ECE276A: Sensing \& Estimation in Robotics Lecture 9: Bayesian Filtering

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Qiaojun Feng: qjfeng@ucsd.edu
Arash Asgharivaskasi: aasghari@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@ucsd.edu
Rishabh Jangir: rjangir@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Structure of Robotics Problems

- Time: t (discrete or continuous)
- Robot state: \mathbf{x}_{t} (e.g., position, orientation, velocity)
- Control input: \mathbf{u}_{t} (e.g., quadrotor thrust and torque)
- Observation: \mathbf{z}_{t} (e.g., image, laser scan, inertial measurements)
- Map state: \boldsymbol{m}_{t} (e.g., map of the occupancy of space)

Structure of Robotics Problems

- The sequences of control inputs $\mathbf{u}_{0: t}$ and observations $\mathbf{z}_{0: t}$ are known/observed
- The sequences of robot states $\mathbf{x}_{0: t}$ and map states $\mathbf{m}_{0: t}$ are unknown/hidden
- Markov Assumptions
- The robot state \mathbf{x}_{t+1} only depends on the previous input \mathbf{u}_{t} and state \mathbf{x}_{t}, i.e., \mathbf{x}_{t+1} given $\mathbf{u}_{t}, \mathbf{x}_{t}$ is independent of the history $\mathbf{x}_{0: t-1}, \mathbf{z}_{0: t-1}, \mathbf{u}_{0: t-1}$
- The map state \mathbf{m}_{t+1} only depends on the previous map state \mathbf{m}_{t}.
- The map state \mathbf{m}_{t} and robot state \mathbf{x}_{t} may affect each other's motion (e.g., collisions) but we do not make this explicit to simplify the presentation.
- The observation \mathbf{z}_{t} only depends on the robot state \mathbf{x}_{t} and map state \mathbf{m}_{t}

Motion and Observation Models

- Motion Model: a nonlinear function f or equivalently a probability density function p_{f} that describes the motion of the robot to a new state \mathbf{x}_{t+1} after applying control input \mathbf{u}_{t} at state \mathbf{x}_{t} :

$$
\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \quad \mathbf{w}_{t}=\text { motion noise }
$$

- The robot motion model may also depend on \mathbf{m}_{t} and the map may have its own motion model:

$$
\mathbf{m}_{t+1}=a\left(\mathbf{m}_{t}, \mathbf{x}_{t}, \text { noise }_{t}\right) \sim p_{a}\left(\cdot \mid \mathbf{m}_{t}, \mathbf{x}_{t}\right)
$$

- Observation Model: a function h or equivalently a pdf p_{h} that describes the observation \mathbf{z}_{t} of the robot depending on \mathbf{x}_{t} and \mathbf{m}_{t}

$$
\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{m}_{t}, \mathbf{v}_{t}\right) \sim p_{h}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{m}_{t}\right) \quad \mathbf{v}_{t}=\text { observation noise }
$$

Markov Assumption Factorization

- The Markov assumptions induce a factorization of joint pdf of the states $\mathrm{x}_{0: T}$ (robot and map combined), observations $\mathbf{z}_{0: T}$, and controls $\mathbf{u}_{0: T-1}$

- Joint distribution:
$p\left(\mathbf{x}_{0: T}, \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)=p\left(\mathbf{z}_{T} \mid \mathbf{x}_{0: T}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{0: T}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right)$
$\xlongequal{\text { Markov }} p_{h}\left(\mathbf{z}_{T} \mid \mathbf{x}_{T}\right) p\left(\mathbf{x}_{T} \mid \mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right)$
$\xlongequal{\text { Markov }} p_{h}\left(\mathbf{z}_{T} \mid \mathbf{x}_{T}\right) p_{f}\left(\mathbf{x}_{T} \mid \mathbf{x}_{T-1}, \mathbf{u}_{T-1}\right) p\left(\mathbf{u}_{T-1} \mid \mathbf{x}_{T-1}\right) p\left(\mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-2}\right)$
$=\cdots$

$$
=\underbrace{p\left(\mathbf{x}_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)}_{\text {observation model }} \prod_{t=1}^{T} \underbrace{p_{f}\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1}\right)}_{\text {motion model }} \prod_{t=0}^{T-1} \underbrace{p\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)}_{\text {control policy }}
$$

Bayes Filter

- A probabilistic inference technique for estimating the state of a dynamical system (e.g., the robot and/or its environment) that combines evidence from control inputs and observations using the Markov assumptions and Bayes rule:
- Total probability: $p(x)=\int p(x, y) d y$
- Conditional probability: $p(x, y)=p(y \mid x) p(x)$
- Bayes rule: $p(x \mid y, z)=\frac{p(y \mid x, z) p(x \mid z)}{\int p(y, s \mid z) d s}=\frac{p(y \mid x, z) p(z \mid x) p(x)}{p(y \mid z) p(z)}$
- The Bayes filter keeps track of:
- Updated pdf: $p_{t \mid t}\left(\mathbf{x}_{t}\right):=p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right)$
- Predicted pdf: $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right):=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$
- Special cases of the Bayes filter:
- Particle filter
- Kalman filter
- Forward algorithm for Hidden Markov Models (HMMs)

Filtering Examples

- Track the center $\mathbf{c}_{t} \in \mathbb{R}^{2}$ and radius $r_{t} \in \mathbb{R}$ of a ball in images: http://www.pyimagesearch.com/2015/09/14/ ball-tracking-with-opencv/
- Track the position $\mathbf{p}_{t} \in \mathbb{R}^{3}$ and orientation $\mathbf{R}_{t} \in S O(3)$ of a camera: https://www.youtube.com/watch?v=CsJkci5lfco
- Estimate the probability of occupancy of a static environment represented as a grid \mathbf{m} :
https://www.youtube.com/watch?v=RhPlzIyTT58

Bayes Filter Prediction and Update Steps

- The Bayes filter keeps track of $p_{t \mid t}\left(\mathbf{x}_{t}\right)$ and $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)$ using a prediction step to incorporate the control inputs and an update step to incorporate the measurements
- Prediction step: given a prior pdf $p_{t \mid t}$ over \mathbf{x}_{t} and control input \mathbf{u}_{t}, use the motion model p_{f} to compute the predicted pdf $p_{t+1 \mid t}$ over \mathbf{x}_{t+1} :

$$
p_{t+1 \mid t}(\mathbf{x})=\int p_{f}\left(\mathbf{x} \mid \mathbf{s}, \mathbf{u}_{t}\right) p_{t \mid t}(\mathbf{s}) d \mathbf{s}
$$

- Update step: given a predicted pdf $p_{t+1 \mid t}$ over \mathbf{x}_{t+1} and measurement \mathbf{z}_{t+1}, use the observation model p_{h} to obtain the updated pdf $p_{t+1 \mid t+1}$ over \mathbf{x}_{t+1} :

$$
p_{t+1 \mid t+1}(\mathbf{x})=\frac{p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}\right) p_{t+1 \mid t}(\mathbf{x})}{\int p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{s}\right) p_{t+1 \mid t}(\mathbf{s}) d \mathbf{s}}
$$

Bayes Filter Illustration

$$
p_{\|| |}(x):=p\left(x_{1} \mid z_{0: 1}, u_{0}\right)
$$

$$
p_{2| |}(x)=\int p_{\mathrm{f}}\left(x \mid s, u_{1}\right) p_{\|| |}(s) d s
$$

Bayes Filter Derivation

$$
\begin{aligned}
& p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t+1}, \mathbf{u}_{0: t}\right) \\
& \quad \xlongequal{\text { Bayes }} \frac{1}{\eta_{t+1}} p\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) \\
& \xlongequal{\text { Markov }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) \\
& \xlongequal{\text { Total prob. }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p\left(\mathbf{x}_{t+1}, \mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) d \mathbf{x}_{t} \\
& \xlongequal{\text { Cond. prob. }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}, \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) d \mathbf{x}_{t} \\
& \quad=\frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right) d \mathbf{x}_{t} \\
&
\end{aligned}
$$

- Normalization constant: $\eta_{t+1}:=p\left(\mathbf{z}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$

Bayes Filter Summary

- Motion model: $\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)$
- Observation model: $\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right) \sim p_{h}\left(\cdot \mid \mathbf{x}_{t}\right)$
- Filtering: recursive computation of $p\left(\mathbf{x}_{T} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ that tracks:
- Updated pdf: $p_{t \mid t}\left(\mathbf{x}_{t}\right):=p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right)$
- Predicted pdf: $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right):=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$

- Bayes filter:

$$
p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)=\overbrace{\underbrace{\frac{1}{p\left(\mathbf{z}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)}}_{\text {Update }} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \overbrace{\int p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) p_{t \mid t}\left(\mathbf{x}_{t}\right) d \mathbf{x}_{t}}^{\eta_{t+1}}}^{\text {Predict: } p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)}
$$

Bayes Smoother

- Recursive computation of a pdf $p\left(\mathbf{x}_{0: T} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ over the whole state trajectory $\mathbf{x}_{0: T}$ instead of only the most recent state \mathbf{x}_{T}
- The Bayes smoother keeps track of:
- Smoothed pdf: $p_{t \mid T}\left(\mathbf{x}_{t}\right):=p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ for $t \in\{0, \ldots, T\}$
- Forward pass: compute $p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t+1}, \mathbf{u}_{0: t}\right)$ and $p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$ for $t=0, \ldots, T$ via the Bayes filter
- Backward pass: for $t=T-1, \ldots, 0$ compute:

$$
\begin{aligned}
& p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) \stackrel{\text { Probability }}{\text { Total }} \int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) d \mathbf{x}_{t+1} \\
& \\
& \xlongequal[\text { Assumption }]{\text { Markov }} \int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) d \mathbf{x}_{t+1} \\
& \\
& \xlongequal[\text { Rule }]{\text { Bayes }} \underbrace{p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right)}_{\text {forward pass }} \int[\overbrace{\underbrace{\text { motion model }}_{\text {forward pass }}}^{\frac{p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)}{p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)} p\left(\mathbf{x}_{0: 1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)}] d \mathbf{x}_{t+1}
\end{aligned}
$$

Histogram Filter

- Implementation of the Bayes filter when \mathbf{x}_{t} belongs to a fixed discrete set \mathcal{X} for all t.
- In this case:
- we can work with probability mass functions (pmfs)
- integration in the Bayes filter steps reduces to summation
- Overload notation: let $p_{t \mid t}(\mathbf{x}), p_{t+1 \mid t}(\mathbf{x})$, and $p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)$ be pmfs over the discrete state set \mathcal{X}
- We will use the connection between a pdf and a pmf more carefully when deriving the particle filter

Histogram Filter

- Keeps track of the pmfs $p_{t \mid t}(\mathbf{x})$ and $p_{t+1 \mid t}(\mathbf{x})$ over a discrete set \mathcal{X}
- Prediction step: given a prior pmf $p_{t \mid t}$ and control input \mathbf{u}_{t}, use the motion model pmf p_{f} to compute the predicted pmf $p_{t+1 \mid t}$:

$$
p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)=\sum_{\mathbf{s} \in \mathcal{X}} p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{s}, \mathbf{u}_{t}\right) p_{t \mid t}(\mathbf{s})
$$

- Update step: given a predicted pmf $p_{t+1 \mid t}$ and measurement \mathbf{z}_{t+1}, use the observation model p_{h} to obtain an updated pmf $p_{t+1 \mid t+1}$:

$$
p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)=\frac{p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)}{\sum_{\mathbf{s} \in \mathcal{X}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{s}\right) p_{t+1 \mid t}(\mathbf{s})}
$$

Efficient Histogram Filter Prediction

- Let \mathcal{X} be a regular grid discretization of \mathbb{R}^{d}
- Motion model: $\mathbf{x}^{\prime}=f(\mathbf{x}, \mathbf{u})+\mathbf{w}$
- Assume bounded "Gaussian" noise w
- Prediction step:
- shift the prior pmf data $p_{t \mid t}(\mathbf{x})$ at each grid index $\mathbf{x} \in \mathcal{X}$ to a new grid index \mathbf{x}^{\prime} according to the motion model $\mathbf{x}^{\prime}=f(\mathbf{x}, \mathbf{u})$
- convolve the shifted grid values with a separable Gaussian kernel:

- This reduces the prediction step cost from $O\left(n^{2}\right)$ to $O(n)$ where n is the number of grid cells in \mathcal{X}

Adaptive Histogram Filter

- The accuracy of the histogram filter is limited by the size of the grid \mathcal{X}
- A small-resolution grid becomes very computationally expensive in high dimensional state spaces because the number of cells is exponential in the number of dimensions
- Adaptive Histogram Filter: represents the pmf via adaptive discretization, e.g., an octree data structure

Markov Localization

- Robot Localization Problem: Given a map m, a sequence of control inputs $\mathbf{u}_{0: t-1}$, and a sequence of measurements $\mathbf{z}_{0: t}$, infer the state of the robot \mathbf{x}_{t}
- Approach: use a Bayes filter with a multi-modal distribution in order to capture multiple hypotheses about the robot state, e.g.:
- Histogram filter
- Particle filter
- Gaussian mixture filter
- Important considerations:
- How is the map \mathbf{m} represented?
- What are the motion and observation models?
- Need to keep the number of hypotheses about \mathbf{x}_{t} under control, especially in high dimensions

Histogram Filter Localization (1-D)

Prior:

Histogram Filter Localization (1-D)

Histogram Filter Localization (1-D)

Particle Filter

- The particle filter is a histogram filter which allows its grid centers to move around and adaptively concentrate in areas of the state space that are more likely to contain the true state
- To obtain the particle filter, we will explicitly use the connection between a pmf and a pdf and the Bayes filter prediction and update steps
- Reminder: a pmf $\alpha^{(k)}$ over a discrete set $\left\{\boldsymbol{\mu}^{(1)}, \boldsymbol{\mu}^{(2)}, \ldots\right\}$ can be viewed as a continuous-space pdf by defining:

$$
p(\mathbf{x}):=\sum_{k} \alpha^{(k)} \delta\left(\mathbf{x}-\boldsymbol{\mu}^{(k)}\right)
$$

where δ is the Dirac delta function:

$$
\delta(x):=\left\{\begin{array}{ll}
\infty & x=0 \\
0 & x \neq 0
\end{array} \quad \int_{-\infty}^{\infty} \delta(x) d x=1\right.
$$

Particle Filter

- Particle: a hypothesis that the value of \mathbf{x} is $\boldsymbol{\mu}^{(k)}$ with probability $\alpha^{(k)}$
- The particle filter uses a set of hypotheses (particles) with locations $\left\{\boldsymbol{\mu}^{(k)}\right\}_{k}$ and weights $\left\{\alpha^{(k)}\right\}_{k}$ to represent the pdfs $p_{t \mid t}$ and $p_{t+1 \mid t}$:

$$
\begin{aligned}
p_{t \mid t}\left(\mathbf{x}_{t}\right) & =\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{t \mid t}^{(k)}\right) \\
p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right) & =\sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(\mathbf{x}_{t+1}-\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)
\end{aligned}
$$

- To derive the particle filter, substitute these pdfs in the Bayes filter prediction and update steps
- The prediction and update steps should maintain the mixture-of-delta-functions form of the pdfs

Particle Filter Prediction

- Plug the particle representation of $p_{t \mid t}$ in the Bayes filter prediction step:

$$
\begin{aligned}
p_{t+1 \mid t}(\mathbf{x}) & =\int p_{f}\left(\mathbf{x} \mid \mathbf{s}, \mathbf{u}_{t}\right) \sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(\mathbf{s}-\boldsymbol{\mu}_{t \mid t}^{(k)}\right) d \mathbf{s} \\
& =\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} p_{f}\left(\mathbf{x} \mid \boldsymbol{\mu}_{t \mid t}^{(k)}, \mathbf{u}_{t}\right) \stackrel{? ?}{\approx} \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(\mathbf{x}-\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)
\end{aligned}
$$

- How do we approximate the prediction step as a delta-mixture pdf?
- Since $p_{t+1 \mid t}(\mathbf{x})$ is a mixture pdf with components $p_{f}\left(\mathbf{x} \mid \boldsymbol{\mu}_{t \mid t}^{(k)}, \mathbf{u}_{t}\right)$, we may approximate it with particles by drawing samples from it:
- Resampling: given particles $\left\{\boldsymbol{\mu}_{t \mid t}^{(k)}, \alpha_{t \mid t}^{(k)}\right\}$ for $k=1, \ldots, N_{t \mid t}$, create a new set, $\left\{\overline{\boldsymbol{\mu}}_{t \mid t}^{(k)}, \bar{\alpha}_{t \mid t}^{(k)}\right\}$ for $k=1, \ldots, N_{t+1 \mid t}$ (usually $N_{t+1 \mid t}=N_{t \mid t}$)
- Prediction: apply the motion model to each $\overline{\boldsymbol{\mu}}_{t \mid t}^{(k)}$ by drawing

$$
\boldsymbol{\mu}_{t+1 \mid t}^{(k)} \sim p_{f}\left(\cdot \mid \overline{\boldsymbol{\mu}}_{t \mid t}^{(k)}, u_{t}\right) \text { and set } \alpha_{t+1 \mid t}^{(k)}=\bar{\alpha}_{t \mid t}^{(k)}
$$

Particle Filter Update

- Plug the particle representation of $p_{t+1 \mid t}$ in the Bayes filter update step:

$$
\begin{aligned}
p_{t+1 \mid t+1}(\mathbf{x}) & =\frac{p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}\right) \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(\mathbf{x}-\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)}{\int p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{s}\right) \sum_{j=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(j)} \delta\left(\mathbf{s}-\boldsymbol{\mu}_{t+1 \mid t}^{(j)}\right) d \mathbf{s}} \\
& =\sum_{k=1}^{N_{t+1 \mid t}} \underbrace{\left[\frac{\alpha_{t+1 \mid t}^{(k)} p_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(j)} p_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1 \mid t}^{(j)}\right)}\right]}_{\alpha_{t+1 \mid t+1}^{(k)}} \delta(\mathbf{x}-\underbrace{\left.\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)}_{\boldsymbol{\mu}_{t+1 \mid t+1}^{(k)}}
\end{aligned}
$$

- The updated pdf turns out to be a delta mixture so no approximation is necessary!
- The update step does not change the particle positions but only their weights

Particle Filter Summary

- Prior: $\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim p_{t \mid t}\left(\mathbf{x}_{t}\right):=\sum_{k=1}^{N} \alpha_{t \mid t}^{(k)} \delta\left(\mathbf{x}_{t} ; \boldsymbol{\mu}_{t \mid t}^{(k)}\right)$
- Resampling: If $N_{\text {eff }}:=\frac{1}{\sum_{k=1}^{N}\left(\alpha_{t \mid t}^{(k)}\right)^{2}} \leq N_{\text {threshold, }}$, resample the particle set $\left\{\boldsymbol{\mu}_{t \mid t}^{(k)}, \alpha_{t \mid t}^{(k)}\right\}$ via stratified or sample importance resampling
- Prediction: let $\boldsymbol{\mu}_{t+1 \mid t}^{(k)} \sim p_{f}\left(\cdot \mid \boldsymbol{\mu}_{t \mid t}^{(k)}, u_{t}\right)$ and $\alpha_{t+1 \mid t}^{(k)}=\alpha_{t \mid t}^{(k)}$ so that:

$$
p_{t+1 \mid t}(\mathbf{x}) \approx \sum_{k=1}^{N} \alpha_{t+1 \mid t}^{(k)} \delta\left(\mathbf{x}-\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)
$$

- Update: rescale the particle weights based on the observation likelihood:

$$
p_{t+1 \mid t+1}(\mathbf{x})=\sum_{k=1}^{N}\left[\frac{\alpha_{t+1 \mid t}^{(k)} p_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(j)} p_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1 \mid t}^{(j)}\right)}\right] \delta\left(\mathbf{x}-\boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)
$$

Particle Resampling

- Particle depletion: a situation in which most of the updated particle weights become close to zero because the finite number of particles is not enough, i.e., the observation likelihoods $p_{h}\left(\mathbf{z}_{t+1} \mid \boldsymbol{\mu}_{t+1 \mid t}^{(k)}\right)$ are small at all $k=1, \ldots, N$
- The resampling procedure tries to avoid particle depletion
- Given a weighted particle set, resampling creates a new particle set with equal weights by adding many particles to the locations that had high weights and few particles to the locations that had low weights
- Resampling focuses the representation power of the particles to likely regions, while leaving unlikely regions with only few particles
- Resampling is applied at time t if the effective number of particles:

Particle Filter Resampling

$$
i=1 \ldots n=10 \text { particles }
$$

Particle Filter Localization (1-D)

Prior:

Particle Filter Localization (1-D)

Particle Filter Localization (1-D)

Particle Filter Localization (1-D)

Prior:
4
$p(s)$
ппиா

Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Inverse Transform Sampling

- Target distribution: How do we sample from a distribution with pdf $p(x)$ and CDF $F(x)=\int_{-\infty}^{x} p(s) d s$?
- Inverse Transform Sampling:

1. Draw $u \sim \mathcal{U}(0,1)$
2. Return inverse CDF value:

$$
\mu=F^{-1}(u)
$$

3. The CDF of $F^{-1}(u)$ is:

$$
\begin{aligned}
\mathbb{P}\left(F^{-1}(u) \leq x\right) & =\mathbb{P}(u \leq F(x)) \\
& =F(x)
\end{aligned}
$$

Rejection Sampling

- Target distribution: How do we sample from a complicated pdf $p(x)$?
- Proposal distribution: use another pdf $q(x)$ that is easy to sample from (e.g., Uniform, Gaussian) and: $\lambda p(x) \leq q(x)$ with $\lambda \in(0,1)$
- Rejection Sampling:

1. Draw $u \sim \mathcal{U}(0,1)$ and $\mu \sim q(\cdot)$
2. Return μ only if $u \leq \frac{\lambda p(\mu)}{q(\mu)}$. If λ is small, many rejections are necessary

- Good $q(x)$ and λ are hard to choose in practice

Sample Importance Resampling (SIR)

- How about rejection sampling without λ ?
- Sample Importance Resampling for a target distribution $p(\cdot)$ with proposal distribution $q(\cdot)$

1. Draw $\mu^{(1)}, \ldots, \mu^{(N)} \sim q(\cdot)$
2. Compute importance weights $\alpha^{(k)}=\frac{p\left(\mu^{(k)}\right)}{q\left(\mu^{(k)}\right)}$ and normalize: $\alpha^{(k)}=\frac{\alpha^{(k)}}{\sum_{j} \alpha^{(\sigma)}}$
3. Draw $\mu^{(k)}$ independently with replacement from $\left\{\mu^{(1)}, \ldots, \mu^{(N)}\right\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$

- If $q(\cdot)$ is a poor approximation of $p(\cdot)$, then the best samples from q are not necessarily good samples for resampling

Markov Chain Monte Carlo Resampling

- The main drawback of rejection sampling and SIR is that choosing a good proposal distribution $q(\cdot)$ is hard
- Idea: let the proposed samples μ depend on the last accepted sample μ^{\prime}, i.e., obtain correlated samples from a conditional proposal distribution $\mu^{(k)} \sim q\left(\cdot \mid \mu^{(k-1)}\right)$
- Under certain conditions, the samples generated from $q\left(\cdot \mid \mu^{\prime}\right)$ form an ergodic Markov chain with $p(\cdot)$ as its stationary distribution
- MCMC methods include Metropolis-Hastings and Gibbs sampling

SIR applied to the Particle Filter

- Let $\left\{\boldsymbol{\mu}_{t \mid t}^{(k)}, \alpha_{t \mid t}^{(k)}\right\}$ for $k=1, \ldots, N$ be the particle set at time t
- If $N_{\text {eff }}:=\frac{1}{\sum_{k=1}^{N}\left(\alpha_{t \mid t}^{(k)}\right)^{2}} \leq N_{\text {threshold, }}$, create a new set $\left\{\overline{\boldsymbol{\mu}}_{t \mid t}^{(k)}, \bar{\alpha}_{t \mid t}^{(k)}\right\}$ for $k=1, \ldots, N$ as follows
- Repeat N times:
- Draw $j \in\{1, \ldots, N\}$ independently with resplacement with discrete probability $\alpha_{t \mid t}^{(j)}$
- Add the sample $\boldsymbol{\mu}_{t \mid t}^{(j)}$ with weight $\frac{1}{N}$ to the new particle set

Stratified Resampling

- In SIR, the weighted set $\left\{\boldsymbol{\mu}^{(k)}, \alpha^{(k)}\right\}$ is sampled independently with replacement
- This might result in high variance resampling, i.e., sometimes some samples with large weights might not be selected or samples with very small weights may be selected multiple times
- Stratified resampling: guarantees that samples with large weights appear at least once and those with small weights - at most once. Stratified resampling is optimal in terms of variance (Thrun et al. 2005)
- Instead of selecting samples independently, use a sequential process:
- Add the weights along the circumference of a circle
- Divide the circle into N equal pieces and sample a uniform on each piece
- Samples with large weights are chosen at least once and those with small weights - at most once

Stratified and Systematic Resampling

Stratified (low variance) resampling
1: Input: particle set $\left\{\boldsymbol{\mu}^{(k)}, \alpha^{(k)}\right\}_{k=1}^{N}$
2: Output: resampled particle set
3: $j \leftarrow 1, c \leftarrow \alpha^{(1)}$
4: for $k=1, \ldots, N$ do
5: $\quad u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$
6: $\quad \beta=u+\frac{k-1}{N}$
7: \quad while $\beta>c$ do
8: $\quad j=j+1, c=c+\alpha^{(j)}$
9: \quad add $\left(\boldsymbol{\mu}^{(j)}, \frac{1}{N}\right)$ to the new set

- Systematic resampling: the same as stratified resampling except that the same uniform is used for each piece, i.e., $u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$ is sampled only once before the for loop above.

