ECE276A: Sensing \& Estimation in Robotics Lecture 11: Visual-Inertial SLAM

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Outline

Extended Kalman Filter Summary

Visual-Inertial SLAM

Visual Mapping

Visual-Inertial Odometry

Kalman Filter

Prior:

$$
\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t \mid t}, \Sigma_{t \mid t}\right)
$$

Motion model:

$$
\mathbf{x}_{t+1}=F \mathbf{x}_{t}+G \mathbf{u}_{t}+\mathbf{w}_{t}, \quad \mathbf{w}_{t} \sim \mathcal{N}(0, W)
$$

Observation model:

$$
\mathbf{z}_{t}=H \mathbf{x}_{t}+\mathbf{v}_{t}, \quad \mathbf{v}_{t} \sim \mathcal{N}(0, V)
$$

Prediction:

$$
\mu_{t+1 \mid t}=F \mu_{t \mid t}+G \mathbf{u}_{t}
$$

$$
\Sigma_{t+1 \mid t}=F \Sigma_{t \mid t} F^{\top}+W
$$

Update:

$$
\begin{aligned}
& \boldsymbol{\mu}_{t+1 \mid t+1}=\boldsymbol{\mu}_{t+1 \mid t}+K_{t+1 \mid t}\left(\mathbf{z}_{t+1}-H \mu_{t+1 \mid t}\right) \\
& \Sigma_{t+1 \mid t+1}=\left(I-K_{t+1 \mid t} H\right) \Sigma_{t+1 \mid t}
\end{aligned}
$$

Kalman gain:

$$
K_{t+1 \mid t}=\Sigma_{t+1 \mid t} H^{\top}\left(H \Sigma_{t+1 \mid t} H^{\top}+V\right)^{-1}
$$

Extended Kalman Filter

Prior:

$$
\begin{aligned}
& \mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\mu_{t \mid t}, \Sigma_{t \mid t}\right) \\
& \mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right), \quad \mathbf{w}_{t} \sim \mathcal{N}(\mathbf{0}, W) \\
& F_{t}:=\frac{d f}{d \mathbf{x}}\left(\boldsymbol{\mu}_{t \mid t}, \mathbf{u}_{t}, \mathbf{0}\right), \quad Q_{t}:=\frac{d f}{d \mathbf{w}}\left(\boldsymbol{\mu}_{t \mid t}, \mathbf{u}_{t}, \mathbf{0}\right) \\
& \mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right), \quad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, V)
\end{aligned}
$$

Motion model:

Observation model:

Prediction:

$$
\begin{aligned}
& \boldsymbol{\mu}_{t+1 \mid t}=f\left(\boldsymbol{\mu}_{t \mid t}, \mathbf{u}_{t}, \mathbf{0}\right) \\
& \Sigma_{t+1 \mid t}=F_{t} \Sigma_{t \mid t} F_{t}^{\top}+Q_{t} W Q_{t}^{\top} \\
& \boldsymbol{\mu}_{t+1 \mid t+1}=\boldsymbol{\mu}_{t+1 \mid t}+K_{t+1 \mid t}\left(z_{t+1}-h\left(\boldsymbol{\mu}_{t+1 \mid t}, 0\right)\right) \\
& \Sigma_{t+1 \mid t+1}=\left(I-K_{t+1 \mid t} H_{t+1}\right) \Sigma_{t+1 \mid t}
\end{aligned}
$$

Kalman gain:

$$
K_{t+1 \mid t}:=\Sigma_{t+1 \mid t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t+1 \mid t} H_{t+1}^{\top}+R_{t+1} V R_{t+1}^{\top}\right)^{-1}
$$

Outline

Extended Kalman Filter Summary

Visual-Inertial SLAM

```
Visual Mapping
```

Visual-Inertial Odometry

Visual-Inertial Simultaneous Localization and Mapping

- Input:
- IMU: linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ and rotational velocity $\omega_{t} \in \mathbb{R}^{3}$
- Camera: features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ (left and right image pixels) for $i=1, \ldots, N_{t}$

- Assumption: The transformation $o T_{I} \in S E(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix K_{s} (intrinsic parameters) are known.

$$
K_{s}:=\left[\begin{array}{cccc}
f s_{u} & 0 & c_{u} & 0 \\
0 & f s_{v} & c_{v} & 0 \\
f s_{u} & 0 & c_{u} & -f s_{u} b \\
0 & f s_{v} & c_{v} & 0
\end{array}\right] \quad \begin{aligned}
f & =\text { focal length }[\mathrm{m}] \\
s_{u}, s_{v} & =\text { pixel scaling }[\text { pixels } / \mathrm{m}] \\
c_{u}, c_{v} & =\text { principal point }[\text { pixels] } \\
b & =\text { stereo baseline }[\mathrm{m}]
\end{aligned}
$$

Visual-Inertial Simultaneous Localization and Mapping

- Output:
- World-frame IMU pose ${ }_{w} T_{\text {I }} \in S E(3)$ over time (green)
- World-frame coordinates $\mathbf{m}_{j} \in \mathbb{R}^{3}$ of the $j=1, \ldots, M$ point landmarks (black) that generated the visual features $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$

Outline

Extended Kalman Filter Summary

Visual-Inertial SLAM

Visual Mapping

Visual-Inertial Odometry

Visual Mapping

- Consider the mapping-only problem first
- Assumption: the IMU pose $T_{t}:={ }_{w} T_{l, t} \in S E(3)$ is known
- Objective: given the observations $\mathbf{z}_{t}:=\left[\begin{array}{lll}\mathbf{z}_{t, 1}^{\top} & \cdots & \mathbf{z}_{t, N_{t}}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{4 N_{t}}$ for $t=0, \ldots, T$, estimate the coordinates $\mathbf{m}:=\left[\begin{array}{lll}\mathbf{m}_{1}^{\top} & \cdots & \mathbf{m}_{M}^{\top}\end{array}\right]^{\top} \in \mathbb{R}^{3 M}$ of the landmarks that generated them
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Assumption: the landmarks \mathbf{m} are static, ie., it is not necessary to consider a motion model or a prediction step for \mathbf{m}

Visual Mapping via the EKF

- Observation model: with measurement noise $\mathbf{v}_{t, i} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t, i}=h\left(T_{t}, \mathbf{m}_{j}\right)+\mathbf{v}_{t, i}:=K_{s} \pi\left(o T_{l} T_{t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t, i}
$$

- Homogeneous coordinates: $\underline{\mathbf{m}}_{j}:=\left[\begin{array}{c}\mathbf{m}_{j} \\ 1\end{array}\right]$
- Projection function and its derivative:

$$
\pi(\mathbf{q}):=\frac{1}{q_{3}} \mathbf{q} \in \mathbb{R}^{4} \quad \frac{d \pi}{d \mathbf{q}}(\mathbf{q})=\frac{1}{q_{3}}\left[\begin{array}{cccc}
1 & 0 & -\frac{q_{1}}{q_{3}} & 0 \\
0 & 1 & -\frac{q_{2}}{q_{3}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -\frac{q_{4}}{q_{3}} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

- All observations, stacked as a $4 N_{t}$ vector, at time t with notation abuse:

$$
\mathbf{z}_{t}=K_{s} \pi\left(o T_{I} T_{t}^{-1} \underline{\mathbf{m}}\right)+\mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}(\mathbf{0}, I \otimes V) \quad I \otimes V:=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

Visual Mapping via the EKF

- Prior: $\mathbf{m} \mid \mathbf{z}_{0: t} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$ with $\mu_{t} \in \mathbb{R}^{3 M}$ and $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- EKF update step: given a new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$:

$$
\begin{aligned}
& K_{t+1}=\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
& \mu_{t+1}=\mu_{t}+K_{t+1}(\mathbf{z}_{t+1}-\underbrace{K_{s} \pi\left(o T_{I} T_{t+1}^{-1} \underline{\mu}_{t}\right)}_{\tilde{z}_{t+1}}) \\
& \Sigma_{t+1}=\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{aligned}
$$

- $\tilde{\mathbf{z}}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$ is the predicted observation based on the landmark position estimates $\boldsymbol{\mu}_{t}$ at time t
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t} \times 3 M}$ evaluated at μ_{t} with block elements $H_{t+1, i, j} \in \mathbb{R}^{4 \times 3}$:

$$
H_{t+1, i, j}= \begin{cases}\left.\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right)\right|_{\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}}, & \text { if } \Delta_{t}(j)=i, \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

Stereo Camera Jacobian (by Chain Rule)

- Observation model: $h\left(T_{t+1}, \mathbf{m}_{j}\right)=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right)$
- How do we obtain $\left.\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right)\right|_{\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}}$?
- Let $P=\left[\begin{array}{ll}I & 0\end{array}\right] \in \mathbb{R}^{3 \times 4}$ and apply the chain rule:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{m}_{j}} h\left(T_{t+1}, \mathbf{m}_{j}\right) & =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) \frac{\partial}{\partial \mathbf{m}_{j}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) \\
& =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l} T_{t+1}^{-1} \frac{\partial \mathbf{m}_{j}}{\partial \mathbf{m}_{j}} \\
& =K_{s} \frac{\partial \pi}{\partial \mathbf{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l} T_{t+1}^{-1} P^{\top}
\end{aligned}
$$

Stereo Camera Jacobian (by Perturbation)

- The Jacobian of a function $f(\mathbf{x})$ can also be obtained using first-order Taylor series with perturbation $\delta \mathbf{x}$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- The Jacobian of $f(\mathbf{x})$ is the part that is linear in $\delta \mathbf{x}$ in the first-order Taylor series expansion
- Consider a perturbation $\delta \boldsymbol{\mu}_{t, j} \in \mathbb{R}^{3}$ for the position of landmark j :

$$
\mathbf{m}_{j}=\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}
$$

- First-order Taylor series approximation of the observation model:

$$
\left.\begin{array}{rl}
K_{s} \pi & \left(o T_{l} T_{t+1}^{-1}\left(\boldsymbol{\mu}_{t, j}+\delta \boldsymbol{\mu}_{t, j}\right)\right.
\end{array}\right)=K_{s} \pi\left(o T_{l} T_{t+1}^{-1}\left(\underline{\boldsymbol{\mu}}_{t, j}+P^{\top} \delta \boldsymbol{\mu}_{t, j}\right)\right) ~(\underbrace{K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right)}_{\tilde{\mathbf{z}}_{t+1, i}}+\underbrace{K_{s} \frac{d \pi}{d \boldsymbol{q}}\left(o T_{l} T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t, j}\right) o T_{l} T_{t+1}^{-1} P^{\top}} \delta \boldsymbol{\mu}_{t, j} .
$$

Visual Mapping via the EKF (Summary)

- Prior: Gaussian with mean $\mu_{t} \in \mathbb{R}^{3 M}$ and covariance $\Sigma_{t} \in \mathbb{R}^{3 M \times 3 M}$
- Known: stereo calibration matrix K_{s}, extrinsics $o T_{I} \in S E(3)$, IMU pose $T_{t+1} \in S E(3)$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observation based on μ_{t} and known correspondences Δ_{t+1} :

$$
\tilde{\mathbf{z}}_{t+1, i}=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \underline{\mu}_{t, j}\right) \in \mathbb{R}^{4} \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to \mathbf{m}_{j} evaluated at $\boldsymbol{\mu}_{t, j}$:

$$
H_{t+1, i, j}= \begin{cases}K_{s} \frac{d \pi}{d q}\left(o T_{l} T_{t+1}^{-1} \underline{\mu}_{t, j}\right) \circ T_{l} T_{t+1}^{-1} P^{\top}, & \text { if } \Delta_{t}(j)=i, \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

- EKF update:

$$
\begin{aligned}
& K_{t+1}=\Sigma_{t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
& \mu_{t+1}=\mu_{t}+K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right) \\
& \Sigma_{t+1}=\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t}
\end{aligned} \quad I \otimes V:=\left[\begin{array}{lll}
V & & \\
& \ddots & \\
& & V
\end{array}\right]
$$

Outline

Extended Kalman Filter Summary

Visual-Inertial SLAM

Visual Mapping

Visual-Inertial Odometry

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations of motion for the IMU pose
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 M}$
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Objective: given IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top} \in \mathbb{R}^{6}$ and feature observations $\mathbf{z}_{0: T}$, estimate the IMU poses $T_{t}:=w_{1, t} \in S E(3)$

How to Deal with an $S E(3)$ State in the EKF?

- Goal: estimate $T_{t} \in S E(3)$ using an extended Kalman filter
- $S E(3):=\left\{\left.T=\left[\begin{array}{rr}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\}$
- Since T_{t} is not a vector, we face multiple questions:
- How do we specify a "Gaussian" distribution over T_{t} ?
- What is the motion model for T_{t} ?
- How do we find derivatives with respect to T_{t} ?

How Do We Specify a Gaussian Distribution in $S E(3)$?

- In \mathbb{R}^{6}, we can define a Gaussian distribution over a vector x as follows:

$$
\mathbf{x}=\boldsymbol{\mu}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{6}$ is the deterministic mean and $\epsilon \in \mathbb{R}^{6}$ is a zero-mean Gaussian random vector

- In SE(3), we can define a Gaussian distribution over a pose matrix T using a perturbation ϵ on the Lie algebra:

$$
T=\boldsymbol{\mu} \exp (\hat{\boldsymbol{\epsilon}}) \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \Sigma)
$$

where $\boldsymbol{\mu} \in S E(3)$ is the deterministic mean and $\epsilon \in \mathbb{R}^{6}$ is a zero-mean Gaussian random vector corresponding to the 6 degrees of freedom of T

- Example:
- Let $T \in S E(3)$ be a random pose with mean $\mu \in S E(3)$ and covariance $\Sigma \in \mathbb{R}^{6 \times 6}$
- For $Q \in S E(3)$, the random variable $Y=Q T=Q \mu \exp (\hat{\epsilon})$ has mean $Q \mu \in S E(3)$ and covariance $\Sigma \in \mathbb{R}^{6 \times 6}$

What Is the Motion Model for a Pose Matrix T ?

- Continuous-time kinematics of pose $T(t) \in S E(3)$ under generalized velocity $\zeta(t)=\left[\begin{array}{c}\mathbf{v}(t) \\ \boldsymbol{\omega}(t)\end{array}\right] \in \mathbb{R}^{6}$, expressed in body-frame coordinates:

$$
\dot{T}(t)=T(t) \hat{\zeta}(t)
$$

- Discrete-time pose kinematics with constant $\zeta(t)$ for $t \in\left[t_{k}, t_{k+1}\right)$:

$$
T_{k+1}=T_{k} \exp \left(\tau_{k} \hat{\boldsymbol{\zeta}}_{k}\right)
$$

where $T_{k}=T\left(t_{k}\right), \tau_{k}=t_{k+1}-t_{k}, \zeta_{k}=\boldsymbol{\zeta}\left(t_{k}\right)$

How Do We Find Derivatives With Respect to a Pose T ?

- $\operatorname{In} \mathbb{R}^{6}$, the derivative of a function $f(\mathbf{x})$ can be obtained using first-order Taylor series with perturbation $\delta \mathbf{x} \in \mathbb{R}^{6}$:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}
$$

- $\ln \mathbb{R}^{6}$, the derivative is $\left.\frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x}+\delta \mathbf{x})\right|_{\delta \mathbf{x}=0}$
- In $S E(3)$, the derivative of a function $f(T)$ can be obtained using first-order Taylor series with perturbation $\delta \boldsymbol{\psi} \in \mathbb{R}^{6}$:

$$
f(T \exp (\delta \hat{\psi})) \approx f(T)+\left[\frac{\partial f}{\partial T}(T)\right] \delta \boldsymbol{\psi}
$$

- In $S E(3)$, the derivative is $\left.\frac{\partial}{\partial \delta \boldsymbol{\psi}} f(T \exp (\hat{\delta} \hat{\boldsymbol{\psi}}))\right|_{\delta \psi=0}$

Visual-Inertial Odometry

- Now, consider the localization-only problem
- We will simplify the prediction step by using kinematic rather than dynamic equations of motion for the IMU pose
- Assumption: linear velocity $\mathbf{v}_{t} \in \mathbb{R}^{3}$ instead of linear acceleration $\mathbf{a}_{t} \in \mathbb{R}^{3}$ measurements are available
- Assumption: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3 M}$
- Assumption: the data association $\Delta_{t}:\{1, \ldots, M\} \rightarrow\left\{1, \ldots, N_{t}\right\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t, i} \in \mathbb{R}^{4}$ with $i=\Delta_{t}(j)$ at time t is known or provided by an external algorithm
- Objective: given IMU measurements $\mathbf{u}_{0: T}$ with $\mathbf{u}_{t}:=\left[\mathbf{v}_{t}^{\top}, \boldsymbol{\omega}_{t}^{\top}\right]^{\top} \in \mathbb{R}^{6}$ and feature observations $\mathbf{z}_{0: T}$, estimate the IMU poses $T_{t}:={ }_{w} T_{I, t} \in S E(3)$

Pose Kinematics with Perturbation

- Motion model for the continuous-time IMU pose $T(t)$ with noise $\mathbf{w}(t)$:

$$
\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \quad \mathbf{u}(t):=\left[\begin{array}{c}
\mathbf{v}(t) \\
\boldsymbol{\omega}(t)
\end{array}\right] \in \mathbb{R}^{6}
$$

- To consider a Gaussian distribution over T, express it as a nominal pose $\boldsymbol{\mu} \in S E(3)$ with small perturbation $\hat{\delta \boldsymbol{\mu}} \in \mathfrak{s e}(3)$:

$$
T=\boldsymbol{\mu} \exp (\hat{\delta} \boldsymbol{\mu}) \approx \boldsymbol{\mu}(I+\hat{\delta} \boldsymbol{\mu})
$$

- Substitute the nominal + perturbed pose in the kinematic equations:

$$
\begin{gathered}
\dot{\mu}(I+\hat{\delta} \boldsymbol{\mu})+\boldsymbol{\mu}(\hat{\dot{\delta}} \boldsymbol{\mu})=\boldsymbol{\mu}(I+\hat{\delta} \hat{\mu})(\hat{\mathbf{u}}+\hat{\mathbf{w}}) \\
\dot{\mu}+\dot{\boldsymbol{\mu}} \hat{\delta} \hat{\mu}+\boldsymbol{\mu}(\hat{\dot{\delta} \boldsymbol{\mu}})=\boldsymbol{\mu} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta} \hat{\mu} \hat{\mathbf{u}}+\boldsymbol{\mu} \hat{\boldsymbol{\mu}} \hat{\boldsymbol{w}} \\
\dot{\mu}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \boldsymbol{\mu} \hat{\mathbf{u}} \hat{\delta} \boldsymbol{\mu}+\boldsymbol{\mu}(\hat{\dot{\delta} \boldsymbol{\mu}})=\boldsymbol{\mu} \hat{\mathbf{w}}+\boldsymbol{\mu} \hat{\delta \mu} \hat{\mathbf{u}} \\
\dot{\mu}=\boldsymbol{\mu} \hat{\mathbf{u}} \quad \hat{\delta} \boldsymbol{\mu}=\hat{\delta} \hat{\mu} \hat{\mathbf{u}}-\hat{\mathbf{u}} \hat{\delta} \hat{\boldsymbol{\mu}}+\hat{\mathbf{w}}=(-\hat{\mathbf{u}} \delta \boldsymbol{\mu})^{\wedge}+\hat{\mathbf{w}}
\end{gathered}
$$

Pose Kinematics with Perturbation

- Using $T=\boldsymbol{\mu} \exp (\hat{\delta} \boldsymbol{\mu}) \approx \boldsymbol{\mu}(I+\hat{\delta \mu})$, the pose kinematics $\dot{T}=T(\hat{\mathbf{u}}+\hat{\mathbf{w}})$ can be split into nominal and perturbation kinematics:

$$
\begin{array}{rlrl}
\text { nominal : } & \dot{\boldsymbol{\mu}} & =\boldsymbol{\mu} \hat{\mathbf{u}} & \hat{\mathbf{u}}:=\left[\begin{array}{cc}
\hat{\omega} & \hat{\mathbf{v}} \\
0 & \hat{\boldsymbol{\omega}}
\end{array}\right] \in \mathbb{R}^{6 \times 6} \\
\text { perturbation : } & \dot{\delta} \boldsymbol{\mu}=-\hat{\mathbf{u}} \delta \boldsymbol{\mu}+\mathbf{w} &
\end{array}
$$

- In discrete-time with discretization τ_{t}, the above becomes:

$$
\begin{aligned}
\text { nominal : } & \boldsymbol{\mu}_{t+1}=\boldsymbol{\mu}_{t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
\text { perturbation : } & \delta \boldsymbol{\mu}_{t+1}=\exp \left(-\tau_{t} \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t}+\mathbf{w}_{t}
\end{aligned}
$$

- This is useful to separate the effect of the noise \mathbf{w}_{t} from the motion of the deterministic part of T_{t}. See Barfoot Ch. 7.2 for details.

EKF Prediction Step

- Prior: $T_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t \mid t}, \Sigma_{t \mid t}\right)$ with $\mu_{t \mid t} \in S E(3)$ and $\Sigma_{t \mid t} \in \mathbb{R}^{6 \times 6}$
- This means that $T_{t}=\mu_{t \mid t} \exp \left(\hat{\delta} \hat{\mu}_{t \mid t}\right)$ with $\delta \boldsymbol{\mu}_{t \mid t} \sim \mathcal{N}\left(0, \Sigma_{t \mid t}\right)$
- Motion model: nominal kinematics of $\boldsymbol{\mu}_{t \mid t}$ and perturbation kinematics of $\delta \boldsymbol{\mu}_{t \mid t}$ with time discretization τ_{t} :

$$
\begin{aligned}
\boldsymbol{\mu}_{t+1 \mid t} & =\boldsymbol{\mu}_{t \mid t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
\delta \boldsymbol{\mu}_{t+1 \mid t} & =\exp \left(-\tau_{t} \hat{\mathbf{u}}_{t}\right) \delta \boldsymbol{\mu}_{t \mid t}+\mathbf{w}_{t}
\end{aligned}
$$

- EKF prediction step with $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$:

$$
\begin{aligned}
& \boldsymbol{\mu}_{t+1 \mid t}=\boldsymbol{\mu}_{t \mid t} \exp \left(\tau_{t} \hat{\mathbf{u}}_{t}\right) \\
& \boldsymbol{\Sigma}_{t+1 \mid t}=\mathbb{E}\left[\delta \boldsymbol{\mu}_{t+1 \mid t} \delta \boldsymbol{\mu}_{t+1 \mid t}^{\top}\right]=\exp \left(-\tau \hat{\mathbf{u}}_{t}\right) \Sigma_{t \mid t} \exp \left(-\tau \hat{\mathbf{u}}_{t}\right)^{\top}+W
\end{aligned}
$$

where

$$
\mathbf{u}_{t}=\left[\begin{array}{c}
\mathbf{v}_{t} \\
\boldsymbol{\omega}_{t}
\end{array}\right] \in \mathbb{R}^{6} \quad \hat{\mathbf{u}}_{t}=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \mathbf{v}_{t} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\mathbf{u}}_{t}=\left[\begin{array}{cc}
\hat{\boldsymbol{\omega}}_{t} & \hat{\mathbf{v}}_{t} \\
0 & \hat{\boldsymbol{\omega}}_{t}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

EKF Update Step

- Prior: $T_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t} \sim \mathcal{N}\left(\boldsymbol{\mu}_{t+1 \mid t}, \Sigma_{t+1 \mid t}\right)$ with $\boldsymbol{\mu}_{t+1 \mid t} \in S E(3)$ and $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Observation model: with measurement noise $\mathbf{v}_{t} \sim \mathcal{N}(0, V)$

$$
\mathbf{z}_{t+1, i}=h\left(T_{t+1}, \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}:=K_{s} \pi\left(o T_{l} T_{t+1}^{-1} \mathbf{m}_{j}\right)+\mathbf{v}_{t+1, i}
$$

- The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose $T_{t+1} \in S E(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ with respect to the IMU pose T_{t+1}, evaluated at the IMU pose mean $\boldsymbol{\mu}_{t+1 \mid t}$

EKF Update Step

- Let the elements of $H_{t+1} \in \mathbb{R}^{4 N_{t+1} \times 6}$ corresponding to different observations i be $H_{t+1, i} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time $t+1$ using an IMU pose perturbation $\delta \boldsymbol{\mu}$ is:

$$
\begin{aligned}
\mathbf{z}_{t+1, i} & =K_{s} \pi\left(o T_{I}\left(\boldsymbol{\mu}_{t+1 \mid t} \exp (\delta \hat{\boldsymbol{\mu}})\right)^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& \approx K_{s} \pi\left(o T_{I}(I-\delta \hat{\boldsymbol{\mu}}) \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)+\mathbf{v}_{t+1, i} \\
& =K_{s} \pi\left(o T_{I} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}-o T_{I}\left(\boldsymbol{\mu}_{\left.\left.t+1 \mid t \underline{\mathbf{m}}_{j}\right)^{-1} \delta \boldsymbol{\mu}\right)+\mathbf{v}_{t+1, i}}^{\odot}\right.\right. \\
& \approx \underbrace{K_{s} \pi\left(o T_{I} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)}_{\tilde{\mathbf{z}}_{t+1, i}} \underbrace{-K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{I} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{I}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot}}_{H_{t+1, i}} \delta \boldsymbol{\mu}+\mathbf{v}_{t+1, i}
\end{aligned}
$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^{4}$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$:

$$
\hat{\boldsymbol{\xi}} \underline{\mathbf{s}}=\underline{\mathbf{s}}^{\odot} \boldsymbol{\xi} \quad\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right]^{\odot}:=\left[\begin{array}{cc}
I & -\hat{\mathbf{s}} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 6}
$$

EKF Update Step

- Prior: Gaussian with mean $\boldsymbol{\mu}_{t+1 \mid t} \in S E(3)$ and covariance $\Sigma_{t+1 \mid t} \in \mathbb{R}^{6 \times 6}$
- Known: stereo calibration matrix K_{s}, extrinsics o $T_{I} \in S E(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3 M}$, new observations $\mathbf{z}_{t+1} \in \mathbb{R}^{4 N_{t+1}}$
- Predicted observation based on $\mu_{t+1 \mid t}$ and known correspondences Δ_{t} :

$$
\tilde{\mathbf{z}}_{t+1, i}:=K_{s} \pi\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) \quad \text { for } i=1, \ldots, N_{t+1}
$$

- Jacobian of $\tilde{\mathbf{z}}_{t+1, i}$ with respect to T_{t+1} evaluated at $\boldsymbol{\mu}_{t+1 \mid t}$:

$$
H_{t+1, i}=-K_{s} \frac{d \pi}{d \mathbf{q}}\left(o T_{l} \boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right) o T_{l}\left(\boldsymbol{\mu}_{t+1 \mid t}^{-1} \underline{\mathbf{m}}_{j}\right)^{\odot} \in \mathbb{R}^{4 \times 6}
$$

- EKF update step:

$$
\begin{aligned}
K_{t+1} & =\Sigma_{t+1 \mid t} H_{t+1}^{\top}\left(H_{t+1} \Sigma_{t+1 \mid t} H_{t+1}^{\top}+I \otimes V\right)^{-1} \\
\mu_{t+1 \mid t+1} & =\boldsymbol{\mu}_{t+1 \mid t} \exp \left(\left(K_{t+1}\left(\mathbf{z}_{t+1}-\tilde{\mathbf{z}}_{t+1}\right)\right)^{\wedge}\right) \\
\Sigma_{t+1 \mid t+1} & =\left(I-K_{t+1} H_{t+1}\right) \Sigma_{t+1 \mid t}
\end{aligned} \quad H_{t+1}=\left[\begin{array}{c}
H_{t+1,1} \\
\vdots \\
H_{t+1, N_{t+1}}
\end{array}\right]
$$

