
J e > 0 such that f(x + adx) < f(x) for all a € (0,¢).

» The vector dx is called a descent direction

» The theorem states that if a descent direction exists at X, then it is
possible to move to a new point that has a lower f value

» Steepest descent direction: ix := —%
» Based on this theorem, we can derive conditions for determining the

optimality of X



Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at X. If X is a local minimizer, then Vf(x) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at X. If X is a local minimizer, then
V£(X) = 0 and V2f(x) = 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at X. If V£(X) = 0 and V?f(X) > 0, then X
is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x. If f is convex, then X is a global minimizer
if and only if Vf(x) =0.




Descent Optimization Methods

» A critical point of f can be obtained by solving Vf(x) = 0 but an
explicit solution may be difficult to derive

» Descent methods: iterative methods to obtain a solution of Vf(x) =0

> Given an initial guess x(K), take a step of size o¥) > 0 along a descent
direction ox(¥):

» Different methods differ in the way 6x(*) and (%) are chosen
> 6x(K) needs to be a descent direction: VF(x(K)Tox(k) < 0, ¥x(k) £ x*

» a(k) needs to ensure sufficient decrease in f to guarantee convergence:

> The best step size choice is alk) € arg min f(x(K) 4 a5x(¥))
a>0
k)

» In practice, a¥) is obtained via approximate line search methods



Gradient Descent (First-Order Method)

> Idea: —Vf(x(¥)) points in the direction of steepest local descent
> Gradient descent: let 0x(¥) := —Vf(x(K)) and iterate:
x(kH1) = x(K) _ o7 f(x(K)

> Step size: a good choice for a(k) is % where L > 0 is the Lipschitz
constant of Vf(x):

[VF(x) — VA(X)|| < Lllx — || vx,x' € RY



Newton's Method (Second-Order Method)

» Newton’s method: iteratively approximates f by a quadratic function

> Since dx is a ‘small‘ change to the initial guess x(¥), we can approximate
Of (x)

f using a Taylor-series expansion:
2f
f(xK) 4 6x) ~ F(xK)) + < ) ox + (5 T (6 (X.2 > ox
0x |0 OxOx " || _ k)
Gradient Transpose Hessian

q(ox, x(K))
—_———

quadratic function in §x

» The symmetric Hessian matrix V2£(x(K)) needs to be positive-definite
for this method to work.



Newton's Method (Second-Order Method)

A q(6x,xV)  q(5x,x) f(x)

f(x) = q(0,x)

q (52, x(0))

f(x®) = q(0,xM)

q(gx*.(l)’ x(l)) '
L ] e — X

x* x@) x() 4(0)

A\ 4



Newton's Method (Second-Order Method)

» Find dx that minimizes the quadratic approximation to f(x(k) + 0x)

» Since this is an unconstrained optimization problem, dx can be
determined by setting the derivative with respect to dx to zero:

9q(ox,x(W)) 7 9f(x) +oxT 0°f(x)
N x=x(k) OxOx T x=x(k)

x_x(k) E X x_x(k)

0?f(x)
Oxox T

» The above is a linear system of equations and can be solved when the

Hessian is invertible, i.e., V2f(x(K)) = 0

0=

-1
ox = — [v2f(x(k))} Vi (x¥)
> Newton’s method:

-1
x(k+1) — 5 (k) _ (k) [vz f(x(k))} V(x5
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Newton's Method (Comments)

» Newton's method, like any other descent method, converges only to a
local minimum

» Damped Newton phase: when the iterates are “far away” from the
optimal point, the function value is decreased sublinearly, i.e., the step
sizes a(k) are small

» Quadratic convergence phase: when the iterates are “sufficiently
close” to the optimum, full Newton steps are taken, i.e., alk) = 1, and
the function value converges quadratically to the optimum

» A disadvantage of Newton's method is the need to form the Hessian,
which can be numerically ill-conditioned or very computationally
expensive in high-dimensional problems
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Gauss-Newton’'s Method

» Gauss-Newton is an approximation to Newton's method that avoids
computing the Hessian. It is applicable when the objective function has
the following quadratic form:

f(x) = ~e(x) "e(x) e(x) e R™

» The Jacobian and Hessian matrices are:

- Of (x) — ol T ((98(x)
Jacobian: I x:x(k>_e(x ) OX |y
. 91 (x) oel)| ' (de(x)
H : -
essian axoxT |, ( Ox x:x(k)> < Ox x:x(k))

* Z ei(x*)) < 8x8§(T)

xk))
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Gauss-Newton’'s Method

» Near the minimum of f, the second term in the Hessian is small relative
to the first and the Hessian can be approximated according to:

N (ae(x) >T <8e(x) )
x=x(k) Ox x=x(k) Ox x=x(k)
» The above does not involve any second derivatives
» Setting the gradient of this new quadratic approximation of f with
respect to dx to zero, leads to the system:
-
> e(x(¥))

ox
» Gauss-Newton’s method:

0?f(x)
OxOxT

x=x(k)
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Gauss-Newton's Method (Alternative Derivation)

» Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f(x):
> ox
x=x(k)

cea)) (o (52 ) o)

» Minimizing this with respect to dx leads to the same system as before:

(52]) (52 ) e (5L e

oe(x)
ox

e(x® 4 5x) ~ e(x(M) + (

» Substituting into f leads to:

de(x)
Ox

F(x(K) 4 6x) ~ % <e(x(k)) + (

ox

x=x(k)
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Levenberg-Marquardt's Method

» The Levenberg-Marquardt modification to the Gauss-Newton method
uses a positive diagonal matrix D to condition the Hessian

approximation:
) + AD) ox = — (69(")
x=x(k) ox

(52 (5 ) e

» When A > 0 is large, the descent vector dx corresponds to a very small
step in the direction of steepest descent. This helps when the Hessian
approximation is poor or poorly conditioned by providing a meaningful
direction.

x=x(k)
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Levenberg-Marquardt's Method (Summary)

» An iterative optimization approach for the unconstrained problem:

mm f(x ZeJ ej(x) e R™, x e R"

> Given an initial guess x(¥), determine a descent direction dx by solving:

> 5N TL(x0) +AD | 6x = — ZJ (xUN) Te;(x(K))
Jj
where Jj(x) := 6%'—)((’() e RM*" X >0, D e R"™"is a positive diagonal

matrix, e.g., D = diag (ZJ Jj(x(k))TJj(x(k)))
» Obtain an updated estimate according to:
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Unconstrained Optimization Example
> Let f(x):=1 i1 [[AX + b |3 for x € RY and assume > JTA =0

» Solve the unconstrained optimization problem miny f(x) using:
» The necessary and sufficient optimality condition for convex function
» Gradient descent
> Newton's method
» Gauss-Newton's method

» We will need V£(x) and V2f(x):

df(x) 1<~ d ) T
Ix :2;Cb(||ij+bj||2:jz_;(ij+bj) Aj

f- n n
V() = I SCATA | x+ | YA b
j=1 j=1
d n
2 _ — TA.
VA (x) = - VF(x) = > AfA -0

Jj=1
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Necessary and Sufficient Optimality Condition

» Solve Vf(x) =0 for x:

0=Vf(x)= (Z AJTAJ-) X + (Z A]bj)

“1
x=—|D_AlA D _Ab
=1 =

» The solution above is unique since we assumed that Zf:l Aj—-rAj =0

18



Gradient Descent
» Start with an initial guess x(9) = 0

» At iteration k, gradient descent uses the descent direction
ox(F) = — v £(x(k))

> Given arbitary xq,%> € R?, determine the Lipschitz constant of Vi(x):

HVf(Xl) Vf X2 H <ZA A; ) X1 — X2) ZAJTAJ
Jj=1

—_——
L

[[x1 — x2|

> Choose step size alk) = % and iterate:

KU+ (0 4 o (R) (k)

1< 1
:x(")—Z > ATA x(k)—Z > Alb,
j=1
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Newton's Method

» Start with an initial guess x(°) = 0

> At iteration k, Newton’'s method uses the descent direction:

-1
ox(K) = — [V2f(x(k))} VF(x)

n

1
=) — [ Y A4 > Alb
j=1

Jj=1

and updates the solution estimate via:

1
xHD) = x(0 4 5x() = — | N " AT A > Alb,
j=1 j=1

» Note that for this problem, Newton's method converges in one iteration!
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Gauss-Newton's Method

> f(x) is of the form 1 i1 ej(x) "ej(x) for e;(x) := Ajx + b;
» The Jacobian of ej(x) is Ji(x) = A;

» Start with an initial guess x(9) = 0

» At iteration k, Gauss-Newton’'s method uses the descent direction:

ox(k) — (ZJ (’O)) (ZJ )))
n -1 n
= (Z AJTAJ-> (Z Al (A5 + bj))
j=1 j=1

-1
= —x(k) (Z AJTAJ-) (Z A]bj)
j=1 j=1

» If oK) =1, in this problem, Gauss-Newton's method behaves exactly
like Newton's method and coverges in one iteration! 21



