ECE276A: Sensing \& Estimation in Robotics Lecture 2: Unconstrained Optimization

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Field

- A field is a set \mathcal{F} with two binary operations, $+: \mathcal{F} \times \mathcal{F} \mapsto \mathcal{F}$ (addition) and $\cdot: \mathcal{F} \times \mathcal{F} \mapsto \mathcal{F}$ (multiplication), which satisfy the following axioms:
- Associativity: $a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c, \forall a, b, c \in \mathcal{F}$
- Commutativity: $a+b=b+a$ and $a b=b a, \forall a, b \in \mathcal{F}$
- Identity: $\exists 1,0 \in F$ such that $a+0=a$ and $a 1=a, \forall a \in \mathcal{F}$
- Inverse: $\forall a \in \mathcal{F}, \exists-a \in \mathcal{F}$ such that $a+(-a)=0$

$$
\forall a \in \mathcal{F} \backslash\{0\}, \exists a^{-1} \in \mathcal{F} \backslash\{0\} \text { such that } a a^{-1}=1
$$

- Distributivity: $a(b+c)=(a b)+(a c), \forall a, b, c \in \mathcal{F}$
- Examples: real numbers \mathbb{R}, complex numbers \mathbb{C}, rational numbers \mathbb{Q}

Vector Space

- A vector space over a field \mathcal{F} is a set \mathcal{V} with two binary operations, $+: \mathcal{V} \times \mathcal{V} \mapsto \mathcal{V}$ (addition) and $\cdot: \mathcal{F} \times \mathcal{V} \mapsto \mathcal{V}$ (scalar multiplication), which satisfy the following axioms:
- Associativity: $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$
- Compatibility: $a(b \mathbf{x})=(a b) \mathbf{x}, \forall a, b \in \mathcal{F}$ and $\forall \mathbf{x} \in \mathcal{V}$
- Commutativity: $\mathbf{x}+\mathbf{y}=\mathbf{x}+\mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$
- Identity: $\exists \mathbf{0} \in V$ and $1 \in \mathcal{F}$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $1 \mathbf{x}=\mathbf{x}, \forall \mathbf{x} \in \mathcal{V}$
- Inverse: $\forall \mathbf{x} \in \mathcal{V}, \exists-\mathbf{x} \in \mathcal{V}$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
- Distributivity: $a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+b \mathbf{y}$ and $(a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{x}, \forall a, b \in \mathcal{F}$ and $\forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$
- Examples: real vectors \mathbb{R}^{d}, complex vectors \mathbb{C}^{d}, rational vectors \mathbb{Q}^{d}, functions $\mathbb{R}^{d} \mapsto \mathbb{R}$

Basis and Dimension

- A basis of a vector space \mathcal{V} over a field \mathcal{F} is a set $\mathcal{B} \subseteq \mathcal{V}$ that satisfies:
- linear independence: for all finite $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\} \subseteq \mathcal{B}$, if $a_{1} \mathbf{x}_{1}+\cdots+a_{m} \mathbf{x}_{m}=0$ for some $a_{1}, \ldots, a_{m} \in \mathcal{F}$, then $a_{1}=\cdots=a_{m}=0$
- \mathcal{B} spans $\mathcal{V}: \forall \mathbf{x} \in \mathcal{V}, \exists \mathbf{x}_{1}, \ldots, \mathbf{x}_{d} \in \mathcal{B}$ and unique $a_{1}, \ldots, a_{d} \in \mathcal{F}$ such that $\mathbf{x}=a_{1} \mathbf{x}_{1}+\cdots+a_{d} \mathbf{x}_{d}$
- The dimension d of a vector space \mathcal{V} is the cardinality of its bases

Inner Product and Norm

- An inner product on a vector space \mathcal{V} over a field \mathcal{F} is a function $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \mapsto \mathcal{F}$ such that for all $a \in \mathcal{F}$ and all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$:
- $\langle a \mathbf{x}, \mathbf{y}\rangle=a\langle\mathbf{x}, \mathbf{y}\rangle \quad$ (homogeneity)
- $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle \quad$ (additivity)
- $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle} \quad$ (conjugate symmetry)
- $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$
(non-negativity)
- $\langle\mathbf{x}, \mathbf{x}\rangle=0$ iff $\mathbf{x}=\mathbf{0}$
(definiteness)
- A norm on a vector space \mathcal{V} over a field \mathcal{F} is a function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ such that for all $a \in \mathcal{F}$ and all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$:
- $\|a \mathbf{x}\|=|a|\|\mathbf{x}\|$
(absolute homogeneity)
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (triangle inequality)
- $\|x\| \geq 0$
(non-negativity)
- $\|\mathbf{x}\|=0$ iff $\mathbf{x}=0 \quad$ (definiteness)

Euclidean Vector Space

- A Euclidean vector space \mathbb{R}^{d} is a vector space with finite dimension d over the real numbers \mathbb{R}
- A Euclidean vector $\mathbf{x} \in \mathbb{R}^{d}$ is a collection of scalars $x_{i} \in \mathbb{R}$ for $i=1, \ldots, d$ organized as a column:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- The transpose of $\mathbf{x} \in \mathbb{R}^{d}$ is organized as a row: $\mathbf{x}^{\top}=\left[\begin{array}{lll}x_{1} & \cdots & x_{d}\end{array}\right]$
- The Euclidean inner product between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ is:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{d} x_{i} y_{i}
$$

- The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^{d}$ is $\|\mathbf{x}\|_{2}:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\sqrt{\mathbf{x}^{\top} \mathbf{x}}$

Matrices

- A real $m \times n$ matrix A is a rectangular array of scalars $A_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$
- The set $\mathbb{R}^{m \times n}$ of real $m \times n$ matrices is a vector space
- The entries of the transpose $A^{\top} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are $A_{i j}^{\top}=A_{j i}$. The transpose satisfies: $(A B)^{\top}=B^{\top} A^{\top}$
- The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} A_{i i} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
$$

- The Frobenius inner product between two matrices $X, Y \in \mathbb{R}^{m \times n}$ is:

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

- The Frobenius norm of a matrix $X \in \mathbb{R}^{m \times n}$ is: $\|X\|_{F}:=\sqrt{\operatorname{tr}\left(X^{\top} X\right)}$

Matrix Determinant and Inverse

- The determinant of a matrix $A \in \mathbb{R}^{n \times n}$ is:

$$
\operatorname{det}(A):=\sum_{j=1}^{n} A_{i j} \operatorname{cof}_{i j}(A) \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B A)
$$

where $\operatorname{cof}_{i j}(A)$ is the cofactor of the entry $A_{i j}$ and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times(n-1)$ submatrix that results when the $i^{\text {th }}$-row and $j^{\text {th }}$-col of A are removed. This recursive definition uses the fact that the determinant of a scalar is the scalar itself.

- The adjugate is the transpose of the cofactor matrix:

$$
\operatorname{adj}(A):=\operatorname{cof}(A)^{\top}
$$

- The inverse A^{-1} of A exists of $\operatorname{det}(A) \neq 0$ and satisfies:

$$
A^{-1} A=1 \quad A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)} \quad(A B)^{-1}=B^{-1} A^{-1}
$$

Eigenvalue Decomposition

- For any $A \in \mathbb{R}^{n \times n}$, if there exists $\mathbf{q} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ and $\lambda \in \mathbb{C}$ such that:

$$
A \mathbf{q}=\lambda \mathbf{q}
$$

then \mathbf{q} is an eigenvector corresponding to the eigenvalue λ.

- The n eigenvalues of $A \in \mathbb{R}^{n \times n}$ are the n roots of the characteristic polynomial $p(\lambda)$ of A :

$$
p(\lambda):=\operatorname{det}(\lambda I-A)
$$

- A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs.
- Eigenvectors are not unique since for any $c \in \mathbb{C} \backslash\{0\}, c \boldsymbol{q}$ is an eigenvector corresponding to the same eigenvalue.

Eigenvalue Decomposition

\rightarrow Diagonalizable matrix: n linearly independent eigenvectors \mathbf{q}_{i} can be found for $A \in \mathbb{R}^{n \times n}: A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$ for $i=1, \ldots, n$

- If the eigenvalues λ_{i} of A are distinct, then A is diagonalizable
- Eigen decomposition: if A is diagonalizable, we can stack all n equations $A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$ to obtain an eigen decomposition of A :

$$
A=Q \wedge Q^{-1}
$$

- Jordan decomposition: any A can be decomposed using an invertible matrix Q of generalized eigenvectors and an upper-triangular matrix J :

$$
A=Q J Q^{-1}
$$

- Jordan form J of A : an upper-triangular block-diagonal matrix:

$$
J=\operatorname{diag}\left(B\left(\lambda_{1}, m_{1}\right), \ldots, B\left(\lambda_{k}, m_{k}\right)\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of A and $m_{1}+\cdots+m_{k}=n$.

$$
B(\lambda, m)=\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
\vdots & \ddots & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]
$$

Singular Value Decomposition

- An eigen-decomposition does not exist for $A \in \mathbb{R}^{m \times n}$
- $A \in \mathbb{R}^{m \times n}$ with rank $r \leq \min \{m, n\}$ can be diagonalized by two orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ via singular value decomposition:

$$
A=U \Sigma V^{\top} \quad \Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- U contains the m orthogonal eigenvectors of the symmetric matrix $A A^{\top} \in \mathbb{R}^{m \times m}$ and satisfies $U^{\top} U=U U^{\top}=I$
- V contains the n orthogonal eigenvectors of the symmetric matrix $A^{\top} A \in \mathbb{R}^{n \times n}$ and satisfies $V^{\top} V=V V^{\top}=I$
- Σ contains the singular values $\sigma_{i}=\sqrt{\lambda_{i}}$, equal to the square roots of the r non-zero eigenvalues λ_{i} of $A A^{\top}$ or $A^{\top} A$, on its diagonal
- If A is normal $\left(A^{\top} A=A A^{\top}\right)$, its singular values are related to its eigenvalues via $\sigma_{i}=\left|\lambda_{i}\right|$

Matrix Pseudo Inverse

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ of $A \in \mathbb{R}^{m \times n}$ can be obtained from its SVD $A=U \Sigma V^{\top}$:

$$
A^{\dagger}=V \Sigma^{\dagger} U^{T} \quad \Sigma^{\dagger}=\left[\begin{array}{ccc}
1 / \sigma_{1} & & \\
& \ddots & \\
& & 1 / \sigma_{r}
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

- The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ satisfies the Moore-Penrose conditions:
- $A A^{\dagger} A=A$
- $A^{\dagger} A A^{\dagger}=A^{\dagger}$
- $\left(A A^{\dagger}\right)^{\top}=A A^{\dagger}$
- $\left(A^{\dagger} A\right)^{\top}=A^{\dagger} A$

Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- The column space or image of A is $i m(A) \subseteq \mathbb{R}^{m}$ and is spanned by the r columns of U corresponding to non-zero singular values
- The null space or kernel of A is $\operatorname{ker}(A) \subseteq \mathbb{R}^{n}$ and is spanned by the $n-r$ columns of V corresponding to zero singular values
- The row space or co-image of A is $\operatorname{im}\left(A^{\top}\right) \subseteq \mathbb{R}^{n}$ and is spanned by the r columns of V corresponding to non-zero singular values
- The left null space or co-kernel of A is $\operatorname{ker}\left(A^{\top}\right) \subseteq \mathbb{R}^{m}$ and is spanned by the $m-r$ columns of U corresponding to zero singular values
- The domain of A is $\mathbb{R}^{n}=\operatorname{ker}(A) \oplus \operatorname{im}\left(A^{\top}\right)$
- The co-domain of A is $\mathbb{R}^{m}=\operatorname{ker}\left(A^{\top}\right) \oplus \operatorname{im}(A)$

Solution of Linear System of Equations

- Consider the linear system of equations $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A=U \Sigma V^{\top}$ and rank r
- If $\mathbf{b} \in \operatorname{im}(A)$, i.e., $\mathbf{b}^{\top} \mathbf{v}=0$ for all $\mathbf{v} \in \operatorname{ker}\left(A^{\top}\right)$, then $A \mathbf{x}=\mathbf{b}$ has one or infinitely many solutions $\mathbf{x}=A^{\dagger} \mathbf{b}+\left(I-A^{\dagger} A\right) \mathbf{y}$ for any $\mathbf{y} \in \mathbb{R}^{n}$
- If $\mathbf{b} \notin \operatorname{im}(A)$, then no solution exists and $\mathbf{x}=A^{\dagger} \mathbf{b}$ is an approximate solution with minimum $\|\mathbf{x}\|$ and $\|A \mathbf{x}-\mathbf{b}\|$ norms
- If $m=n=r$, then $A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{\dagger} \mathbf{b}=A^{-1} \mathbf{b}$

Positive Semidefinite Matrices

- The product $\mathbf{x}^{\top} A \mathbf{x}$ for $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$ is called a quadratic form and A can be assumed symmetric, $A=A^{\top}$, because:

$$
\frac{1}{2} \mathbf{x}^{\top}\left(A+A^{\top}\right) \mathbf{x}=\mathbf{x}^{\top} A \mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if $\mathbf{x}^{\top} A \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if it is positive semidefinite and if $\mathbf{x}^{\top} A \mathbf{x}=0$ implies $\mathbf{x}=0$.
- All eigenvalues of a symmetric positive semidefinite matrix are non-negative.
- All eigenvalues of a symmetric positive definite matrix are positive.

Matrix Derivatives (numerator layout)

- Derivatives of $\mathbf{y} \in \mathbb{R}^{m}$ and $Y \in \mathbb{R}^{m \times n}$ by scalar $x \in \mathbb{R}$:

$$
\frac{d \mathbf{y}}{d x}=\left[\begin{array}{c}
\frac{d y_{1}}{d x} \\
\vdots \\
\frac{d y_{m}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times 1} \quad \frac{d Y}{d x}=\left[\begin{array}{ccc}
\frac{d Y_{11}}{d x} & \cdots & \frac{d Y_{1 n}}{d x} \\
\vdots & \ddots & \vdots \\
\frac{d Y_{m 1}}{d x} & \cdots & \frac{d Y_{m n}}{d x}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- Derivatives of $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^{m}$ by vector $\mathbf{x} \in \mathbb{R}^{p}$:

$$
\frac{d y}{d \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{d y}{d x_{1}} & \cdots & \left.\frac{d y}{d x_{p}}\right]
\end{array}\right.}_{\left[\nabla_{x} y^{\top}\right. \text { (gradient transpose) }} \in \mathbb{R}^{1 \times p} \quad \frac{d \mathbf{y}}{d \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{d y_{1}}{d x_{1}} & \cdots & \frac{d y_{1}}{d x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{d y_{m}}{d x_{1}} & \cdots & \frac{d y_{m}}{d x_{p}}
\end{array}\right]}_{\text {Jacobian }} \in \mathbb{R}^{m \times p}
$$

- Derivative of $y \in \mathbb{R}$ by matrix $X \in \mathbb{R}^{p \times q}$:

$$
\frac{d y}{d X}=\left[\begin{array}{ccc}
\frac{d y}{d X_{11}} & \cdots & \frac{d y}{d X_{p 1}} \\
\vdots & \ddots & \vdots \\
\frac{d y}{d X_{1 q}} & \cdots & \frac{d y}{d X_{p q}}
\end{array}\right] \in \mathbb{R}^{q \times p}
$$

Matrix Derivative Examples

$-\frac{d}{d X_{i j}} X=\mathbf{e}_{i} \mathbf{e}_{j}^{\top}$

- $\frac{d}{d x} A \mathbf{x}=A$
$-\frac{d}{d x} \mathbf{u}^{\top} \mathbf{v}=\mathbf{u}^{\top} \frac{d \mathbf{v}}{d \mathrm{x}}+\mathbf{v}^{\top} \frac{d \mathbf{u}}{d \mathrm{x}}$
(product rule)
- $\frac{d}{d \mathbf{x}} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top}\left(A+A^{\top}\right)$
- $\frac{d}{d x} M^{-1}(x)=-M^{-1}(x) \frac{d M(x)}{d x} M^{-1}(x)$
- $\frac{d}{d X} \operatorname{tr}\left(A X^{-1} B\right)=-X^{-1} B A X^{-1}$
- $\frac{d}{d X} \log \operatorname{det} X=X^{-1}$

Matrix Derivative Examples

$$
\begin{aligned}
& -\frac{d}{d x} A \mathbf{x}=\left[\begin{array}{ccc}
\frac{d}{d x_{1}} \sum_{j=1}^{n} A_{1 j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{1 j} x_{j} \\
\vdots & \ddots & \vdots \\
\frac{d}{d x_{1}} \sum_{j=1}^{n} A_{m j} x_{j} & \cdots & \frac{d}{d x_{n}} \sum_{j=1}^{n} A_{m j} x_{j}
\end{array}\right]=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right] \\
& \text { - } \frac{d}{d x} \mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} \frac{d A \mathbf{x}}{d x}+\mathbf{x}^{\top} A^{\top} \frac{d x}{d x}=\mathbf{x}^{\top}\left(A+A^{\top}\right) \\
& \text { - } M(x) M^{-1}(x)=1 \quad \Rightarrow \quad 0=\left[\frac{d}{d x} M(x)\right] M^{-1}(x)+M(x)\left[\frac{d}{d x} M^{-1}(x)\right] \\
& \text { - } \frac{d}{d X_{i j}} \operatorname{tr}\left(A X^{-1} B\right)=\operatorname{tr}\left(A \frac{d}{d X_{i j}} X^{-1} B\right)=-\operatorname{tr}\left(A X^{-1} \mathbf{e}_{\mathbf{i}} \mathbf{e}_{j}^{\top} X^{-1} B\right) \\
& =-\mathbf{e}_{j}^{\top} X^{-1} B A X^{-1} \mathbf{e}_{i}=-\mathbf{e}_{i}^{\top}\left(X^{-1} B A X^{-1}\right)^{\top} \mathbf{e}_{j} \\
& \begin{aligned}
\frac{d}{d X_{i j}} \log \operatorname{det} X & =\frac{1}{\operatorname{det}(X)} \frac{d}{d X_{i j}} \sum_{k=1}^{n} X_{i k} \operatorname{cof}_{i k}(X) \\
& =\frac{1}{\operatorname{det}(X)} \operatorname{cof}_{i j}(X)=\frac{1}{\operatorname{det}(X)} \operatorname{adj}_{j i}(X)=\mathbf{e}_{j}^{\top} X^{-1} \mathbf{e}_{i}
\end{aligned}
\end{aligned}
$$

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Unconstrained Optimization

- Unconstrained optimization problem over Euclidean vector space \mathbb{R}^{d} :

$$
\min _{x \in \mathbb{R}^{d}} f(\mathbf{x})
$$

- A global minimizer $\mathbf{x}_{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}_{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{d}$. The value $f\left(\mathbf{x}_{*}\right)$ is called global minimum.
- A local minimizer $\mathbf{x}_{*} \in \mathbb{R}^{d}$ satisfies $f\left(\mathbf{x}_{*}\right) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}\left(\mathbf{x}_{*}\right)$, where $\mathcal{N}\left(\mathbf{x}_{*}\right) \subset \mathbb{R}^{d}$ is a neighborhood around \mathbf{x}_{*} (e.g., an open ball with small radius centered at \mathbf{x}_{*}). The value $f\left(\mathbf{x}_{*}\right)$ is called local minimum.
- The function $f: \mathbb{R}^{d} \mapsto \mathbb{R}$ is differentiable at $\mathbf{x} \in \mathbb{R}^{d}$ if its gradient exists:

$$
\nabla f(\mathbf{x}):=\left[\begin{array}{lll}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_{d}}
\end{array}\right]^{\top} \in \mathbb{R}^{d}
$$

- A critical point $\overline{\mathbf{x}} \in \mathbb{R}^{d}$ satisfies $\nabla f(\overline{\mathbf{x}})=0$ or $\nabla f(\overline{\mathbf{x}})=$ undefined
- All minimizers are critical points but not all critical points are minimizers. A critical point is a local maximizer, a local minimizer, or neither (saddle point).

Descent Direction

- Consider the unconstrained optimization problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

Descent Direction Theorem

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\exists \delta \mathbf{x} \in \mathbb{R}^{d}$ such that $\nabla f(\overline{\mathbf{x}})^{\top} \delta \mathbf{x}<0$, then $\exists \epsilon>0$ such that $f(\overline{\mathbf{x}}+\alpha \delta \mathbf{x})<f(\overline{\mathbf{x}})$ for all $\alpha \in(0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a descent direction
- The theorem states that if a descent direction exists at $\overline{\mathbf{x}}$, then it is possible to move to a new point that has a lower f value
- Steepest descent direction: $\delta \mathbf{x}:=-\frac{\nabla f(\overline{\mathbf{x}})}{\|\nabla f(\overline{\mathbf{x}})\|}$
- Based on this theorem, we derive conditions for optimality of $\overline{\mathbf{x}}$

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimizer, then $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\overline{\mathbf{x}}$. If $\nabla f(\overline{\mathbf{x}})=0$ and $\nabla^{2} f(\overline{\mathbf{x}}) \succ 0$, then $\overline{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\overline{\mathbf{x}}$. If f is convex, then $\overline{\mathbf{x}}$ is a global minimizer if and only if $\nabla f(\overline{\mathbf{x}})=0$.

Convexity

- A set $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \mathcal{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- A convex set contains the line segment between any two points in it

Non - convex set

- A function $f: \mathcal{D} \mapsto \mathbb{R}$ with $\mathcal{D} \subseteq \mathbb{R}^{d}$ is convex if:
- \mathcal{D} is a convex set
- $f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}, \lambda \in[0,1]$
- First-order convexity condition: a differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex iff $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$
- Second-order convexity condition: a twice-differentiable $f: \mathcal{D} \mapsto \mathbb{R}$ with convex \mathcal{D} is convex iff $\nabla^{2} f(\mathbf{x}) \succeq 0$ for all $\mathbf{x} \in \mathcal{D}$

Descent Optimization Methods

- A critical point of f can be obtained by solving $\nabla f(\mathbf{x})=0$ but an explicit solution may be difficult to obtain
- Descent methods: iterative methods to obtain a solution of $\nabla f(\mathbf{x})=0$
- Given initial guess \mathbf{x}_{k}, take step of size $\alpha_{k}>0$ along descent direction $\delta \mathbf{x}_{k}$:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}_{k}
$$

- Different methods differ in the way $\delta \mathbf{x}_{k}$ and α_{k} are chosen
- $\delta \mathbf{x}_{k}$ needs to be a descent direction: $\nabla f\left(\mathbf{x}_{k}\right)^{\top} \delta \mathbf{x}_{k}<0, \forall \mathbf{x}_{k} \neq \mathbf{x}_{*}$
- α_{k} needs to ensure sufficient decrease in f to guarantee convergence:
- The best step size choice is $\alpha_{k} \in \underset{\alpha>0}{\arg \min } f\left(\mathbf{x}_{k}+\alpha \delta \mathbf{x}_{k}\right)$
- In practice, α_{k} is obtained via approximate line search methods

Outline

Linear Algebra Review
\section*{Unconstrained Optimization}

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Gradient Descent (First-Order Method)

- Idea: $-\nabla f\left(\mathbf{x}_{k}\right)$ points in the direction of steepest descent
- Gradient descent: let $\delta \mathbf{x}_{k}:=-\nabla f\left(\mathbf{x}_{k}\right)$ and iterate:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla f\left(\mathbf{x}_{k}\right)
$$

- Step size: a good choice for α_{k} is $\frac{1}{L}$, where $L>0$ is the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f(\mathbf{x})-\nabla f\left(\mathbf{x}^{\prime}\right)\right\| \leq L\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \quad \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

Gradient Descent Convergence

Suppose f is twice continuously differentiable with

$$
m I \preceq \nabla^{2} f(\mathbf{x}) \preceq L I, \quad \forall \mathbf{x} \in \mathbb{R}^{n} .
$$

The iterates \mathbf{x}_{k} of gradient descent with step size $\alpha_{k}=\frac{1}{L}$ satisfy:

$$
\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\| \rightarrow 0 \quad \text { and } \quad\left\|\mathbf{x}_{k}-\mathbf{x}_{*}\right\| \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Proof: Gradient Descent Convergence

- By the Mean Value Theorem for some \mathbf{c}_{k} between \mathbf{x}_{k} and \mathbf{x}_{k+1} :

$$
\nabla f\left(\mathbf{x}_{k+1}\right)=\nabla f\left(\mathbf{x}_{k}\right)+\nabla^{2} f\left(\mathbf{c}_{k}\right)\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=\nabla f\left(\mathbf{x}_{k}\right)-\alpha_{k} \nabla^{2} f\left(\mathbf{c}_{k}\right) \nabla f\left(\mathbf{x}_{k}\right)
$$

- Let λ_{i} be the eigenvalues of $\nabla^{2} f\left(\mathbf{c}_{k}\right)$ so that:

$$
0 \leq 1-\alpha_{k} L \leq 1-\alpha_{k} \lambda_{i} \leq 1-\alpha_{k} m
$$

- This is sufficient to show that $\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\| \rightarrow 0$ linearly:

$$
\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq(1-m / L)\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\| \leq(1-m / L)^{k+1}\left\|\nabla f\left(\mathbf{x}_{0}\right)\right\|
$$

- By the Mean Value Theorem for some $\tilde{\mathbf{c}}_{k}$ between \mathbf{x}_{k} and \mathbf{x}_{*} :

$$
\mathbf{x}_{k+1}-\mathbf{x}_{*}=\left(\mathbf{x}_{k}-\mathbf{x}_{*}\right)-\alpha_{k}\left(\nabla f\left(\mathbf{x}_{k}\right)-\nabla f\left(\mathbf{x}_{*}\right)\right)=\left(\mathbf{x}_{k}-\mathbf{x}_{*}\right)-\alpha_{k} \nabla^{2} f\left(\tilde{\mathbf{c}}_{k}\right)\left(\mathbf{x}_{k}-\mathbf{x}_{*}\right)
$$

- Since $m I \preceq \nabla^{2} f\left(\tilde{\mathbf{c}}_{k}\right) \preceq L I$:

$$
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{*}\right\| \leq(1-m / L)\left\|\mathbf{x}_{k}-\mathbf{x}_{*}\right\| \leq(1-m / L)^{k+1}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|
$$

Projected Gradient Descent

- Constrained optimization problem over a closed convex set $\mathcal{C} \subseteq \mathbb{R}^{n}$:

$$
\min _{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})
$$

- Constrained optimality condition: for differentiable convex function f :

$$
\mathbf{x}_{*} \in \underset{x \in \mathcal{C}}{\arg \min } f(\mathbf{x}) \quad \Leftrightarrow \quad\left\langle\nabla f\left(\mathbf{x}_{*}\right), \mathbf{y}-\mathbf{x}_{*}\right\rangle \geq 0, \quad \forall \mathbf{y} \in \mathcal{C}
$$

- Euclidean projection onto \mathcal{C} :

$$
\Pi_{\mathcal{C}}(\mathbf{x}):=\underset{\mathbf{y} \in \mathcal{C}}{\arg \min }\|\mathbf{y}-\mathbf{x}\|
$$

- Projected gradient descent:

$$
\mathbf{x}_{k+1}=\Pi_{\mathcal{C}}\left(\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{x}_{k}\right)\right), \quad \alpha>0
$$

Projected Gradient Descent

Projected Gradient Descent Convergence

Suppose f is twice continuously differentiable with

$$
m I \preceq \nabla^{2} f(\mathbf{x}) \preceq L I, \quad \forall \mathbf{x} \in \mathbb{R}^{n} .
$$

The iterates \mathbf{x}_{k} of projected gradient descent with step size $\alpha=\frac{1}{L}$ satisfy:

$$
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{*}\right\| \leq(1-m / L)^{k+1}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\| .
$$

- The proof is based on:
- Euclidean projection is non-expansive:

$$
\left\|\Pi_{\mathcal{C}}(\mathbf{x})-\Pi_{\mathcal{C}}(\mathbf{y})\right\| \leq\|\mathbf{x}-\mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Constrained optimizers are fixed points of the projected gradient descent operator with $\alpha>0$:

$$
\mathbf{x}_{*} \in \underset{\mathbf{x} \in \mathcal{C}}{\arg \min } f(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x}_{*}=\Pi_{\mathcal{C}}\left(\mathbf{x}_{*}-\alpha \nabla f\left(\mathbf{x}_{*}\right)\right)
$$

Outline

```
Linear Algebra Review
Unconstrained Optimization
Gradient Descent
```

Newton's and Gauss-Newton's Methods

Example

Newton's Method (Second-Order Method)

- Consider the unconstrained optimization problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})
$$

- Newton's method iteratively approximates f by a quadratic function
- For a small change $\delta \mathbf{x}$ to \mathbf{x}_{k}, we can approximate f using Taylor series:

$$
\begin{aligned}
f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right) & \approx f\left(\mathbf{x}_{k}\right)+\underbrace{\left(\left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)}_{\text {Gradient Transpose }} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top} \underbrace{\left(\frac{\partial^{2} f(\mathbf{x})}{\left.\left.\partial \mathbf{x} \partial \mathbf{x}^{\top}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)}\right.}_{\text {Hessian }} \delta \\
& =: \underbrace{q\left(\delta \mathbf{x}, \mathbf{x}_{k}\right)}_{\text {quadratic function in } \delta \mathbf{x}}
\end{aligned}
$$

- The symmetric Hessian matrix $\nabla^{2} f\left(\mathbf{x}_{k}\right)$ needs to be positive-definite for this method to work

Newton's Method (Second-Order Method)

Newton's Method (Second-Order Method)

- Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)$:

$$
\min _{\delta \mathbf{x} \in \mathbb{R}^{d}} q\left(\delta \mathbf{x}, \mathbf{x}_{k}\right)
$$

- Since this is an unconstrained optimization problem, $\delta \mathbf{x}$ can be determined by setting the derivative of q with respect to $\delta \mathbf{x}$ to zero:

$$
0=\frac{\partial q\left(\delta \mathbf{x}, \mathbf{x}_{k}\right)}{\partial \delta \mathbf{x}}=\nabla f\left(\mathbf{x}_{k}\right)^{\top}+\delta \mathbf{x}^{\top} \nabla^{2} f\left(\mathbf{x}_{k}\right)
$$

- This is a linear system of equations in $\delta \mathbf{x}$ and can be solved uniquely when the Hessian is invertible, i.e., $\nabla^{2} f\left(\mathbf{x}_{k}\right) \succ 0$:

$$
\delta \mathbf{x}=-\left[\nabla^{2} f\left(\mathbf{x}_{k}\right)\right]^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

- Newton's method:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\nabla^{2} f\left(\mathbf{x}_{k}\right)\right]^{-1} \nabla f\left(\mathbf{x}_{k}\right), \quad \alpha_{k}>0
$$

Newton's Method (Second-Order Method)

- Like other descent methods, Newton's method converges to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimum, the function value is decreased sublinearly, i.e., the step sizes α_{k} are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e., $\alpha_{k}=1$, and the function value converges quadratically to the optimum
- A disadvantage of Newton's method is the need to form the Hessian $\nabla^{2} f\left(\mathbf{x}_{k}\right)$, which can be numerically ill-conditioned or computationally expensive in high-dimensional problems

Gauss-Newton's Method

- Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{e}(\mathbf{x}) \quad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^{m}
$$

- Derivative and Hessian:

$$
\begin{array}{lll}
\text { Jacobian: } & & \left.\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}= \\
\text { Hessian: } & & \left.\frac{\partial^{2} f\left(\mathbf{x _ { k }}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}_{k}}= \\
& & \left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right) \\
& & +\sum_{i=1}^{m} e_{i}\left(\mathbf{x}_{k}\right)\left(\left.\frac{\partial^{2} e_{i}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)
\end{array}
$$

Gauss-Newton's Method

\rightarrow Near the minimum of f, the second term in the Hessian is small relative to the first. The Hessian can be approximated without second derivatives:

$$
\left.\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}_{k}} \approx\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)
$$

- Approximation of $f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)$:

$$
f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right) \approx f\left(\mathbf{x}_{k}\right)+\mathbf{e}\left(\mathbf{x}_{k}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right) \delta \mathbf{x}+\delta \mathbf{x}^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right) \delta \mathbf{x}
$$

- Setting the gradient of this new quadratic approximation of f with respect to $\delta \mathbf{x}$ to zero, leads to the system:

$$
\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top} \mathbf{e}\left(\mathbf{x}_{k}\right)
$$

- Gauss-Newton's method:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}, \quad \alpha_{k}>0
$$

Levenberg-Marquardt's Method

- The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$
\left(\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top} \mathbf{e}\left(\mathbf{x}_{k}\right)
$$

- λD compensates for the missing Hessian term $\sum_{i=1}^{m} e_{i}\left(\mathbf{x}_{k}\right)\left(\left.\frac{\partial^{2} e_{i}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\right|_{\mathbf{x}=\mathbf{x}_{k}}\right)$
- When $\lambda \geq 0$ is large, the descent direction $\delta \mathbf{x}$ corresponds to a small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Gauss-Newton's Method

- An iterative optimization approach for the unconstrained problem:

$$
\min _{\mathbf{x}} f(\mathbf{x}):=\frac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x}) \quad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \mathbf{x} \in \mathbb{R}^{n}
$$

- Given an initial guess \mathbf{x}_{k}, determine a descent direction $\delta \mathbf{x}$ by solving:

$$
\left(\sum_{j} J_{j}\left(\mathbf{x}_{k}\right)^{\top} J_{j}\left(\mathbf{x}_{k}\right)+\lambda D\right) \delta \mathbf{x}=-\left(\sum_{j} J_{j}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}_{k}\right)\right)
$$

where $J_{j}(\mathrm{x}):=\frac{\partial \mathrm{e}_{j}(\mathrm{x})}{\partial \mathrm{x}} \in \mathbb{R}^{m_{j} \times n}, \lambda \geq 0, D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D=\boldsymbol{\operatorname { d i a g }}\left(\sum_{j} J_{j}\left(\mathbf{x}_{k}\right)^{\top} J_{j}\left(\mathbf{x}_{k}\right)\right)$

- Obtain an updated estimate according to:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}, \quad \alpha_{k}>0
$$

Outline

```
Linear Algebra Review
Unconstrained Optimization
Gradient Descent
Newton's and Gauss-Newton's Methods
```

Example

Unconstrained Optimization Example

- Let $f(\mathbf{x}):=\frac{1}{2} \sum_{j=1}^{n}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}$ for $\mathbf{x} \in \mathbb{R}^{d}$ and assume $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$
- Solve the unconstrained optimization problem $\min _{\mathbf{x}} f(\mathbf{x})$ using:
- The necessary and sufficient optimality condition for convex function f
- Gradient descent
- Newton's method
- Gauss-Newton's method
- We will need $\nabla f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$:

$$
\begin{aligned}
\frac{d f(\mathbf{x})}{d \mathbf{x}} & =\frac{1}{2} \sum_{j=1}^{n} \frac{d}{d \mathbf{x}}\left\|A_{j} \mathbf{x}+b_{j}\right\|_{2}^{2}=\sum_{j=1}^{n}\left(A_{j} \mathbf{x}+b_{j}\right)^{\top} A_{j} \\
\nabla f(\mathbf{x}) & =\frac{d f(\mathbf{x})^{\top}}{d \mathbf{x}}=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
\nabla^{2} f(\mathbf{x}) & =\frac{d}{d \mathbf{x}} \nabla f(\mathbf{x})=\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0
\end{aligned}
$$

Necessary and Sufficient Optimality Condition

- Solve $\nabla f(\mathbf{x})=0$ for \mathbf{x} :

$$
\begin{aligned}
& 0=\nabla f(\mathbf{x})=\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}+\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right) \\
& \mathbf{x}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- The solution above is unique since we assumed that $\sum_{j=1}^{n} A_{j}^{\top} A_{j} \succ 0$

Gradient Descent

- Start with an initial guess $\mathbf{x}_{0}=\mathbf{0}$
- At iteration k, gradient descent uses the descent direction $\delta \mathbf{x}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$
- Determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$
\left\|\nabla f\left(\mathbf{x}_{1}\right)-\nabla f\left(\mathbf{x}_{2}\right)\right\|=\left\|\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right\| \leq \underbrace{\left\|\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right\|}_{L}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|
$$

- Choose step size $\alpha_{k}=\frac{1}{L}$ and iterate:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}_{k} \\
& =\mathbf{x}_{k}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right) \mathbf{x}_{k}-\frac{1}{L}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

Newton's Method

- Start with an initial guess $\mathbf{x}_{0}=\mathbf{0}$
- At iteration k, Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}_{k} & =-\left[\nabla^{2} f\left(\mathbf{x}_{k}\right)\right]^{-1} \nabla f\left(\mathbf{x}_{k}\right) \\
& =-\mathbf{x}_{k}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- With $\alpha_{k}=1$, Newton's method converges in one iteration:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\delta \mathbf{x}_{k}=-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
$$

Gauss-Newton's Method

- $f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_{j}(\mathbf{x})^{\top} \mathbf{e}_{j}(\mathbf{x})$ for $\mathbf{e}_{j}(\mathbf{x}):=A_{j} \mathbf{x}+b_{j}$
- The Jacobian of $\mathbf{e}_{j}(\mathbf{x})$ is $J_{j}(\mathbf{x})=A_{j}$
- Start with an initial guess $\mathrm{x}_{0}=\mathbf{0}$
- At iteration k, Gauss-Newton's method uses the descent direction:

$$
\begin{aligned}
\delta \mathbf{x}_{k} & =-\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}_{k}\right)^{\top} J_{j}\left(\mathbf{x}_{k}\right)\right)^{-1}\left(\sum_{j=1}^{n} J_{j}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{e}_{j}\left(\mathbf{x}_{k}\right)\right) \\
& =-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top}\left(A_{j} \mathbf{x}_{k}+b_{j}\right)\right) \\
& =-\mathbf{x}_{k}-\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1}\left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)
\end{aligned}
$$

- With $\alpha_{k}=1$, in this problem, Gauss-Newton's method behaves like Newton's method and converges in one iteration

