ECE276A: Sensing \& Estimation in Robotics Lecture 13: Visual Features

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

From Photometry to Geometry

- Image: an array of positive numbers that measure the amount of light incident on the sensor
- How do we go from measurements of light (photometry) to measurements of 2-D points (features)?
- This lecture
- How do we go from 2-D point projections (features) to 3-D point positions (landmarks)?
- We can use the visual-inertial SLAM approach of the previous lecture.

Correspondence

- Corresponding points in two views are image projections of the same geometric point in space
- Correspondence problem: establish which point $\mathbf{z}_{2} \in \mathbb{R}^{2}$ in the second image corresponds to a given point $\mathbf{z}_{1} \in \mathbb{R}^{2}$ in the first image in the sense of being the same point $\mathbf{m} \in \mathbb{R}^{3}$ in 3-D physical space
- Idea: look for a pixel \mathbf{z}_{2} in the second image such that $I_{2}\left(\mathbf{z}_{2}\right) \approx I_{1}\left(\mathbf{z}_{1}\right)$

Correspondence

- Matching windows: a robust process for establishing correspondence is to compare not the brightness of individual pixels but that of small pixel windows $W\left(\mathbf{z}_{1}\right), W\left(\mathbf{z}_{2}\right)$ around the points
- Aperture problem: the brightness profile within the selected windows may not be rich enough to allow us to recover the transformation of the pixel \mathbf{z}_{1} uniquely (e.g., blank wall)
- Features: points whose local window regions are rich enough to allow solving the correspondence problem. Features establish a link between photometric measurements and geometric primitives.
- The window shape $W\left(\mathbf{z}_{1}\right)$ and image values $I_{1}(\mathbf{y}), \mathbf{y} \in W\left(\mathbf{z}_{1}\right)$, associated with a pixel \mathbf{z}_{1} in the first image undergo a nonlinear transformation as a consequence of the change of viewpoint

Brightness Constancy Constraint

- Suppose we are imaging a point $\mathbf{m} \in \mathbb{R}^{3}$ that emits light with the same energy in all directions (Lambertian) and radiance distribution $\mathcal{R}(\mathbf{m})$
- Suppose the camera is calibrated, i.e., $K=I$, and the two camera frames are related by a rigid-body transformation $(R, \mathbf{p}) \in S E(3)$.
- Let I_{1} and I_{2} be two images and $\mathbf{z}_{1}, \mathbf{z}_{2} \in \mathbb{R}^{2}$ be the two pixels corresponding to \mathbf{m} :

$$
I_{2}\left(\mathbf{z}_{2}\right)=I_{1}\left(\mathbf{z}_{1}\right) \propto \mathcal{R}(\mathbf{m})
$$

- From the projection equations, the point \mathbf{z}_{1} in image I_{1} corresponds to the point \mathbf{z}_{2} in image I_{2} if:

$$
\mathbf{z}_{2}=g\left(\mathbf{z}_{1}\right):=\frac{1}{\lambda_{2}}\left(\lambda_{1} R \mathbf{z}_{1}+\mathbf{p}\right)
$$

where λ_{1}, λ_{2} are the unknown depths of the observed point \mathbf{m}

- Brightness constancy constraint: $I_{1}\left(\mathbf{z}_{1}\right)=I_{2}\left(g\left(\mathbf{z}_{1}\right)\right)$

Local Deformation Models

- The transformation g undergone by the entire image is determined by the depths λ_{1}, λ_{2} of the visible surface and hence estimating g is as difficult as estimating the shape of the visible objects
- Instead, model the transformation $g(\mathbf{z})$ only locally in a region $W(\mathbf{z})$:
- Translation model: each point in the window $W(\mathbf{z})$ undergoes the exact same translational motion $\mathbf{d} \in \mathbb{R}^{2}$:

$$
g(\mathbf{y}) \approx \mathbf{y}+\mathbf{d}, \quad \forall \mathbf{y} \in W(\mathbf{z})
$$

This model is valid only in small windows and over short time durations but it is at the core of many feature matching and tracking algorithms.

- Affine model: each point in the window $W(\mathbf{z})$ undergoes an affine transformation with parameters $A \in \mathbb{R}^{2 \times 2}$ and $\mathbf{d} \in \mathbb{R}^{2}$:

$$
g(\mathbf{y}) \approx A \mathbf{y}+\mathbf{d}, \quad \forall \mathbf{y} \in W(\mathbf{z})
$$

Matching Point Features

- Requiring that $I_{1}\left(\mathbf{z}_{1}\right)=I_{2}\left(g\left(\mathbf{z}_{1}\right)\right)$ is too strict due to the approximation of g and the presence of noise and occlusions
- Correspondence problem: an optimization problem that aims to determine the (translation or affine) parameters of the local transformation model of $g(\mathbf{y})$ for $\mathbf{y} \in W(\mathbf{z})$:

$$
\min _{\mathbf{d}} \sum_{\mathbf{y} \in W(\mathbf{z})}\left\|I_{1}(\mathbf{y})-I_{2}(\mathbf{y}+\mathbf{d})\right\|_{2}^{2} \quad \text { OR } \quad \min _{A, \mathbf{d}} \sum_{\mathbf{y} \in W(\mathbf{z})}\left\|I_{1}(\mathbf{y})-I_{2}(A \mathbf{y}+\mathbf{d})\right\|_{2}^{2}
$$

- Our approximations of g are valid only locally in space and time so consider the continuous version of the brightness constancy constraint:
$I_{1}(\mathbf{z})=I(\mathbf{z}(t), t) \underbrace{\approx}_{\text {brightness constancy }} I_{2}(g(\mathbf{z})) \underbrace{\approx}_{\text {approximation model }} I(A \mathbf{z}(t)+\boldsymbol{\nu} \tau, t+\tau)$
where τ is small and $\boldsymbol{\nu} \in \mathbb{R}^{2}$ is the velocity of \mathbf{z}

Continuous-Time Brightness Constancy

- Linearizing the right-hand side around (z, t) :

$$
I(A \mathbf{z}+\boldsymbol{\nu} \tau, t+\tau) \approx I(\mathbf{z}, t)+\nabla_{\mathbf{z}} I(\mathbf{z}, t)^{\top}(A \mathbf{z}+\boldsymbol{\nu} \tau-\mathbf{z})+\frac{\partial I}{\partial t}(\mathbf{z}, t) \tau
$$

- To ensure brightness constancy: $I(\mathbf{z}, t) \approx I(A \mathbf{z}+\boldsymbol{\nu} \tau, t+\tau)$, choose A and $\boldsymbol{\nu}$ such that:
- Affine model: $\min _{A, \nu} \sum_{\mathbf{y} \in W(\mathbf{z})}\left\|\nabla_{\mathbf{z}} l(\mathbf{y}, t)^{\top}\left(\frac{1}{\tau}(A-l) \mathbf{y}+\boldsymbol{\nu}\right)+\frac{\partial I}{\partial t}(\mathbf{y}, t)\right\|_{2}^{2}$
- Translation model: $\min _{\boldsymbol{\nu}} \sum_{\mathbf{y} \in W(z)}\left\|\nabla_{\mathbf{z}} I(\mathbf{y}, t)^{\top} \boldsymbol{\nu}+\frac{\partial I}{\partial t}(\mathbf{y}, t)\right\|_{2}^{2}$
- Aperture problem: the equation $\frac{\partial I}{\partial z} \boldsymbol{\nu}+\frac{\partial I}{\partial t}=0$ provides only one constraint for two unknowns $\nu \in \mathbb{R}^{2}$.
- There are enough constraints on $\boldsymbol{\nu}$ only when the brightness constancy constraint is applied to each \mathbf{y} in a region $W(\mathbf{z})$ that contains "sufficient texture" and the velocity $\boldsymbol{\nu}$ is assumed constant over the region.

Feature Tracking and Optical Flow

- The translation model optimization is used for optical flow or feature tracking in a sequence of images
- Optical flow: computes the velocity $\boldsymbol{\nu}$ of a fixed image location z
- Feature tracking: computes the velocity $\boldsymbol{\nu}$ of a feature $\mathbf{z}(t)$ moving in time such that: $\mathbf{z}(t+\tau)=\mathbf{z}(t)+\boldsymbol{\nu} \tau$
- The only difference between optical flow and feature tracking is at the conceptual level, whether the vector $\boldsymbol{\nu}$ is computed at fixed locations \mathbf{z} in the image or at moving points $\mathbf{z}(t)$

Feature Tracking and Optical Flow

- To compute the velocity $\boldsymbol{\nu}$ we need to solve:

$$
\min _{\boldsymbol{\nu}} \sum_{\mathbf{y} \in W(\mathbf{z})}\left\|\nabla_{\mathbf{z}} I(\mathbf{y}, t)^{\top} \boldsymbol{\nu}+\frac{\partial I}{\partial t}(\mathbf{y}, t)\right\|_{2}^{2}
$$

- Letting $\mathbf{z}=(u, v)$ and setting the gradient to zero results in:

$$
\begin{aligned}
0 & =2 \sum_{\mathbf{y} \in W(\mathbf{z})}\left(\nabla_{\mathbf{z}} I(\mathbf{y}, t)^{\top} \boldsymbol{\nu}+\frac{\partial I}{\partial t}(\mathbf{y}, t)\right) \nabla_{\mathbf{z}} I(\mathbf{y}, t) \\
& =2 \sum_{\mathbf{y} \in W(\mathbf{z})}\left(\begin{array}{cc}
\left.\left[\begin{array}{cc}
I_{u}^{2}(\mathbf{y}) & I_{u}(\mathbf{y}) I_{V}(\mathbf{y}) \\
I_{u}(\mathbf{y}) I_{V}(\mathbf{y}) & I_{V}(\mathbf{y})^{2}
\end{array}\right] \boldsymbol{\nu}+\left[\begin{array}{l}
I_{u}(\mathbf{y}) I_{t}(\mathbf{y}) \\
I_{V}(\mathbf{y}) I_{t}(\mathbf{y})
\end{array}\right]\right) \\
& =2(\underbrace{\left[\begin{array}{cc}
\sum_{\mathbf{y}} I_{u}^{2}(\mathbf{y}) & \sum_{\mathbf{y}} I_{u}(\mathbf{y}) I_{v}(\mathbf{y}) \\
\sum_{\mathbf{y}} I_{u}(\mathbf{y}) I_{V}(\mathbf{y}) & \sum_{\mathbf{y}} I_{V}(\mathbf{y})^{2}
\end{array}\right]}_{G(\mathbf{z})} \boldsymbol{\nu}+\underbrace{\left[\begin{array}{l}
\sum_{\mathbf{y}} I_{u}(\mathbf{y}) I_{t}(\mathbf{y}) \\
\sum_{\mathbf{y}} I_{v}(\mathbf{y}) I_{t}(\mathbf{y})
\end{array}\right]}_{b(\mathbf{z})})
\end{array}\right)
\end{aligned}
$$

- The optimal estimate of the image velocity at \mathbf{z} is $\boldsymbol{\nu}^{*}=-G(\mathbf{z})^{-1} b(\mathbf{z})$

Point Feature Selection

- For $G(\mathbf{z})$ to be invertible, the region $W(\mathbf{z})$ must have nontrivial gradients along independent directions, therefore resembling a "corner"
- Corner: a pixel \mathbf{z} such that the smallest eigenvalue of $G(\mathbf{z})$ is larger than some threshold ρ
- Harris corner: a variation of the corner detector that thresholds:

$$
\lambda_{1} \lambda_{2}-k\left(\lambda_{1}+\lambda_{2}\right)^{2}=\operatorname{det}(G)-k \operatorname{tr}^{2}(G) \geq \rho
$$

where $k \in[0.04,0.06]$ is a small scalar and λ_{1}, λ_{2} are the eigenvalues of G. Since k is small, both eigenvalues of G need to be sufficiently large to pass the threshold.

- More sophisticated techniques that utilize contours or edges and search for high curvature points in the detected contours are used in practice

Point Feature Selection

- Description of $W(\mathbf{z})$ as a function of the eigenvalues λ_{1} and λ_{2} of

$$
G(\mathbf{z}):=\sum_{\mathbf{y} \in W(\mathbf{z})}\left[\begin{array}{cc}
I_{u}^{2}(\mathbf{y}) & I_{u}(\mathbf{y}) I_{v}(\mathbf{y}) \\
I_{u}(\mathbf{y}) I_{V}(\mathbf{y}) & I_{v}(\mathbf{y})^{2}
\end{array}\right]
$$

Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow

1: Input: Image I at time t
2:
3: Compute the image gradient $\left(I_{u}, I_{v}\right)$
4: Compute $G(\mathbf{z}):=\left[\begin{array}{cc}\sum_{\mathbf{y} \in W(\mathrm{z})} I_{u}^{2}(\mathbf{y}) & \sum_{\mathbf{y} \in W(\mathbf{z})} I_{u}(\mathbf{y}) I_{v}(\mathbf{y}) \\ \sum_{\mathbf{y} \in W(\mathbf{z})} I_{u}(\mathbf{y}) I_{v}(\mathbf{y}) & \sum_{\mathbf{y} \in W(\mathbf{z})} I_{v}^{2}(\mathbf{y})\end{array}\right]$ at every pixel $\mathbf{z}=(u, v)$
5:
(Feature tracking) select point features $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots$ such that $G\left(\mathbf{z}_{i}\right)$ is invertible
(Optical flow) select \mathbf{z}_{i} on a fixed grid
8:
9: Compute $b(\mathbf{z}):=\left[\begin{array}{ll}\sum_{\mathbf{y} \in W(\mathbf{z})} & I_{u}(\mathbf{y}) I_{t}(\mathbf{y}) \\ \sum_{\mathbf{y} \in W(\mathbf{z})} I_{v}(\mathbf{y}) I_{t}(\mathbf{y})\end{array}\right]$
10:
11: If $G(\mathbf{z})$ is invertible, compute $\boldsymbol{\nu}(\mathbf{z})=-G(\mathbf{z})^{-1} b(\mathbf{z})$
12: Else $\boldsymbol{\nu}(\mathbf{z})=0$.
13:
14: (Feature tracking) at time $t+1$, repeat the operation at $\mathbf{z}+\boldsymbol{\nu}(z) \tau$
15: (Optical flow) at time $t+1$, repeat the operation at \mathbf{z}

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow

- The feature tracking/optical flow algorithm is very efficient when we use the translation model
- When features are tracked over extended periods of time, however, the approximation error accumulates
- Instead of matching image regions between adjacent frames, one could match image regions between an initial frame and the current frame
- The simple translation model is no longer accurate and we should use the affine model
- Further reading about the Kanade-Lucas-Tomasi (KLT) feature tracker:
- B. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision," International Joint Conference on Artificial Intelligence (IJCAI), 1981.
- C. Tomasi and T. Kanade, "Detection and Tracking of Point Features," CMU Technical Report CMU-CS-91-132, 1991.
- J. Shi and C. Tomasi, "Good Features to Track," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1994.

Image Gradients

- How do we compute the gradients $I_{u}(u, v, t), I_{v}(u, v, t)$, and $I_{t}(u, v, t)$ needed for feature tracking/optical flow?
- We could approximate the derivatives using finite differences, e.g.,:
$I_{t}(u, v, t) \approx \frac{1}{\tau}(I(u, v, t)-I(u, v, t-1)) \quad$ OR $\quad I_{t}(u, v, t) \approx \frac{1}{2 \tau}(I(u, v, t+1)-I(u, v, t-1))$
- To derive a more accurate approximation, we need to understand the relationship between a continuous signal $f(x)$ and its sampled version with period τ :

$$
f[x]=f(x \tau), \quad x \in \mathbb{Z}
$$

Nyquist-Shannon Sampling Theorem

- If $f(x)$ is band limited, i.e., its Fourier transform satisfies $|F(\omega)|=0$ for all $\omega>\omega_{n}$ (Nyquist frequency), it can be reconstructed exactly from a set of discrete samples at sampling frequency $\omega_{s}:=\frac{2 \pi}{\tau}>2 \omega_{n}$.
- The continuous signal $f(x)$ can be reconstructed by multiplying its sampled version $f[x]$ in the frequency domain with an ideal reconstruction filter $h(x)$ with Fourier transform:

$$
H(\omega)=\left\{\begin{array}{ll}
1, & \omega \in\left[-\frac{\pi}{\tau}, \frac{\pi}{\tau}\right] \\
0, & \text { else }
\end{array} \quad h(x)=\operatorname{sinc}\left(\frac{\pi x}{\tau}\right), \quad x \in \mathbb{R}\right.
$$

- Multiplication in the frequency domain corresponds to convolution in the spatial domain, thus as long as $\omega_{n}<\frac{\pi}{\tau}$:

$$
f(x)=f[x] * h(x)=\sum_{k=-\infty}^{\infty} f[k] h(x-k), \quad x \in \mathbb{R}
$$

Derivative of a Sampled Signal

- Differentiating $f(x)=f[x] * h(x)$:

$$
\frac{d}{d x} f(x)=\sum_{k=-\infty}^{\infty} f[k] \frac{d}{d x} h(x-k)=f[x] * \frac{d h}{d x}(x)
$$

- Sampling the above result shows that the derivative of the sampled function $f^{\prime}[x]$ can be computed as a convolution of the sampled signal $f[x]$ with the sampled derivative of the sync function $h^{\prime}[x]$:

$$
\begin{aligned}
f^{\prime}[x] & =f[x] * h^{\prime}[x] \\
h^{\prime}(x) & =\frac{\left(\pi^{2} x / \tau^{2}\right) \cos (\pi x / \tau)-\pi / \tau \sin (\pi x / \tau)}{(\pi x / \tau)^{2}}, \quad x \in \mathbb{R}
\end{aligned}
$$

Five-tap Gaussian Filter

- The sync function has infinite support and falls off very slowly away from the origin. Hence, simple truncation of sync convolution yields undesirable artifacts and is not practically feasible
- The derivative can be approximated by convolving with a Gaussian instead of a sync since it drops to zero much faster:

$$
g(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

$$
g^{\prime}(x)=-\frac{x}{\sigma^{2} \sqrt{2 \pi \sigma^{2}}} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

$g[x]=\left[\begin{array}{lllll}0.1353 & 0.6065 & 1.0000 & 0.6065 & 0.1353\end{array}\right] \quad g^{\prime}[x]=\left[\begin{array}{lllll}0.2707 & 0.6065 & 0 & -0.6065 & -0.2707\end{array}\right]$

Image Gradients

- In the case of images (2-D functions) the result is the same:

$$
I(u, v)=I[u, v] * h(u, v) \quad h(u, v)=h(u) h(v)=\frac{\sin (\pi u / \tau) \sin (\pi v / \tau)}{\pi^{2} u v / \tau^{2}}
$$

- Note that $h(u, v)=h(u) h(v)$ is separable which leads to:

$$
I_{u}[u, v]=I[u, v] * h^{\prime}[u] * h[v] \quad I_{v}(u, v)=I[u, v] * h[u] * h^{\prime}[v]
$$

- The computation of the image derivatives is then accomplished as a pair of 1-D convolutions with filters obtained by sampling a continuous Gaussian probability density function and its derivative:

$$
\begin{aligned}
& I_{u}[u, v]=I[u, v] * g^{\prime}[u] * g[v]=\sum_{k=-\omega / 2}^{\omega / 2} \sum_{l=-\omega / 2}^{\omega / 2} I[k, I] g^{\prime}[u-k] g[v-I] \\
& I_{v}[u, v]=I[u, v] * g[u] * g^{\prime}[v]=\sum_{k=-\omega / 2}^{\omega / 2} \sum_{l=-\omega / 2}^{\omega / 2} I[k, I] g[u-k] g^{\prime}[v-I]
\end{aligned}
$$

- The number of samples is typically chosen as $\omega=5 \sigma$, imposing the fact that the window covers 98.76% of the area under the Gaussian curve

Image Gradients

I

I_{u}

I_{v}

Other Derivative Filters, Features, and Descriptors

- Other commonly used derivative filters:
- Interpolation filter: $h[x]=\frac{1}{2}[1,1]$ with derivative $h^{\prime}[x]=\frac{1}{2}[1,-1]$
- Sobel filter: $h[x]=\frac{1}{2+\sqrt{2}}[1, \sqrt{2}, 1]$ with derivative $h^{\prime}[x]=\frac{1}{3}[1,0,-1]$
- Gabor filter: used for texture analysis
- Other features and descriptors (describe feature shape, color, texture):
- SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David Lowe, is one of the most successful local image features/descriptors in the past decade. It makes the Harris corner scale invariant by using scale-space filtering via a Laplacian of Gaussian kernel (blob detector)
- SURF: the Speeded-Up Robust Feature is a speeded-up version of SIFT which applies an approximate $2^{\text {nd }}$ derivative Gaussian filter at many scales along the axes and at 45° (more robust to rotation than Harris corners)
- FAST: a Feature from Accelerated Segment Test detects corners by considering 16 pixels around the pixel y being tested and is several times faster than other corner detectors
- BRIEF: a Binary Robust Independent Elementary Features speed up descriptor calculation and matching
- ORB: Oriented FAST and Rotated BRIEF

