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Field

I A field is a set F with two binary operations, + : F ×F 7→ F (addition) and
· : F × F 7→ F (multiplication), which satisfy the following axioms:

I Associativity: a + (b + c) = (a + b) + c and a(bc) = (ab)c, ∀a, b, c ∈ F
I Commutativity: a + b = b + a and ab = ba, ∀a, b ∈ F
I Identity: ∃1, 0 ∈ F such that a + 0 = a and a1 = a, ∀a ∈ F
I Inverse: ∀a ∈ F , ∃−a ∈ F such that a + (−a) = 0

∀a ∈ F \ {0},∃a−1 ∈ F \ {0} such that aa−1 = 1

I Distributivity: a(b + c) = (ab) + (ac), ∀a, b, c ∈ F

I Examples: real numbers R, complex numbers C, rational numbers Q
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Vector Space

I A vector space over a field F is a set V with two binary operations,
+ : V × V 7→ V (addition) and · : F × V 7→ V (scalar multiplication), which
satisfy the following axioms:

I Associativity: x + (y + z) = (x + y) + z, ∀x, y, z ∈ V
I Compatibility: a(bx) = (ab)x, ∀a, b ∈ F and ∀x ∈ V
I Commutativity: x + y = x + y, ∀x, y ∈ V
I Identity: ∃ 0 ∈ V and 1 ∈ F such that x + 0 = x and 1x = x, ∀x ∈ V
I Inverse: ∀x ∈ V, ∃−x ∈ V such that x + (−x) = 0

I Distributivity: a(x + y) = ax + by and (a + b)x = ax + bx, ∀a, b ∈ F and
∀x, y ∈ V

I Examples: real vectors Rd , complex vectors Cd , rational vectors Qd ,
functions Rd 7→ R
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Basis and Dimension

I A basis of a vector space V over a field F is a set B ⊆ V that satisfies:
I linear independence: for all finite {x1, . . . , xm} ⊆ B,

if a1x1 + · · ·+ amxm = 0 for some a1, . . . , am ∈ F , then a1 = · · · = am = 0

I B spans V: ∀x ∈ V, ∃ x1, . . . , xd ∈ B and unique a1, . . . , ad ∈ F such that
x = a1x1 + · · ·+ adxd

I The dimension d of a vector space V is the cardinality of its bases
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Inner Product and Norm

I An inner product on a vector space V over a field F is a function
〈·, ·〉 : V × V 7→ F such that for all a ∈ F and all x, y, z ∈ V:

I 〈ax, y〉 = a〈x, y〉 (homogeneity)

I 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (additivity)

I 〈x, y〉 = 〈y, x〉 (conjugate symmetry)

I 〈x, x〉 ≥ 0 (non-negativity)

I 〈x, x〉 = 0 iff x = 0 (definiteness)

I A norm on a vector space V over a field F is a function ‖ · ‖ : V → R such
that for all a ∈ F and all x, y ∈ V:

I ‖ax‖ = |a|‖x‖ (absolute homogeneity)

I ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

I ‖x‖ ≥ 0 (non-negativity)

I ‖x‖ = 0 iff x = 0 (definiteness)
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Euclidean Vector Space

I A Euclidean vector space Rd is a vector space with finite dimension d over
the real numbers R

I A Euclidean vector x ∈ Rd is a collection of scalars xi ∈ R for i = 1, . . . , d
organized as a column:

x =

x1

...
xd


I The transpose of x ∈ Rd is organized as a row: x> =

[
x1 · · · xd

]
I The Euclidean inner product between two vectors x, y ∈ Rd is:

〈x, y〉 = x>y =
d∑

i=1

xiyi

I The Euclidean norm of a vector x ∈ Rd is ‖x‖2 :=
√
〈x, x〉 =

√
x>x
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Matrices

I A real m × n matrix A is a rectangular array of scalars Aij ∈ R for
i = 1, . . . ,m and j = 1, . . . , n

I The set Rm×n of real m × n matrices is a vector space

I The entries of the transpose A> ∈ Rn×m of a matrix A ∈ Rm×n are
A>ij = Aji . The transpose satisfies: (AB)> = B>A>

I The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC ) = tr(BCA) = tr(CAB)

I The Frobenius inner product between two matrices X ,Y ∈ Rm×n is:

〈X ,Y 〉 = tr(X>Y )

I The Frobenius norm of a matrix X ∈ Rm×n is: ‖X‖F :=
√

tr(X>X )
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Matrix Determinant and Inverse

I The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j times
the determinant of the (n − 1)× (n − 1) submatrix that results when the
i th-row and j th-col of A are removed. This recursive definition uses the fact
that the determinant of a scalar is the scalar itself.

I The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)>

I The inverse A−1 of A exists iff det(A) 6= 0 and satisfies:

A−1A = I A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1
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Eigenvalue Decomposition

I For any A ∈ Rn×n, if there exists q ∈ Cn \ {0} and λ ∈ C such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ.

I The n eigenvalues of A ∈ Rn×n are the n roots of the characteristic
polynomial p(λ) of A:

p(λ) := det(λI − A)

I A real matrix can have complex eigenvalues and eigenvectors, which appear
in conjugate pairs.

I Eigenvectors are not unique since for any c ∈ C \ {0}, cq is an eigenvector
corresponding to the same eigenvalue.
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Eigenvalue Decomposition
I Diagonalizable matrix: n linearly independent eigenvectors qi can be found

for A ∈ Rn×n: Aqi = λiqi for i = 1, . . . , n

I If the eigenvalues λi of A are distinct, then A is diagonalizable

I Eigen decomposition: if A is diagonalizable, we can stack all n equations
Aqi = λiqi to obtain an eigen decomposition of A:

A = QΛQ−1

I Jordan decomposition: any A can be decomposed using an invertible
matrix Q of generalized eigenvectors and an upper-triangular matrix J:

A = QJQ−1

I Jordan form J of A: an upper-triangular block-diagonal matrix:

J = diag(B(λ1,m1), . . . ,B(λk ,mk))

where λ1, . . . , λk are the eigenvalues of
A and m1 + · · ·+ mk = n.

B(λ,m) =


λ 1 0 0

0
. . .

. . . 0
...

. . . λ 1
0 0 0 λ
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Singular Value Decomposition
I An eigen-decomposition does not exist for A ∈ Rm×n

I A ∈ Rm×n with rank r ≤ min {m, n} can be diagonalized by two orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n via singular value decomposition:

A = UΣV> Σ =


σ1

. . .

σr

 ∈ Rm×n

I U contains the m orthogonal eigenvectors of the symmetric matrix
AA> ∈ Rm×m and satisfies U>U = UU> = I

I V contains the n orthogonal eigenvectors of the symmetric matrix
A>A ∈ Rn×n and satisfies V>V = VV> = I

I Σ contains the singular values σi =
√
λi , equal to the square roots of the r

non-zero eigenvalues λi of AA> or A>A, on its diagonal

I If A is normal (A>A = AA>), its singular values are related to its eigenvalues
via σi = |λi |
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Matrix Pseudo Inverse

I The pseudo-inverse A† ∈ Rn×m of A ∈ Rm×n can be obtained from its SVD
A = UΣV>:

A† = VΣ†UT Σ† =


1/σ1

. . .

1/σr

 ∈ Rn×m

I The pseudo-inverse A† ∈ Rn×m satisfies the Moore-Penrose conditions:
I AA†A = A
I A†AA† = A†

I
(
AA†

)>
= AA†

I
(
A†A

)>
= A†A
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Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I The column space or image of A is im(A) ⊆ Rm and is spanned by the r
columns of U corresponding to non-zero singular values

I The null space or kernel of A is ker(A) ⊆ Rn and is spanned by the n − r
columns of V corresponding to zero singular values

I The row space or co-image of A is im(A>) ⊆ Rn and is spanned by the r
columns of V corresponding to non-zero singular values

I The left null space or co-kernel of A is ker(A>) ⊆ Rm and is spanned by
the m − r columns of U corresponding to zero singular values

I The domain of A is Rn = ker(A)⊕ im(A>)

I The co-domain of A is Rm = ker(A>)⊕ im(A)
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Solution of Linear System of Equations

I Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV> and rank r

I If b ∈ im(A), i.e., b>v = 0 for all v ∈ ker(A>), then Ax = b has one or
infinitely many solutions x = A†b + (I − A†A)y for any y ∈ Rn

I If b /∈ im(A), then no solution exists and x = A†b is an approximate
solution with minimum ‖x‖ and ‖Ax− b‖ norms

I If m = n = r , then Ax = b has a unique solution x = A†b = A−1b
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Positive Semidefinite Matrices

I The product x>Ax for A ∈ Rn×n and x ∈ Rn is called a quadratic form and
A can be assumed symmetric, A = A>, because:

1

2
x>(A + A>)x = x>Ax, ∀x ∈ Rn

I A symmetric matrix A ∈ Rn×n is positive semidefinite if x>Ax ≥ 0 for all
x ∈ Rn.

I A symmetric matrix A ∈ Rn×n is positive definite if it is positive
semidefinite and if x>Ax = 0 implies x = 0.

I All eigenvalues of a symmetric positive semidefinite matrix are non-negative.

I All eigenvalues of a symmetric positive definite matrix are positive.
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Matrix Derivatives (numerator layout)
I Derivatives of y ∈ Rm and Y ∈ Rm×n by scalar x ∈ R:

dy

dx
=


dy1

dx
...

dym
dx

 ∈ Rm×1 dY

dx
=


dY11

dx · · · dY1n

dx
...

. . .
...

dYm1

dx · · · dYmn

dx

 ∈ Rm×n

I Derivatives of y ∈ R and y ∈ Rm by vector x ∈ Rp:

dy

dx
=
[

dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy ]> (gradient transpose)

∈ R1×p dy

dx
=


dy1

dx1
· · · dy1

dxp
...

. . .
...

dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

∈ Rm×p

I Derivative of y ∈ R by matrix X ∈ Rp×q:

dy

dX
=


dy
dX11

· · · dy
dXp1

...
. . .

...
dy
dX1q

· · · dy
dXpq

 ∈ Rq×p
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Matrix Derivative Examples

I d
dXij

X = eie>j

I d
dxAx = A

I d
dx u>v = u> dv

dx + v> du
dx (product rule)

I d
dx x>Ax = x>(A + A>)

I d
dxM

−1(x) = −M−1(x) dM(x)
dx M−1(x)

I d
dX tr(AX−1B) = −X−1BAX−1

I d
dX log detX = X−1
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Matrix Derivative Examples

I d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n

...
. . .

...
Am1 · · · Amn


I d

dx x>Ax = x> dAx
dx + x>A> dx

dx = x>(A + A>)

I M(x)M−1(x) = I ⇒ 0 =
[

d
dxM(x)

]
M−1(x) + M(x)

[
d
dxM

−1(x)
]

I

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

>
j X
−1B)

= −e>j X
−1BAX−1ei = −e>i

(
X−1BAX−1

)>
ej

I

d

dXij
log detX =

1

det(X )

d

dXij

n∑
k=1

Xikcof ik(X )

=
1

det(X )
cof ij(X ) =

1

det(X )
adjji (X ) = e>j X

−1ei
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Unconstrained Optimization

I Unconstrained optimization problem over Euclidean vector space Rd :

min
x∈Rd

f (x)

I A global minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ Rd . The value
f (x∗) is called global minimum.

I A local minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ N (x∗), where
N (x∗) ⊂ Rd is a neighborhood around x∗ (e.g., an open ball with small
radius centered at x∗). The value f (x∗) is called local minimum.

I The function f : Rd 7→ R is differentiable at x ∈ Rd if its gradient exists:

∇f (x) :=
[
∂f (x)
∂x1

· · · ∂f (x)
∂xd

]>
∈ Rd

I A critical point x̄ ∈ Rd satisfies ∇f (x̄) = 0 or ∇f (x̄) = undefined

I All minimizers are critical points but not all critical points are minimizers. A
critical point is a local maximizer, a local minimizer, or neither (saddle point).
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Descent Direction

I Consider the unconstrained optimization problem:

min
x∈Rd

f (x)

Descent Direction Theorem

Suppose f is differentiable at x̄. If ∃ δx ∈ Rd such that ∇f (x̄)>δx < 0, then
∃ ε > 0 such that f (x̄ + αδx) < f (x̄) for all α ∈ (0, ε).

I The vector δx is called a descent direction

I The theorem states that if a descent direction exists at x̄, then it is possible
to move to a new point that has a lower f value

I Steepest descent direction: δx := − ∇f (x̄)
‖∇f (x̄)‖

I Based on this theorem, we derive conditions for optimality of x̄
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Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0.

Second-order Necessary Condition

Suppose f is twice-differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0
and ∇2f (x̄) � 0.

Second-order Sufficient Condition

Suppose f is twice-differentiable at x̄. If ∇f (x̄) = 0 and ∇2f (x̄) � 0, then x̄ is a
local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x̄. If f is convex, then x̄ is a global minimizer if
and only if ∇f (x̄) = 0.
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Convexity
I A set D ⊆ Rd is convex if λx + (1− λ)y ∈ D for all x, y ∈ D, λ ∈ [0, 1]

I A convex set contains the line segment between any two points in it

I A function f : D 7→ R with D ⊆ Rd is convex if:
I D is a convex set
I f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for all x, y ∈ D, λ ∈ [0, 1]

I First-order convexity condition: a differentiable f : D 7→ R with convex D
is convex iff f (y) ≥ f (x) +∇f (x)>(y − x) for all x, y ∈ D

I Second-order convexity condition: a twice-differentiable f : D 7→ R with
convex D is convex iff ∇2f (x) � 0 for all x ∈ D
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Descent Optimization Methods

I A critical point of f can be obtained by solving ∇f (x) = 0 but an explicit
solution may be difficult to obtain

I Descent methods: iterative methods to obtain a solution of ∇f (x) = 0

I Given initial guess xk , take step of size αk > 0 along descent direction δxk :

xk+1 = xk + αkδxk

I Different methods differ in the way δxk and αk are chosen

I δxk needs to be a descent direction: ∇f (xk)>δxk < 0, ∀xk 6= x∗

I αk needs to ensure sufficient decrease in f to guarantee convergence:
I The best step size choice is αk ∈ arg min

α>0
f (xk + αδxk)

I In practice, αk is obtained via approximate line search methods
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Gradient Descent (First-Order Method)

I Idea: −∇f (xk) points in the direction of steepest descent

I Gradient descent: let δxk := −∇f (xk) and iterate:

xk+1 = xk − αk∇f (xk)

I Step size: a good choice for αk is 1
L , where L > 0 is the Lipschitz constant

of ∇f (x):
‖∇f (x)−∇f (x′)‖ ≤ L‖x− x′‖ ∀x, x′ ∈ Rd

Gradient Descent Convergence

Suppose f is twice continuously differentiable with

mI � ∇2f (x) � LI , ∀x ∈ Rn.

The iterates xk of gradient descent with step size αk = 1
L satisfy:

‖∇f (xk)‖ → 0 and ‖xk − x∗‖ → 0 as k →∞.
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Proof: Gradient Descent Convergence

I By the Mean Value Theorem for some ck between xk and xk+1:

∇f (xk+1) = ∇f (xk) +∇2f (ck)(xk+1 − xk) = ∇f (xk)− αk∇2f (ck)∇f (xk)

I Let λi be the eigenvalues of ∇2f (ck) so that:

0 ≤ 1− αkL ≤ 1− αkλi ≤ 1− αkm

I This is sufficient to show that ‖∇f (xk)‖ → 0 linearly:

‖∇f (xk+1)‖ ≤ (1−m/L)‖∇f (xk)‖ ≤ (1−m/L)k+1‖∇f (x0)‖

I By the Mean Value Theorem for some c̃k between xk and x∗:

xk+1−x∗ = (xk−x∗)−αk(∇f (xk)−∇f (x∗)) = (xk−x∗)−αk∇2f (c̃k)(xk−x∗)

I Since mI � ∇2f (c̃k) � LI :

‖xk+1 − x∗‖ ≤ (1−m/L)‖xk − x∗‖ ≤ (1−m/L)k+1‖x0 − x∗‖
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Projected Gradient Descent

I Constrained optimization problem over a closed convex set C ⊆ Rn:

min
x∈C

f (x)

I Constrained optimality condition: for differentiable convex function f :

x∗ ∈ arg min
x∈C

f (x) ⇔ 〈∇f (x∗), y − x∗〉 ≥ 0, ∀y ∈ C

I Euclidean projection onto C:

ΠC(x) := arg min
y∈C

‖y − x‖

I Projected gradient descent:

xk+1 = ΠC(xk − α∇f (xk)), α > 0
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Projected Gradient Descent

Projected Gradient Descent Convergence

Suppose f is twice continuously differentiable with

mI � ∇2f (x) � LI , ∀x ∈ Rn.

The iterates xk of projected gradient descent with step size α = 1
L satisfy:

‖xk+1 − x∗‖ ≤ (1−m/L)k+1‖x0 − x∗‖.

I The proof is based on:
I Euclidean projection is non-expansive:

‖ΠC(x)− ΠC(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn

I Constrained optimizers are fixed points of the projected gradient descent
operator with α > 0:

x∗ ∈ arg min
x∈C

f (x) ⇔ x∗ = ΠC(x∗ − α∇f (x∗))
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Newton’s Method (Second-Order Method)

I Consider the unconstrained optimization problem:

min
x∈Rd

f (x)

I Newton’s method iteratively approximates f by a quadratic function

I For a small change δx to xk , we can approximate f using Taylor series:

f (xk + δx) ≈ f (xk) +

(
∂f (x)

∂x

∣∣∣∣
x=xk

)
︸ ︷︷ ︸
Gradient Transpose

δx +
1

2
δx>

(
∂2f (x)

∂x∂x>

∣∣∣∣
x=xk

)
︸ ︷︷ ︸

Hessian

δx

=: q(δx, xk)︸ ︷︷ ︸
quadratic function in δx

I The symmetric Hessian matrix ∇2f (xk) needs to be positive-definite for this
method to work
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Newton’s Method (Second-Order Method)
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Newton’s Method (Second-Order Method)

I Find δx that minimizes the quadratic approximation to f (xk + δx):

min
δx∈Rd

q(δx, xk)

I Since this is an unconstrained optimization problem, δx can be determined by
setting the derivative of q with respect to δx to zero:

0 =
∂q(δx, xk)

∂δx
= ∇f (xk)> + δx>∇2f (xk)

I This is a linear system of equations in δx and can be solved uniquely when
the Hessian is invertible, i.e., ∇2f (xk) � 0:

δx = −
[
∇2f (xk)

]−1∇f (xk)

I Newton’s method:

xk+1 = xk − αk

[
∇2f (xk)

]−1∇f (xk), αk > 0
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Newton’s Method (Second-Order Method)

I Like other descent methods, Newton’s method converges to a local minimum

I Damped Newton phase: when the iterates are “far away” from the
optimum, the function value is decreased sublinearly, i.e., the step sizes αk

are small

I Quadratic convergence phase: when the iterates are “sufficiently close” to
the optimum, full Newton steps are taken, i.e., αk = 1, and the function
value converges quadratically to the optimum

I A disadvantage of Newton’s method is the need to form the Hessian
∇2f (xk), which can be numerically ill-conditioned or computationally
expensive in high-dimensional problems
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Gauss-Newton’s Method

I Gauss-Newton is an approximation to Newton’s method that avoids
computing the Hessian. It is applicable when the objective function has the
following quadratic form:

f (x) =
1

2
e(x)>e(x) e(x) ∈ Rm

I Derivative and Hessian:

Jacobian:
∂f (x)

∂x

∣∣∣∣
x=xk

= e(xk)>

(
∂e(x)

∂x

∣∣∣∣
x=xk

)

Hessian:
∂2f (x)

∂x∂x>

∣∣∣∣
x=xk

=

(
∂e(x)

∂x

∣∣∣∣
x=xk

)>(
∂e(x)

∂x

∣∣∣∣
x=xk

)

+
m∑
i=1

ei (xk)

(
∂2ei (x)

∂x∂x>

∣∣∣∣
x=xk

)

36



Gauss-Newton’s Method
I Near the minimum of f , the second term in the Hessian is small relative to

the first. The Hessian can be approximated without second derivatives:

∂2f (x)

∂x∂x>

∣∣∣∣
x=xk

≈

(
∂e(x)

∂x

∣∣∣∣
x=xk

)>(
∂e(x)

∂x

∣∣∣∣
x=xk

)
I Approximation of f (xk + δx):

f (xk + δx) ≈ f (xk) + e(xk)>

(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δx + δx>

(
∂e(x)

∂x

∣∣∣∣
x=xk

)>(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δx

I Setting the gradient of this new quadratic approximation of f with respect to
δx to zero, leads to the system:(

∂e(x)

∂x

∣∣∣∣
x=xk

)>(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δx = −

(
∂e(x)

∂x

∣∣∣∣
x=xk

)>
e(xk)

I Gauss-Newton’s method:

xk+1 = xk + αkδx, αk > 0
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Levenberg-Marquardt’s Method

I The Levenberg-Marquardt modification to the Gauss-Newton method uses
a positive diagonal matrix D to condition the Hessian approximation:(∂e(x)

∂x

∣∣∣∣
x=xk

)>(
∂e(x)

∂x

∣∣∣∣
x=xk

)
+ λD

 δx = −

(
∂e(x)

∂x

∣∣∣∣
x=xk

)>
e(xk)

I λD compensates for the missing Hessian term
m∑
i=1

ei (xk)

(
∂2ei (x)

∂x∂x>

∣∣∣∣
x=xk

)

I When λ ≥ 0 is large, the descent direction δx corresponds to a small step in
the direction of steepest descent. This helps when the Hessian approximation
is poor or poorly conditioned by providing a meaningful direction.
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Gauss-Newton’s Method

I An iterative optimization approach for the unconstrained problem:

min
x

f (x) :=
1

2

∑
j

ej(x)>ej(x) ej(x) ∈ Rmj , x ∈ Rn

I Given an initial guess xk , determine a descent direction δx by solving:∑
j

Jj(xk)>Jj(xk) + λD

 δx = −

∑
j

Jj(xk)>ej(xk)


where Jj(x) :=

∂ej (x)
∂x ∈ Rmj×n, λ ≥ 0, D ∈ Rn×n is a positive diagonal

matrix, e.g., D = diag
(∑

j Jj(xk)>Jj(xk)
)

I Obtain an updated estimate according to:

xk+1 = xk + αkδx, αk > 0
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Unconstrained Optimization Example

I Let f (x) := 1
2

∑n
j=1 ‖Ajx + bj‖2

2 for x ∈ Rd and assume
∑n

j=1 A
>
j Aj � 0

I Solve the unconstrained optimization problem minx f (x) using:
I The necessary and sufficient optimality condition for convex function f
I Gradient descent
I Newton’s method
I Gauss-Newton’s method

I We will need ∇f (x) and ∇2f (x):

df (x)

dx
=

1

2

n∑
j=1

d

dx
‖Ajx + bj‖2

2 =
n∑

j=1

(Ajx + bj)
> Aj

∇f (x) =
df (x)

dx

>
=

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


∇2f (x) =

d

dx
∇f (x) =

n∑
j=1

A>j Aj � 0
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Necessary and Sufficient Optimality Condition

I Solve ∇f (x) = 0 for x:

0 = ∇f (x) =

 n∑
j=1

A>j Aj

 x +

 n∑
j=1

A>j bj


x = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I The solution above is unique since we assumed that

∑n
j=1 A

>
j Aj � 0
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Gradient Descent

I Start with an initial guess x0 = 0

I At iteration k , gradient descent uses the descent direction δxk = −∇f (xk)

I Determine the Lipschitz constant of ∇f (x):

‖∇f (x1)−∇f (x2)‖ =

∥∥∥∥( n∑
j=1

A>j Aj

)
(x1 − x2)

∥∥∥∥ ≤ ∥∥∥∥ n∑
j=1

A>j Aj

∥∥∥∥︸ ︷︷ ︸
L

‖x1 − x2‖

I Choose step size αk = 1
L and iterate:

xk+1 = xk + αkδxk

= xk −
1

L

 n∑
j=1

A>j Aj

 xk −
1

L

 n∑
j=1

A>j bj
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Newton’s Method

I Start with an initial guess x0 = 0

I At iteration k , Newton’s method uses the descent direction:

δxk = −
[
∇2f (xk)

]−1∇f (xk)

= −xk −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I With αk = 1, Newton’s method converges in one iteration:

xk+1 = xk + δxk = −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj
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Gauss-Newton’s Method
I f (x) is of the form 1

2

∑n
j=1 ej(x)>ej(x) for ej(x) := Ajx + bj

I The Jacobian of ej(x) is Jj(x) = Aj

I Start with an initial guess x0 = 0

I At iteration k , Gauss-Newton’s method uses the descent direction:

δxk = −

 n∑
j=1

Jj(xk)>Jj(xk)

−1 n∑
j=1

Jj(xk)>ej(xk)


= −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j (Ajxk + bj)


= −xk −

 n∑
j=1

A>j Aj

−1 n∑
j=1

A>j bj


I With αk = 1, in this problem, Gauss-Newton’s method behaves like Newton’s

method and converges in one iteration
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