ECE276A: Sensing \& Estimation in Robotics Lecture 5: Gaussian Discriminant Analysis

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Color Imaging

- Image sensor: converts light into small bursts of current
- Analog imaging technology uses charge-coupled devices (CCD) or complementary metal-oxide semiconductors (CMOS)
- CCD/CMOS photosensor array:

- A phototransistor converts light into current
- Each transistor charges a capacitor to measure:

\#photons/sampling time

- R,G,B filters are used to modify the absorption profiles of photons
- Analog-to-digital conversion of $\mathrm{R}, \mathrm{G}, \mathrm{B}$ transistor values to pixel values:

$$
\underbrace{R=127}_{8 \text { bits }(0-255)}, \quad G=200, \quad B=103 \quad \text { (24-bit color) }
$$

Why RGB, Why 3?

- Retina: types of photoreceptors: rod \& cone cells (S, M, L)
- Rod cells:
- insensitive to wavelength but highly sensitive to intensity
- mostly saturated during daylight conditions

- Cone cells:
- Given an arbitrary light spectral distribution $f(\lambda)$, the cone cells act as filters that provide a convolution-like signal to the brain:

- Color blind people are deficient in 1 or more of these cones
- Other animals (e.g., fish) have more than 3 cones

Luma-Chroma Color Space

- YUV (YCbCr): a linear transformation of RGB
- Luminance/Brightness $(Y) \approx(R+G+B) / 3 \quad\}$ gray-scale image
$\left.\begin{array}{l}\text { - Blueness }(\mathrm{U} / \mathrm{Cb}) \approx(B-G) \\ \text { - Redness }(\mathrm{V} / \mathrm{Cr}) \approx(R-G)\end{array}\right\}$ chrominance
- Used in analog TV for PAL/SECAM composite color video standards

HSV and LAB Color Spaces

- HSV: cylindrical coordinates of RGB points
- Hue (H): angular dimension (red $\approx 0^{\circ}$, green $\approx 120^{\circ}$, blue $\approx 240^{\circ}$)
- Saturation (S): pure red has saturation 1, while tints have saturation <1
- Value/Brightness (V): achromatic/gray colors ranging from black ($V=0$, bottom) to white ($V=1$, top)

HSV

- LAB: nonlinear transformation of RGB; device independent
- Lightness (L): from black $(L=0)$ to white $(L=100)$
- Position between green and red/magenta (A)
- Position between blue and yellow (B)

Image Formation

- Pixel values depend on:
- Scene geometry
- Scene photometry (illumination and reflective properties)
- Scene dynamics (moving objects)
- Using camera images to infer a representation of the world is challenging because the shape, material properties, and motion of the observed scene are in general unknown
- We will study several basic problems:
- Classifying pixels into semantic colors, such as red, blue, green, etc.
- Projecting pixel coordinates from 2-D image space to 3-D world space
- Extracting and tracking image point features
- Estimating the 3-D world-frame postions of image point features
- Estimating the position and orientation of a camera observing image point features

Color Segmentation as a Classification Problem

- Color Segmentation Problem: segment the 3-D color space into a set of volumes associated with different colors:
- Each pixel is a 3-D vector: $\mathbf{x}=(R, G, B)$ or $(Y, C b, C r)$ or (H, S, V)
- Discrete color labels: $y \in\{1, \ldots, K\}$, egg., $\{$ red, blue, yellow, $\ldots\}$
- Pixel values are noisy. We will use a probabilistic model $p(y \mid \mathbf{x})$ for the color class $y \in\{1, \ldots, K\}$ of a given pixel $x \in \mathbb{R}^{3}$
- Training: given data $D=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i}$ of pixel values $\mathbf{x}_{i} \in \mathbb{R}^{3}$, labeled with colors y_{i}, optimize the parameters of a probabilistic model $p(y \mid \mathbf{x})$
- Testing: use the optimized model $p(y \mid \mathbf{x})$ to define a function that transforms a new color-space input \mathbf{x}_{*} into a discrete color label y_{*} :

$$
\mathbf{x}_{*} \xrightarrow{\text { classifier }} y_{*} \in \underset{y}{\arg \max p\left(y \mid \mathbf{x}_{*}\right)}
$$

Color-based Object Detection

Robot Soccer Example: real-time robot vision system

RGB color image at 30 fps from camera

${ }^{\|}$
Color Segmentation
Each pixel is labelled by symbolic colors

Union-find algorithm

Connected components (blobs)
Extract region properties: centroid, bounding box, major/minor axis, etc.

Classify objects based on shape

Shape-based Orange Ball Detection

- Given a set of orange pixels with image plane coordinates $\left\{\left(u_{p}, v_{p}\right)\right\}_{p=1}^{N_{p}}$
- Center of mass:
$\left(c_{u}, c_{v}\right)=\left(\frac{1}{N_{p}} \sum_{p} u_{p}, \frac{1}{N_{p}} \sum_{p} v_{p}\right)$

- Fit an ellipse: $\left\{(u, v) \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{l}u-c_{u} \\ v-c_{v}\end{array}\right]^{\top}\left[\begin{array}{ll}E_{u u} & E_{u v} \\ E_{u v} & E_{v v}\end{array}\right]^{-1}\left[\begin{array}{l}u-c_{u} \\ v-c_{v}\end{array}\right] \leq 1\right.\right\}$

$$
E_{u u}=\frac{2}{N_{p}} \sum_{p}\left(u_{p}-c_{u}\right)^{2} \quad E_{v v}=\frac{2}{N_{p}} \sum_{p}\left(v_{p}-c_{v}\right)^{2} \quad E_{u v}=\frac{2}{N_{p}} \sum_{p}\left(u_{p}-c_{u}\right)\left(v_{p}-c_{v}\right)
$$

- Ball detection: use thresholds $\epsilon_{0}, \epsilon_{1}$ on the eigenvalues λ_{0}, λ_{1} of $\left[\begin{array}{ll}E_{u u} & E_{u v} \\ E_{u v} & E_{v v}\end{array}\right]$
- size: $\quad \min \lambda_{1}, \lambda_{2} \geq \epsilon_{0}$
- eccentricity: $\quad 1-\epsilon_{1} \leq \frac{\lambda_{1}}{\lambda_{2}} \leq 1+\epsilon_{1}$

Project 1: Color Segmentation

- Train a probabilistic color model using a set of labeled pixel values
- Use the model to classify the colors on unseen test images
- Detect a blue recycling bin based on the color segmentation and the known bin shape

Project 1 Tips

- Define K color classes that you want to distinguish, e.g., recycling-bin-blue, other-blue, green, brown, etc. At the very least, you should have $K=2$ color classes: blue and not-blue.
- Label examples (by selecting pixel regions via roipoly) for each color class to obtain a training dataset $D=\left\{\mathbf{x}_{i}, y_{i}\right\}$.
- Train a generative (Gaussian Discriminant) model $p(y, \mathbf{x})$ or discriminative (Logistic Regression) model $p(y \mid \mathbf{x})$
- Given a test image, classify each pixel into one of the K color classes using your model
- Find recycling-bin-blue regions (via OpenCV's findContours)
- Enumerate blue region combinations and score them based on how much they resemble a bin shape (via Scikit-Image's regionprops)
- Experiment with different color spaces and parameters

Supervised Learning

- Data: a set $D:=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$ of iid examples $\mathbf{x}_{i} \in \mathbb{R}^{d}$ with associated scalar labels y_{i} generated from an unknown joint pdf $p_{*}(y, \mathbf{x})$
- The training dataset is often also written in matrix notation, $D=(X, \mathbf{y})$, with $X \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$
- Goal: define a function: $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that can assign a label y to a given data point \mathbf{x}, either from the training dataset D or from an unseen test set generated from the same unknown pdf $p_{*}(y, \mathbf{x})$
- The function h should perform "well":
- Classification (discrete $y \in\{-1,1\}$):

$$
\min _{h} \operatorname{Loss}_{0-1}(h):=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{h\left(\mathbf{x}_{i}\right) \neq y_{i}}=\# \text { of times } h \text { is wrong about the labels }
$$

- Regression (continuous $y \in \mathbb{R}$):

$$
\min _{h} \operatorname{MSE}(h):=\frac{1}{n} \sum_{i=1}^{n}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}=\text { mean square error of } h
$$

Generative vs Discriminative Models

- Generative model
$\rightarrow h(\mathbf{x}):=\underset{y}{\arg \max } p(y, \mathbf{x})$
- Choose $p(y, \mathbf{x})$ so that it approximates the unknown data-generating pdf
- Can generate new examples \mathbf{x} with labels y by sampling from $p(y, \mathbf{x})$
- Examples: Naïve Bayes, Gaussian Discriminant Analysis, Hidden Markov Models, Restricted Boltzmann Machines, Latent Dirichlet Allocation, etc.
- Discriminative model
$\rightarrow h(\mathbf{x}):=\underset{y}{\arg \max } p(y \mid \mathbf{x})$
- Choose $p(y \mid \mathbf{x})$ so that it approximates the unknown label-generating pdf
- Because it models $p(y \mid \mathbf{x})$ directly, a discriminative model cannot generate new examples \mathbf{x} but given \mathbf{x} it can predict (discriminate) y.
- Examples: Linear Regression, Logistic Regression, Support Vector Machines, Neural Networks, Random Forests, Conditional Random Fields, etc.

Parametric Learning

- Represent the pdfs $p(y \mid \mathbf{x} ; \boldsymbol{\omega})$ (discriminative) or $p(y, \mathbf{x} ; \boldsymbol{\omega})$ (generative) using parameters $\boldsymbol{\omega} \in \mathbb{R}^{m}$
- Estimate/optimize/learn $\boldsymbol{\omega}$ based on the training set $D=(X, \mathbf{y})$ in a way that the optimized parameters ω^{*} produce good results on a test set $D_{*}=\left(X_{*}, \mathbf{y}_{*}\right)$
- Parameter estimation strategies:
- Maximum Likelihood Estimation (MLE): maximize the likelihood of the data D given the parameters $\boldsymbol{\omega}$
- Maximum A Posteriori (MAP): maximize the likelihood of the parameters $\boldsymbol{\omega}$ given the data D
- Bayesian Inference: estimate the whole distribution of the parameters $\boldsymbol{\omega}$ given the data D

Parametric Learning

- Maximum Likelihood Estimation (MLE):

MLE	Discriminative Model	Generative Model
Training	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y} \mid X, \boldsymbol{\omega})$	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y}, X \mid \boldsymbol{\omega})$
Testing	$y_{*} \in \underset{y}{\arg \max } p\left(y \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)$	$y_{*} \in \underset{y}{\arg \max } p\left(y, \mathbf{x}_{*} \mid \boldsymbol{\omega}^{*}\right)$

- Maximum A Posteriori (MAP):

MAP	Discriminative Model	Generative Model
Training	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max p(\boldsymbol{\omega} \mid \mathbf{y}, X)}$	$\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\boldsymbol{\omega} \mid \mathbf{y}, X)$
	$=\underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y} \mid X, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid X)$	$=\underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y}, X \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})$
Testing	$y_{*} \in \underset{y}{\arg \max } p\left(y \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)$	$y_{*} \in \underset{y}{\arg \max } p\left(y, \mathbf{x}_{*} \mid \boldsymbol{\omega}^{*}\right)$

- Bayesian Inference:

BI	Discriminative Model	Generative Model
Training	$p(\boldsymbol{\omega} \mid \mathbf{y}, X) \propto p(\mathbf{y} \mid X, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid X)$	$p(\boldsymbol{\omega} \mid \mathbf{y}, X) \propto p(\mathbf{y}, X \mid \boldsymbol{\omega}) p(\boldsymbol{\omega})$
Testing	$p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{y}, X\right)=\int p\left(y_{*} \mid \mathbf{x}_{*}, \boldsymbol{\omega}\right) p(\boldsymbol{\omega} \mid \mathbf{y}, X) d \boldsymbol{\omega}$	$p\left(y_{*}, \mathbf{x}_{*} \mid \mathbf{y}, X\right)=\int p\left(y_{*}, \mathbf{x}_{*} \mid \boldsymbol{\omega}\right) p(\boldsymbol{\omega} \mid \mathbf{y}, X) d \boldsymbol{\omega}$

Discriminative Regression via a Linear Gaussian Model

- Model the relationship between an example $x \in \mathbb{R}$ and its label $y \in \mathbb{R}$ as linear but corrupted by Gaussian noise $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
y=\omega_{1} x+\omega_{0}+\epsilon
$$

- For simplicity, assume σ^{2} is known

- Given data $D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i}$, estimate the slope ω_{1} and intercept ω_{0}
- Combine the two parameters into a vector by augmenting x with 1, i.e.,

$$
\omega_{1} x+\omega_{0}=\underbrace{\left[\begin{array}{ll}
\omega_{1} & \omega_{0}
\end{array}\right]}_{\omega} \underbrace{\left[\begin{array}{c}
x \\
1
\end{array}\right]}_{\mathbf{x}}
$$

- We have a discriminative model using the Gaussian pdf ϕ :

$$
y \sim \mathcal{N}\left(\boldsymbol{\omega}^{\top} \mathbf{x}, \sigma^{2}\right) \quad \Leftrightarrow \quad p(y \mid \mathbf{x}, \boldsymbol{\omega})=\phi\left(y ; \boldsymbol{\omega}^{\top} \mathbf{x}, \sigma^{2}\right)
$$

Discriminative Regression via a Linear Gaussian Model

- Linear regression uses a discriminative model $p(\mathbf{y} \mid X, \boldsymbol{\omega})$ for the continuous labels $\mathbf{y} \in \mathbb{R}^{n}$ that is Gaussian and linear in $X \in \mathbb{R}^{n \times d}$:

$$
p(\mathbf{y} \mid X, \boldsymbol{\omega})=\phi(\mathbf{y} ; X \boldsymbol{\omega}, V)
$$

- Use MLE to estimate the parameters:

$$
\boldsymbol{\omega}^{*} \in \underset{\boldsymbol{\omega}}{\arg \max } p(\mathbf{y} \mid X, \boldsymbol{\omega})=\underset{\boldsymbol{\omega}}{\arg \max } \log p(\mathbf{y} \mid X, \boldsymbol{\omega})
$$

- Transforming the objective by a monotone function (log) does not affect the maximizer but conditions the data numerically

$$
\begin{aligned}
\log p(\mathbf{y} \mid X, \boldsymbol{\omega}) & =\log \left(\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(V)}} \exp \left(-\frac{1}{2}(\mathbf{y}-X \omega)^{\top} V^{-1}(\mathbf{y}-X \omega)\right)\right) \\
& =\underbrace{-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \log \operatorname{det} V}_{\text {independent of } \boldsymbol{\omega}}-\frac{1}{2}(\mathbf{y}-X \omega)^{\top} V^{-1}(\mathbf{y}-X \omega)
\end{aligned}
$$

Discriminative Regression via a Linear Gaussian Model

- MLE using the data log-likelihood we derived:

$$
\begin{aligned}
\omega^{*} & \in \underset{\omega}{\arg \max } \log p(\mathbf{y} \mid X, \boldsymbol{\omega})=\underset{\omega}{\arg \min } \frac{1}{2}(\mathbf{y}-X \omega)^{\top} V^{-1}(\mathbf{y}-X \omega) \\
& =\underset{\omega}{\arg \min } \frac{1}{2}\left\|V^{-1 / 2}(\mathbf{y}-X \boldsymbol{\omega})\right\|_{2}^{2}
\end{aligned}
$$

- To solve the unconstrained optimization, set the gradient equal to 0 :

$$
0=\nabla_{\omega}\left(\frac{1}{2}\left\|V^{-1 / 2}(\mathbf{y}-X \omega)\right\|_{2}^{2}\right)=-X^{\top} V^{-1}(\mathbf{y}-X \omega)
$$

- and solve for $\boldsymbol{\omega}$:

$$
\omega^{*}=\left(X^{\top} V^{-1} X\right)^{-1} X^{\top} V^{-1} \mathbf{y}
$$

Discriminative Regression via a Linear Gaussian Model

- Ridge regression: obtains a MAP estimate for $\boldsymbol{\omega}$
- Assume a Gaussian prior $\boldsymbol{\omega} \sim \mathcal{N}(0, \Lambda)$ on the parameters so that:

$$
\log p(\omega) \propto-\frac{1}{2} \omega^{\top} \Lambda^{-1} \boldsymbol{\omega}
$$

- The MAP estimate of $\boldsymbol{\omega}$ is:

$$
\begin{aligned}
\boldsymbol{\omega}^{*} & \in \underset{\omega}{\arg \max } \log p(\mathbf{y} \mid X, \boldsymbol{\omega})+\log p(\boldsymbol{\omega}) \\
& =\underset{\boldsymbol{\omega}}{\arg \min } \frac{1}{2}(\mathbf{y}-X \boldsymbol{\omega})^{\top} V^{-1}(\mathbf{y}-X \boldsymbol{\omega})+\frac{1}{2} \boldsymbol{\omega}^{\top} \Lambda^{-1} \boldsymbol{\omega} \\
& =\underset{\omega}{\arg \min } \frac{1}{2}\left\|V^{-1 / 2}(\mathbf{y}-X \boldsymbol{\omega})\right\|_{2}^{2}+\underbrace{\frac{1}{2}\left\|\Lambda^{-1 / 2} \boldsymbol{\omega}\right\|_{2}^{2}}_{\text {regularization }} \\
& =\left(X^{\top} V^{-1} X+\Lambda^{-1}\right)^{-1} X^{\top} V^{-1} \mathbf{y}
\end{aligned}
$$

- The optimization is equivalent to the MLE setting but includes (Tikhonov) regularization on $\boldsymbol{\omega}$

Linear Regression Summary

- Linear Regression uses a discriminative model: $p(\mathbf{y} \mid X, \boldsymbol{\omega})=\phi(\mathbf{y} ; X \boldsymbol{\omega}, V)$
- Ridge Regression uses a prior $p(\boldsymbol{\omega})=\phi(\boldsymbol{\omega} ; \mathbf{0}, \Lambda)$ in addition
- Training: given data $D=(X, \mathbf{y})$, optimize the model parameters:
- MLE: $\omega^{*}=\left(X^{\top} V^{-1} X\right)^{-1} X^{\top} V^{-1} \mathbf{y}$
- MAP: $\omega^{*}=\left(X^{\top} V^{-1} X+\Lambda^{-1}\right)^{-1} X^{\top} V^{-1} \mathbf{y}$
- Testing: given a test example $\mathbf{x}_{*} \in \mathbb{R}^{d}$, use the optimized parameters ω^{*} to predict the label:

$$
y_{*}=\underset{y}{\arg \max } \log p\left(y \mid \mathbf{x}_{*}, \boldsymbol{\omega}^{*}\right)=\mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}
$$

- The test expression is obtained from the gradient of the log-likelihood with respect to y :

$$
0=\nabla_{y}\left(\frac{1}{2}\left\|V^{-1 / 2}\left(y-\mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}\right)\right\|_{2}^{2}\right)=V^{-1}\left(y-\mathbf{x}_{*}^{\top} \boldsymbol{\omega}^{*}\right)
$$

Linear Regression Example

- Consider the following dataset:

$$
X=\left[\begin{array}{ccc}
-3 & 9 & 1 \\
-2 & 4 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
3 & 9 & 1
\end{array}\right] \in \mathbb{R}^{n \times d} \quad \mathbf{y}=\left[\begin{array}{l}
+1 \\
+1 \\
-1 \\
-1 \\
-1 \\
+1
\end{array}\right] \in \mathbb{R}^{n}
$$

- Adding an extra dimension of 1 s is a trick to allow an affine model:

$$
X^{\prime} \boldsymbol{\omega}_{1}+\omega_{0} \mathbf{1}=\underbrace{\left[\begin{array}{ll}
X^{\prime} & \mathbf{1}
\end{array}\right]}_{X} \underbrace{\left[\begin{array}{l}
\omega_{1} \\
\omega_{0}
\end{array}\right]}_{\boldsymbol{\omega}}
$$

- Let the discrminative model be:

$$
\begin{aligned}
p(\mathbf{y} \mid X, \boldsymbol{\omega}) & =\phi(\mathbf{y} ; X \boldsymbol{\omega}, V) & & =I_{n} \\
p(\boldsymbol{\omega} \mid X) & =\phi(\boldsymbol{\omega} ; \mathbf{0}, \Lambda) & \Lambda & =2 I_{d}
\end{aligned}
$$

Linear Regression Example

- Training:
- MLE: $\omega^{*}=\left(X^{\top} V^{-1} X\right)^{-1} X^{\top} V^{-1} \mathbf{y}=\left[\begin{array}{c}-0.0857 \\ 0.2381 \\ -0.9810\end{array}\right]$ - MAP: $\boldsymbol{\omega}^{*}=\left(X^{\top} V^{-1} X+\Lambda^{-1}\right)^{-1} X^{\top} V^{-1} \mathbf{y}=\left[\begin{array}{c}-0.0643 \\ 0.1806 \\ -0.5580\end{array}\right]$
- Testing: the decision boundary is a line with equation $0=\mathbf{x}^{\top} \boldsymbol{\omega}^{*}$:

MAP:

Generative Classification via a Naïve Bayes Model

- Naïve Bayes uses a generative model $p(\mathbf{y}, X \mid \boldsymbol{\omega}, \boldsymbol{\theta})$ for discrete labels $\mathbf{y} \in\{1, \ldots, K\}^{n}$ and assumes (naively) that, when conditioned on y_{i}, the dimensions of an example $x_{i l}$ for $I=1, \ldots, d$ are independent
- Naïve Bayes uses one set of parameters $\boldsymbol{\theta}$ to model the marginal pdf $p(y)$ of a label y and one set of parameters $\boldsymbol{\omega}$ to model the conditional pdf $p\left(x_{l} \mid y, \omega\right)$ of a single dimension of an example \mathbf{x} :

$$
\begin{aligned}
p(y, \mathbf{x} \mid \boldsymbol{\omega}, \boldsymbol{\theta}) & =p(y \mid \boldsymbol{\theta}) p(\mathbf{x} \mid y, \boldsymbol{\omega}) \xlongequal[\text { assumption }]{\text { naïve }} p(y \mid \boldsymbol{\theta}) \prod_{l=1}^{d} p\left(x_{l} \mid y, \boldsymbol{\omega}\right) \\
p(\mathbf{y}, X \mid \boldsymbol{\omega}, \boldsymbol{\theta}) & =p(\mathbf{y} \mid \boldsymbol{\theta}) p(X \mid \mathbf{y}, \boldsymbol{\omega}) \\
& =\left(\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{\theta}\right)\right)\left(\prod_{i=1}^{n} \prod_{l=1}^{d} p\left(x_{i l} \mid y_{i}, \boldsymbol{\omega}\right)\right)
\end{aligned}
$$

Gaussian Naïve Bayes

- GNB uses a Categorical distribution to model $p\left(y_{i} \mid \boldsymbol{\theta}\right)$ and a Gaussian distribution to model $p\left(x_{i l} \mid y_{i}, \boldsymbol{\omega}\right)$ for $x_{i l} \in \mathbb{R}$ and $\boldsymbol{\omega}:=\left\{\mu_{k l}, \sigma_{k l}^{2}\right\}$

$$
p\left(y_{i} \mid \boldsymbol{\theta}\right):=\prod_{k=1}^{K} \theta_{k}^{\mathbb{1}\left\{y_{i}=k\right\}} \quad p\left(x_{i l} \mid y_{i}=k, \boldsymbol{\omega}\right):=\phi\left(x_{i l} ; \mu_{k l}, \sigma_{k l}^{2}\right)
$$

- GNB obtains the following MLE estimates of $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$:
$\theta_{k}^{M L E}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}$
$\mu_{k l}^{M L E}=\frac{\sum_{i=1}^{n} x_{i l} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}} \quad \sigma_{k l}^{M L E}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i l}-\mu_{k l}^{M L E}\right)^{2} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}}}$
- Given a test example $\mathbf{x}_{*} \in \mathbb{R}^{d}$, the GNB classifier produces the output:

$$
y_{*}=\underset{y \in\{1, \ldots, K\}}{\arg \max } \log \theta_{y}^{M L E}+\sum_{l=1}^{d} \log \phi\left(x_{* l} ; \mu_{y l}^{M L E},\left(\sigma_{y l}^{M L E}\right)^{2}\right)
$$

Gaussian Naïve Bayes Example

- Consider the same data as before:

$$
X=\left[\begin{array}{cc}
-3 & 9 \\
-2 & 4 \\
-1 & 1 \\
0 & 0 \\
1 & 1 \\
3 & 9
\end{array}\right] \in \mathbb{R}^{n \times d} \quad \mathbf{y}=\left[\begin{array}{c}
+1 \\
+1 \\
-1 \\
-1 \\
-1 \\
+1
\end{array}\right] \in \mathbb{R}^{n}
$$

- Training: The GNB MLE parameters are:

$$
\begin{aligned}
& \theta_{k}^{M L E}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}=\frac{1}{2} \quad \text { for } k=1,-1 \\
& \mu_{k l}^{M L E}=\frac{\sum_{i=1}^{n} x_{i l} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}}=\begin{array}{|c|c|c|}
\hline & I=1 & I=2 \\
\hline k=1 & -0.66 & 7.33 \\
\hline k=-1 & 0.00 & 0.66 \\
\hline
\end{array} \\
& \sigma_{k l}^{M L E}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i l}-\mu_{k l}^{M L E}\right)^{2} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}}}=\begin{array}{|c|c|c|}
\hline k=1 & 2.62 & 2.36 \\
\hline k=-1 & 0.82 & 0.47 \\
\hline
\end{array}
\end{aligned}
$$

Gaussian Naïve Bayes Example

- Testing: evaluate the most likely class:

$$
y_{*}=\underset{k \in\{-1,+1\}}{\arg \min }\left\{\log \frac{1}{\theta_{k}^{2}}+\sum_{l=1}^{d} \log \sigma_{k l}^{2}+\frac{\left(x_{* l}-\mu_{k l}\right)^{2}}{\sigma_{k l}^{2}}\right\}
$$

- The decision boundary is not linear (in contrast to logistic regression):

Categorical Naïve Bayes

- CNB is used when both the labels y_{i} and the examples \mathbf{x}_{i} are discrete
- CNB uses a Categorical distribution to model $p\left(y_{i} \mid \boldsymbol{\theta}\right)$ and $p\left(x_{i l} \mid y_{i}, \boldsymbol{\omega}\right)$ for $x_{i l} \in\{1, \ldots, J\}$ as follows:

$$
p\left(y_{i} \mid \boldsymbol{\theta}\right):=\prod_{k=1}^{K} \theta_{k}^{\mathbb{1}\left\{y_{i}=k\right\}} \quad p\left(X_{i l} \mid y_{i}, \boldsymbol{\omega}\right):=\prod_{k=1}^{K} \prod_{j=1}^{J} \omega_{k j}^{\mathbb{1}\left\{X_{i l}=j, y_{i}=k\right\}}
$$

- CNB obtains these MLE estimates of $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$ with regularization $r \in \mathbb{N}$: $\theta_{k}^{M L E}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}+r}{n+r K} \quad \omega_{k j}^{M L E}=\frac{\sum_{i=1}^{n} \sum_{l=1}^{d} \mathbb{1}\left\{x_{i l}=j, y_{i}=k\right\}+r}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}+r J}$
- Given a test example $\mathbf{x}_{*} \in\{1, \ldots, J\}^{d}$, CNB predicts:

$$
y_{*}=\underset{y \in\{1, \ldots, K\}}{\arg \max } \log \theta_{y}^{M L E}+\sum_{l=1}^{d} \log \omega_{y, x_{*} \mid}^{M L E}
$$

Gaussian Discriminant Analysis

- Removes the naïve assumption from Gaussian Naive Bayes
- Uses a generative model $p(y, \mathbf{x} \mid \boldsymbol{\omega})$ for discrete labels $y \in\{1, \ldots, K\}$ without any conditional independence assumptions on $p\left(\mathbf{x}_{i} \mid y_{i}, \boldsymbol{\omega}\right)$:

$$
\begin{aligned}
p(\mathbf{y}, X \mid \boldsymbol{\omega}, \boldsymbol{\theta}) & =p(\mathbf{y} \mid \boldsymbol{\theta}) p(X \mid \mathbf{y}, \boldsymbol{\omega})=\prod_{i=1}^{n} p\left(y_{i} \mid \boldsymbol{\theta}\right) p\left(\mathbf{x}_{i} \mid y_{i}, \boldsymbol{\omega}\right) \\
p\left(y_{i} \mid \boldsymbol{\theta}\right): & =\prod_{k=1}^{K} \theta_{k}^{\mathbb{1}\left\{y_{i}=k\right\}} \quad p\left(\mathbf{x}_{i} \mid y_{i}=k, \boldsymbol{\omega}\right):=\phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)
\end{aligned}
$$

where $\boldsymbol{\omega}:=\left\{\boldsymbol{\mu}_{k}, \Sigma_{k}\right\}$ and obtains these MLE estimates of $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$:

$$
\begin{aligned}
\theta_{k}^{M L E} & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} \quad \boldsymbol{\mu}_{k}^{M L E}=\frac{\sum_{i=1}^{n} \mathbf{x}_{i} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}} \\
\sum_{k}^{M L E} & =\frac{\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}^{M L E}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}^{M L E}\right)^{\top} \mathbb{1}\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}}
\end{aligned}
$$

Determining the MLE Parameters

- To determine the MLE parameters for a Gaussian generative model, we need to solve the following constrained optimization:

$$
\max _{\boldsymbol{\theta}, \boldsymbol{\omega}} \log p(\mathbf{y}, X \mid \boldsymbol{\omega}, \boldsymbol{\theta}) \quad \text { subject to } \sum_{k=1}^{K} \theta_{k}=1
$$

$-\log p(\mathbf{y}, X \mid \boldsymbol{\omega}, \boldsymbol{\theta})=\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\}\left(\log \theta_{k}+\log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)\right)$

- The cost function is separable and leads to three independent optimization problems:
$-\max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \theta_{k}$ subject to $\sum_{k=1}^{K} \theta_{k}=1$
$-\max _{\left\{\boldsymbol{\mu}_{k}\right\}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$
$-\max _{\left\{\Sigma_{k}\right\}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$

Maximum Likelihood $\boldsymbol{\theta}$

- Constrained optimization wrt $\boldsymbol{\theta}$:
- $\boldsymbol{\theta}$ is restricted to a simplex, i.e., $\boldsymbol{\theta} \in\left\{\mathbf{v} \in \mathbb{R}^{K} \mid \mathbf{1}^{\top} \mathbf{v}=1\right\}$
- cannot simply set the gradient of the cost function to 0
- Handling simplex constraints: express θ_{k} using a softmax function:

$$
\theta_{k}=\frac{e^{\gamma_{k}}}{\sum_{j} e^{\gamma_{j}}} \quad \frac{d \theta_{k}}{d \gamma_{j}}= \begin{cases}\theta_{k}\left(1-\theta_{k}\right), & \text { if } j=k \\ -\theta_{j} \theta_{k}, & \text { else }\end{cases}
$$

- The softmax representation automatically enforces the simplex constraints and makes the optimization unconstrained!
- Now, we can just set the gradient with respect to γ_{j} to 0 :

$$
\begin{aligned}
0 & =\frac{d}{d \gamma_{j}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \theta_{k}=\sum_{i=1}^{n} \sum_{k=1}^{K} \frac{\mathbb{1}\left\{y_{i}=k\right\}}{\theta_{k}} \frac{d \theta_{k}}{d \gamma_{j}} \\
& =\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\}\left(1-\theta_{j}\right)-\sum_{k \neq j} \mathbb{1}\left\{y_{i}=k\right\} \theta_{j} \Rightarrow \theta_{j}^{M L E}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\}
\end{aligned}
$$

Maximum Likelihood Mean

$>\max _{\left\{\boldsymbol{\mu}_{k}\right\}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$
$-\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\} \frac{d}{d \mu_{j}} \log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{j}, \Sigma_{j}\right)=0$
$-\frac{d}{d \boldsymbol{\mu}} \log \phi(x ; \boldsymbol{\mu}, \Sigma)=-\frac{1}{2} \frac{d}{d \boldsymbol{\mu}}(x-\boldsymbol{\mu})^{\top} \Sigma^{-1}(x-\boldsymbol{\mu})=(x-\boldsymbol{\mu})^{\top} \Sigma^{-1}$
$\triangleright \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{j}\right)^{\top} \Sigma_{j}^{-1}=0 \Rightarrow \boldsymbol{\mu}_{j}^{M L E}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\} \mathbf{x}_{i}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\}}$

Maximum Likelihood Covariance

$-\max _{\left\{\Sigma_{k}\right\}} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{1}\left\{y_{i}=k\right\} \log \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$

- $\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\} \frac{d}{d \Sigma_{j}} \log \phi\left(\mathbf{x}_{i} ; \mu_{j}, \Sigma_{j}\right)=0$
- $\frac{d}{d \Sigma} \log \phi(x ; \boldsymbol{\mu}, \Sigma)=-\frac{1}{2} \frac{d}{d \Sigma} \log \operatorname{det} \Sigma-\frac{1}{2} \frac{d}{d \Sigma}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)$

$$
=-\frac{1}{2} \Sigma^{-1}+\frac{1}{2} \Sigma^{-1}(x-\mu)(x-\mu)^{\top} \Sigma^{-1}
$$

$$
\begin{aligned}
&-\frac{1}{2} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}\right.=j\}\left(\Sigma_{j}^{-1}\left(\mathbf{x}_{i}-\mu_{j}^{M L E}\right)\left(\mathbf{x}_{i}-\mu_{j}^{M L E}\right)^{\top} \Sigma_{j}^{-1}-\Sigma_{j}^{-1}\right)=0 \\
& \Rightarrow \Sigma_{j}^{M L E}=\frac{\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\mu_{j}^{M L E}\right)\left(\mathbf{x}_{i}-\mu_{j}^{M L E}\right)^{\top} \mathbb{1}\left\{y_{i}=j\right\}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=j\right\}}
\end{aligned}
$$

Gaussian Discriminant Analysis

- If the training set D is small, one might restrict the covariance to:
- diagonal: $\sum_{k}^{M L E}=\frac{\sum_{i=1}^{n} \operatorname{diag}\left(x_{i}-\mu_{k}^{M L E}\right)^{2} 1\left\{y_{i}=k\right\}}{\sum_{i=1}^{n} 1\left\{y_{i}=k\right\}}$
- spherical: $\sum_{k}^{M L E}=\frac{\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mu_{k}^{M L E}\right\|_{2}^{2} 1\left\{y_{i}=k\right\}}{n \sum_{i=1}^{n} 1\left\{y_{i}=k\right\}}$
- If the training set D is large, one can obtain a more complex model by using a Gaussian Mixture with J components to model $p\left(\mathbf{x}_{i} \mid y_{i}, \boldsymbol{\omega}\right)$:

$$
p\left(y_{i} \mid \boldsymbol{\theta}\right):=\prod_{k=1}^{K} \theta_{k}^{1\left\{y_{i}=k\right\}} \quad p\left(\mathbf{x}_{i} \mid y_{i}=k, \boldsymbol{\omega}\right):=\sum_{j=1}^{J} \alpha_{k j} \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k j}, \Sigma_{k j}\right)
$$

- While an MLE estimate for $\boldsymbol{\theta}$ can be obtained as before, obtaining MLE estimates for $\boldsymbol{\omega}:=\left\{\alpha_{k j}, \boldsymbol{\mu}_{k j}, \Sigma_{k j}\right\}$ is no longer straight-forward and we need to resort to the Expectation Maximization algorithm

Gaussian Mixture MLE via Expectation Maximization

- Start with initial guess $\boldsymbol{\omega}^{(t)}:=\left\{\alpha_{k j}^{(t)}, \boldsymbol{\mu}_{k j}^{(t)}, \Sigma_{k j}^{(t)}\right\}$ for $t=0$, $k=1, \ldots, K, j=1, \ldots, J$ and iterate:
(E step)

$$
r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)=\frac{\alpha_{k j}^{(t)} \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k j}^{(t)}, \Sigma_{k j}^{(t)}\right)}{\sum_{l=1}^{J} \alpha_{k l}^{(t)} \phi\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k l}^{(t)}, \Sigma_{k l}^{(t)}\right)}
$$

(M step) $\alpha_{k j}^{(t+1)}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\}}$

$$
\boldsymbol{\mu}_{k j}^{(t+1)}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right) \mathbf{x}_{i}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)}
$$

$$
\Sigma_{k j}^{(t+1)}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)\left(\mathbf{x}_{i}-\mu_{k j}^{(t+1)}\right)\left(\mathbf{x}_{i}-\mu_{k j}^{(t+1)}\right)^{T}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)}
$$

Gaussian Mixture MLE via Expectation Maximization

- Sometimes the data is not enough to estimate all these parameters:
- Fix the weights $\alpha_{k j}=\frac{1}{J}$
- Fix diagonal $\Sigma_{k j}=\operatorname{diag}\left(\left[\sigma_{k j 1}^{2}, \ldots, \sigma_{k j n}^{2}\right]^{T}\right)$ or spherical $\Sigma_{k j}=\sigma_{k j}^{2} I_{n}$
- Estimate a diagonal covariance:

$$
\Sigma_{k j}^{(t+1)}=\frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right) \operatorname{diag}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k j}^{(t+1)}\right)^{2}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)}
$$

- Estimate a spherical covariance:

$$
\sigma_{k j}^{2,(t+1)}=\frac{1}{d} \frac{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)\left\|\mathbf{x}_{i}-\boldsymbol{\mu}_{k j}^{(t+1)}\right\|^{2}}{\sum_{i=1}^{n} \mathbb{1}\left\{y_{i}=k\right\} r_{k}^{(t)}\left(j \mid \mathbf{x}_{i}\right)}, \quad \mathbf{x}_{i} \in \mathbb{R}^{d}
$$

- How should we initialize $\boldsymbol{\omega}^{(0)}$? Use k-means++!
- If $\sigma_{k j} \rightarrow 0$, the GM component assignments of EM become hard and EM works like k-means.

