ECE276A: Sensing & Estimation in Robotics Lecture 2: Unconstrained Optimization

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Field

- A field is a set *F* with two binary operations, + : *F* × *F* → *F* (addition) and :: *F* × *F* → *F* (multiplication), which satisfy the following axioms:
 - Associativity: a + (b + c) = (a + b) + c and a(bc) = (ab)c, $\forall a, b, c \in \mathcal{F}$
 - Commutativity: a + b = b + a and ab = ba, $\forall a, b \in \mathcal{F}$
 - ▶ Identity: $\exists 1, 0 \in F$ such that a + 0 = a and a1 = a, $\forall a \in F$

▶ Inverse:
$$\forall a \in \mathcal{F}, \exists -a \in \mathcal{F} \text{ such that } a + (-a) = 0$$

 $\forall a \in \mathcal{F} \setminus \{0\}, \exists a^{-1} \in \mathcal{F} \setminus \{0\} \text{ such that } aa^{-1} = 1$

▶ Distributivity: a(b + c) = (ab) + (ac), $\forall a, b, c \in \mathcal{F}$

Examples: real numbers \mathbb{R} , complex numbers \mathbb{C} , rational numbers \mathbb{Q}

Vector Space

- A vector space over a field *F* is a set *V* with two binary operations, + : *V* × *V* → *V* (addition) and · : *F* × *V* → *V* (scalar multiplication), which satisfy the following axioms:
 - Associativity: x + (y + z) = (x + y) + z, $\forall x, y, z \in V$
 - Compatibility: $a(b\mathbf{x}) = (ab)\mathbf{x}, \forall a, b \in \mathcal{F} \text{ and } \forall \mathbf{x} \in \mathcal{V}$
 - Commutativity: $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$
 - Identity: $\exists \mathbf{0} \in V$ and $1 \in \mathcal{F}$ such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ and $1\mathbf{x} = \mathbf{x}$, $\forall \mathbf{x} \in \mathcal{V}$
 - ▶ Inverse: $\forall x \in V, \exists -x \in V$ such that x + (-x) = 0
 - ▶ Distributivity: $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + b\mathbf{y}$ and $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$, $\forall a, b \in \mathcal{F}$ and $\forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$
- Examples: real vectors ℝ^d, complex vectors ℂ^d, rational vectors ℚ^d, functions ℝ^d → ℝ

Basis and Dimension

- A **basis** of a vector space \mathcal{V} over a field \mathcal{F} is a set $\mathcal{B} \subseteq \mathcal{V}$ that satisfies:
 - ▶ linear independence: for all finite $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\} \subseteq \mathcal{B}$, if $a_1\mathbf{x}_1 + \cdots + a_m\mathbf{x}_m = 0$ for some $a_1, \ldots, a_m \in \mathcal{F}$, then $a_1 = \cdots = a_m = 0$
 - ▶ \mathcal{B} spans \mathcal{V} : $\forall x \in \mathcal{V}, \exists x_1, \dots, x_d \in \mathcal{B}$ and unique $a_1, \dots, a_d \in \mathcal{F}$ such that $x = a_1 x_1 + \dots + a_d x_d$
- The **dimension** d of a vector space \mathcal{V} is the cardinality of its bases

Inner Product and Norm

An inner product on a vector space \mathcal{V} over a field \mathcal{F} is a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \mapsto \mathcal{F}$ such that for all $a \in \mathcal{F}$ and all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$:

$\langle a {f x}, {f y} angle = a \langle {f x}, {f y} angle$	(homogeneity)
$\langle {f x}+{f y},{f z} angle = \langle {f x},{f z} angle + \langle {f y},{f z} angle$	(additivity)
$\langle {f x}, {f y} angle = \overline{\langle {f y}, {f x} angle}$	(conjugate symmetry)
$\langle {f x}, {f x} angle \geq 0$	(non-negativity)
$\langle {f x}, {f x} angle = 0$ iff ${f x} = {f 0}$	(definiteness)

A norm on a vector space V over a field F is a function || · || : V → ℝ such that for all a ∈ F and all x, y ∈ V:

$$\begin{aligned} \|\mathbf{a}\mathbf{x}\| &= |\mathbf{a}| \|\mathbf{x}\| & (\text{absolute homogeneity}) \\ \|\mathbf{x} + \mathbf{y}\| &\leq \|\mathbf{x}\| + \|\mathbf{y}\| & (\text{triangle inequality}) \\ \|\mathbf{x}\| &\geq 0 & (\text{non-negativity}) \\ \|\mathbf{x}\| &= 0 \text{ iff } \mathbf{x} = 0 & (\text{definiteness}) \end{aligned}$$

Euclidean Vector Space

- ► A Euclidean vector space R^d is a vector space with finite dimension d over the real numbers R
- A Euclidean vector x ∈ ℝ^d is a collection of scalars x_i ∈ ℝ for i = 1,..., d organized as a column:
 Γ... ٦

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

▶ The transpose of $\mathbf{x} \in \mathbb{R}^d$ is organized as a row: $\mathbf{x}^\top = \begin{bmatrix} x_1 & \cdots & x_d \end{bmatrix}$

▶ The **Euclidean inner product** between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ is:

$$\langle \mathbf{x}, \mathbf{y}
angle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{d} x_i y_i$$

► The Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^d$ is $\|\mathbf{x}\|_2 := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\mathbf{x}^\top \mathbf{x}}$

Matrices

- A real $m \times n$ matrix A is a rectangular array of scalars $A_{ij} \in \mathbb{R}$ for i = 1, ..., m and j = 1, ..., n
- ▶ The set $\mathbb{R}^{m \times n}$ of real $m \times n$ matrices is a vector space
- ▶ The entries of the **transpose** $A^{\top} \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ are $A_{ii}^{\top} = A_{ji}$. The transpose satisfies: $(AB)^{\top} = B^{\top}A^{\top}$
- The **trace** of a matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its diagonal entries:

$$\operatorname{tr}(A) := \sum_{i=1}^{n} A_{ii}$$
 $\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$

▶ The **Frobenius inner product** between two matrices $X, Y \in \mathbb{R}^{m \times n}$ is:

$$\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$$

► The **Frobenius norm** of a matrix $X \in \mathbb{R}^{m \times n}$ is: $||X||_F := \sqrt{\operatorname{tr}(X^{\top}X)}$

Matrix Determinant and Inverse

• The **determinant** of a matrix $A \in \mathbb{R}^{n \times n}$ is:

$$\det(A) := \sum_{j=1}^{n} A_{ij} \mathbf{cof}_{ij}(A) \qquad \quad \det(AB) = \det(A) \det(B) = \det(BA)$$

where $cof_{ij}(A)$ is the cofactor of the entry A_{ij} and is equal to $(-1)^{i+j}$ times the determinant of the $(n-1) \times (n-1)$ submatrix that results when the i^{th} -row and j^{th} -col of A are removed. This recursive definition uses the fact that the determinant of a scalar is the scalar itself.

The adjugate is the transpose of the cofactor matrix:

$$\operatorname{\mathsf{adj}}(A) := \operatorname{\mathsf{cof}}(A)^{ op}$$

• The **inverse** A^{-1} of A exists iff det $(A) \neq 0$ and satisfies:

$$A^{-1}A = I$$
 $A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$ $(AB)^{-1} = B^{-1}A^{-1}$

Eigenvalue Decomposition

For any $A \in \mathbb{R}^{n \times n}$, if there exists $\mathbf{q} \in \mathbb{C}^n \setminus {\mathbf{0}}$ and $\lambda \in \mathbb{C}$ such that:

 $A\mathbf{q} = \lambda \mathbf{q}$

then **q** is an **eigenvector** corresponding to the **eigenvalue** λ .

► The *n* eigenvalues of $A \in \mathbb{R}^{n \times n}$ are the *n* roots of the **characteristic polynomial** $p(\lambda)$ of *A*:

$$p(\lambda) := \det(\lambda I - A)$$

- A real matrix can have complex eigenvalues and eigenvectors, which appear in conjugate pairs.
- ► Eigenvectors are not unique since for any c ∈ C \ {0}, cq is an eigenvector corresponding to the same eigenvalue.

Eigenvalue Decomposition

- Diagonalizable matrix: *n* linearly independent eigenvectors **q**_i can be found for A ∈ ℝ^{n×n}: A**q**_i = λ_i**q**_i for i = 1,..., n
- If the eigenvalues λ_i of A are distinct, then A is diagonalizable
- Eigen decomposition: if A is diagonalizable, we can stack all n equations Aq_i = λ_iq_i to obtain an eigen decomposition of A:

$$A = Q \Lambda Q^{-2}$$

Jordan decomposition: any A can be decomposed using an invertible matrix Q of generalized eigenvectors and an upper-triangular matrix J:

$$A = QJQ^{-2}$$

Jordan form J of A: an upper-triangular block-diagonal matrix:

$$J = \operatorname{diag}(B(\lambda_1, m_1), \dots, B(\lambda_k, m_k))$$

where $\lambda_1, \dots, \lambda_k$ are the eigenvalues of
 A and $m_1 + \dots + m_k = n$.
$$B(\lambda, m) = \begin{vmatrix} \lambda & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{vmatrix}$$

Singular Value Decomposition

- ▶ An eigen-decomposition does not exist for $A \in \mathbb{R}^{m \times n}$
- ▶ $A \in \mathbb{R}^{m \times n}$ with rank $r \le \min\{m, n\}$ can be diagonalized by two orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ via singular value decomposition:

$$A = U \Sigma V^{\top} \qquad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \in \mathbb{R}^{m \times n}$$

- ► *U* contains the *m* orthogonal eigenvectors of the symmetric matrix $AA^{\top} \in \mathbb{R}^{m \times m}$ and satisfies $U^{\top}U = UU^{\top} = I$
- ▶ *V* contains the *n* orthogonal eigenvectors of the symmetric matrix $A^{\top}A \in \mathbb{R}^{n \times n}$ and satisfies $V^{\top}V = VV^{\top} = I$
- Σ contains the singular values σ_i = √λ_i, equal to the square roots of the r non-zero eigenvalues λ_i of AA^T or A^TA, on its diagonal

If A is normal (A^TA = AA^T), its singular values are related to its eigenvalues via σ_i = |λ_i|

Matrix Pseudo Inverse

The **pseudo-inverse** $A^{\dagger} \in \mathbb{R}^{n \times m}$ of $A \in \mathbb{R}^{m \times n}$ can be obtained from its SVD $A = U \Sigma V^{\top}$:

$$A^{\dagger} = V \Sigma^{\dagger} U^{T} \qquad \Sigma^{\dagger} = \begin{bmatrix} 1/\sigma_{1} & & \\ & \ddots & \\ & & 1/\sigma_{r} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

▶ The pseudo-inverse $A^{\dagger} \in \mathbb{R}^{n \times m}$ satisfies the Moore-Penrose conditions:

$$AA^{\dagger}A = A$$

$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

$$(AA^{\dagger})^{\top} = AA^{\dagger}$$

$$(A^{\dagger}A)^{\top} = A^{\dagger}A$$

Linear System of Equations

Consider the linear system of equations $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ and rank r

- The column space or image of A is im(A) ⊆ ℝ^m and is spanned by the r columns of U corresponding to non-zero singular values
- The null space or kernel of A is ker(A) ⊆ ℝⁿ and is spanned by the n − r columns of V corresponding to zero singular values
- The row space or co-image of A is im(A^T) ⊆ ℝⁿ and is spanned by the r columns of V corresponding to non-zero singular values
- The left null space or co-kernel of A is ker(A^T) ⊆ ℝ^m and is spanned by the m − r columns of U corresponding to zero singular values
- The **domain** of A is $\mathbb{R}^n = ker(A) \oplus im(A^{\top})$
- The **co-domain** of A is $\mathbb{R}^m = ker(A^{\top}) \oplus im(A)$

Solution of Linear System of Equations

- Consider the linear system of equations $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ and rank r
- If b ∈ im(A), i.e., b[⊤]v = 0 for all v ∈ ker(A[⊤]), then Ax = b has one or infinitely many solutions x = A[†]b + (I − A[†]A)y for any y ∈ ℝⁿ
- If b ∉ im(A), then no solution exists and x = A[†]b is an approximate solution with minimum ||x|| and ||Ax b|| norms
- If m = n = r, then $A\mathbf{x} = \mathbf{b}$ has a **unique solution** $\mathbf{x} = A^{\dagger}\mathbf{b} = A^{-1}\mathbf{b}$

Positive Semidefinite Matrices

The product x^TAx for A ∈ ℝ^{n×n} and x ∈ ℝⁿ is called a quadratic form and A can be assumed symmetric, A = A^T, because:

$$\frac{1}{2}\mathbf{x}^{\top}(A+A^{\top})\mathbf{x}=\mathbf{x}^{\top}A\mathbf{x}, \qquad \forall \mathbf{x} \in \mathbb{R}^{n}$$

- A symmetric matrix A ∈ ℝ^{n×n} is positive semidefinite if x^TAx ≥ 0 for all x ∈ ℝⁿ.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive definite** if it is positive semidefinite and if $\mathbf{x}^{\top} A \mathbf{x} = 0$ implies $\mathbf{x} = 0$.
- All eigenvalues of a symmetric positive semidefinite matrix are non-negative.
- All eigenvalues of a symmetric positive definite matrix are positive.

Matrix Derivatives (numerator layout)

• Derivatives of $\mathbf{y} \in \mathbb{R}^m$ and $Y \in \mathbb{R}^{m \times n}$ by scalar $x \in \mathbb{R}$:

$$\frac{d\mathbf{y}}{dx} = \begin{bmatrix} \frac{dy_1}{dx} \\ \vdots \\ \frac{dy_m}{dx} \end{bmatrix} \in \mathbb{R}^{m \times 1} \qquad \frac{dY}{dx} = \begin{bmatrix} \frac{dY_{11}}{dx} & \cdots & \frac{dY_{1n}}{dx} \\ \vdots & \ddots & \vdots \\ \frac{dY_{m1}}{dx} & \cdots & \frac{dY_{mn}}{dx} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

• Derivatives of $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^m$ by vector $\mathbf{x} \in \mathbb{R}^p$:

• Derivative of $y \in \mathbb{R}$ by matrix $X \in \mathbb{R}^{p \times q}$:

$$\frac{dy}{dX} = \begin{bmatrix} \frac{dy}{dX_{11}} & \cdots & \frac{dy}{dX_{p1}} \\ \vdots & \ddots & \vdots \\ \frac{dy}{dX_{1q}} & \cdots & \frac{dy}{dX_{pq}} \end{bmatrix} \in \mathbb{R}^{q \times p}$$

Matrix Derivative Examples

$$\frac{d}{dX_{ij}}X = \mathbf{e}_i\mathbf{e}_j^{\top}$$

$$\frac{d}{dx}A\mathbf{x} = A$$

$$\frac{d}{dx}\mathbf{u}^{\top}\mathbf{v} = \mathbf{u}^{\top}\frac{d\mathbf{v}}{d\mathbf{x}} + \mathbf{v}^{\top}\frac{d\mathbf{u}}{d\mathbf{x}} \qquad (\text{product rule})$$

$$\frac{d}{dx}\mathbf{x}^{\top}A\mathbf{x} = \mathbf{x}^{\top}(A + A^{\top})$$

$$\frac{d}{dx}M^{-1}(x) = -M^{-1}(x)\frac{dM(x)}{dx}M^{-1}(x)$$

$$\frac{d}{dX}\operatorname{tr}(AX^{-1}B) = -X^{-1}BAX^{-1}$$

$$\frac{d}{dX}\log\det X = X^{-1}$$

Matrix Derivative Examples

$$\frac{d}{dx}A\mathbf{x} = \begin{bmatrix} \frac{d}{dx_1}\sum_{j=1}^n A_{1j}x_j & \cdots & \frac{d}{dx_n}\sum_{j=1}^n A_{1j}x_j \\ \vdots & \ddots & \vdots \\ \frac{d}{dx_1}\sum_{j=1}^n A_{mj}x_j & \cdots & \frac{d}{dx_n}\sum_{j=1}^n A_{mj}x_j \end{bmatrix} = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

$$\frac{d}{dx}\mathbf{x}^\top A\mathbf{x} = \mathbf{x}^\top \frac{dA\mathbf{x}}{d\mathbf{x}} + \mathbf{x}^\top A^\top \frac{d\mathbf{x}}{d\mathbf{x}} = \mathbf{x}^\top (A + A^\top)$$

$$M(x)M^{-1}(x) = I \quad \Rightarrow \quad 0 = \begin{bmatrix} \frac{d}{dx}M(x) \end{bmatrix} M^{-1}(x) + M(x) \begin{bmatrix} \frac{d}{dx}M^{-1}(x) \end{bmatrix}$$

$$\frac{d}{dX_{ij}} \operatorname{tr}(AX^{-1}B) = \operatorname{tr}(A\frac{d}{dX_{ij}}X^{-1}B) = -\operatorname{tr}(AX^{-1}\mathbf{e}_i\mathbf{e}_j^\top X^{-1}B)$$

$$= -\mathbf{e}_j^\top X^{-1}BAX^{-1}\mathbf{e}_i = -\mathbf{e}_i^\top (X^{-1}BAX^{-1})^\top \mathbf{e}_j$$

$$\frac{d}{dX_{ij}} \log \det X = \frac{1}{\det(X)} \frac{d}{dX_{ij}} \sum_{k=1}^n X_{ik} \operatorname{cof}_{ik}(X)$$

$$= \frac{1}{\det(X)} \operatorname{cof}_{ij}(X) = \frac{1}{\det(X)} \operatorname{adj}_{ji}(X) = \mathbf{e}_j^\top X^{-1}\mathbf{e}_i$$

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Unconstrained Optimization

Unconstrained optimization problem over Euclidean vector space \mathbb{R}^d :

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$

- A global minimizer $\mathbf{x}_* \in \mathbb{R}^d$ satisfies $f(\mathbf{x}_*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^d$. The value $f(\mathbf{x}_*)$ is called global minimum.
- ▶ A local minimizer $\mathbf{x}_* \in \mathbb{R}^d$ satisfies $f(\mathbf{x}_*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}(\mathbf{x}_*)$, where $\mathcal{N}(\mathbf{x}_*) \subset \mathbb{R}^d$ is a neighborhood around \mathbf{x}_* (e.g., an open ball with small radius centered at \mathbf{x}_*). The value $f(\mathbf{x}_*)$ is called local minimum.
- The function $f : \mathbb{R}^d \mapsto \mathbb{R}$ is **differentiable** at $\mathbf{x} \in \mathbb{R}^d$ if its gradient exists:

$$abla f(\mathbf{x}) := \begin{bmatrix} rac{\partial f(\mathbf{x})}{\partial x_1} & \cdots & rac{\partial f(\mathbf{x})}{\partial x_d} \end{bmatrix}^\top \in \mathbb{R}^d$$

• A critical point $\bar{\mathbf{x}} \in \mathbb{R}^d$ satisfies $\nabla f(\bar{\mathbf{x}}) = 0$ or $\nabla f(\bar{\mathbf{x}}) =$ undefined

All minimizers are critical points but not all critical points are minimizers. A critical point is a local maximizer, a local minimizer, or neither (saddle point).

Descent Direction

Consider the unconstrained optimization problem:

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$

Descent Direction Theorem

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\exists \ \delta \mathbf{x} \in \mathbb{R}^d$ such that $\nabla f(\bar{\mathbf{x}})^\top \delta \mathbf{x} < 0$, then $\exists \ \epsilon > 0$ such that $f(\bar{\mathbf{x}} + \alpha \delta \mathbf{x}) < f(\bar{\mathbf{x}})$ for all $\alpha \in (0, \epsilon)$.

- The vector $\delta \mathbf{x}$ is called a **descent direction**
- The theorem states that if a descent direction exists at x
 , then it is possible to move to a new point that has a lower f value
- Steepest descent direction: $\delta \mathbf{x} := -\frac{\nabla f(\bar{\mathbf{x}})}{\|\nabla f(\bar{\mathbf{x}})\|}$
- Based on this theorem, we derive conditions for optimality of $\bar{\mathbf{x}}$

Optimality Conditions

First-order Necessary Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla f(\bar{\mathbf{x}}) = 0$.

Second-order Necessary Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\bar{\mathbf{x}}$ is a local minimizer, then $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succeq 0$.

Second-order Sufficient Condition

Suppose f is twice-differentiable at $\bar{\mathbf{x}}$. If $\nabla f(\bar{\mathbf{x}}) = 0$ and $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then $\bar{\mathbf{x}}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at $\bar{\mathbf{x}}$. If f is **convex**, then $\bar{\mathbf{x}}$ is a global minimizer **if** and only if $\nabla f(\bar{\mathbf{x}}) = 0$.

Convexity

► A set $\mathcal{D} \subseteq \mathbb{R}^d$ is convex if $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathcal{D}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, $\lambda \in [0, 1]$

A convex set contains the line segment between any two points in it

- A function $f : \mathcal{D} \mapsto \mathbb{R}$ with $\mathcal{D} \subseteq \mathbb{R}^d$ is **convex** if:
 - D is a convex set
 - ► $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, $\lambda \in [0, 1]$
- First-order convexity condition: a differentiable f : D → R with convex D is convex iff f(y) ≥ f(x) + ∇f(x)^T(y x) for all x, y ∈ D
- Second-order convexity condition: a twice-differentiable f : D → R with convex D is convex iff ∇²f(x) ≥ 0 for all x ∈ D

Descent Optimization Methods

- A critical point of f can be obtained by solving ∇f(x) = 0 but an explicit solution may be difficult to obtain
- **Descent methods**: iterative methods to obtain a solution of $\nabla f(\mathbf{x}) = 0$
- Given initial guess \mathbf{x}_k , take step of size $\alpha_k > 0$ along descent direction $\delta \mathbf{x}_k$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \delta \mathbf{x}_k$$

- Different methods differ in the way $\delta \mathbf{x}_k$ and α_k are chosen
- $\delta \mathbf{x}_k$ needs to be a descent direction: $\nabla f(\mathbf{x}_k)^{\top} \delta \mathbf{x}_k < 0$, $\forall \mathbf{x}_k \neq \mathbf{x}_*$
- α_k needs to ensure sufficient decrease in f to guarantee convergence:
 - The best step size choice is $\alpha_k \in \underset{\alpha>0}{\arg\min} f(\mathbf{x}_k + \alpha \delta \mathbf{x}_k)$
 - ln practice, α_k is obtained via approximate line search methods

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Gradient Descent (First-Order Method)

- ▶ Idea: $-\nabla f(\mathbf{x}_k)$ points in the direction of steepest descent
- Gradient descent: let $\delta \mathbf{x}_k := -\nabla f(\mathbf{x}_k)$ and iterate:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

Step size: a good choice for α_k is ¹/_L, where L > 0 is the Lipschitz constant of ∇f(x):
 ||∇f(x) - ∇f(x')|| ≤ L||x - x'|| ∀x, x' ∈ ℝ^d

Gradient Descent Convergence

Suppose f is twice continuously differentiable with

$$mI \preceq \nabla^2 f(\mathbf{x}) \preceq LI, \qquad \forall \mathbf{x} \in \mathbb{R}^n.$$

The iterates \mathbf{x}_k of gradient descent with step size $\alpha_k = \frac{1}{L}$ satisfy:

 $\|
abla f(\mathbf{x}_k)\| o 0$ and $\|\mathbf{x}_k - \mathbf{x}_*\| o 0$ as $k o \infty$.

Proof: Gradient Descent Convergence

▶ By the Mean Value Theorem for some c_k between x_k and x_{k+1} :

$$\nabla f(\mathbf{x}_{k+1}) = \nabla f(\mathbf{x}_k) + \nabla^2 f(\mathbf{c}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k) = \nabla f(\mathbf{x}_k) - \alpha_k \nabla^2 f(\mathbf{c}_k) \nabla f(\mathbf{x}_k)$$

• Let λ_i be the eigenvalues of $\nabla^2 f(\mathbf{c}_k)$ so that:

$$0 \leq 1 - \alpha_k L \leq 1 - \alpha_k \lambda_i \leq 1 - \alpha_k m$$

▶ This is sufficient to show that $\|\nabla f(\mathbf{x}_k)\| \rightarrow 0$ linearly:

$$\|
abla f(\mathbf{x}_{k+1})\| \leq (1-m/L) \|
abla f(\mathbf{x}_k)\| \leq (1-m/L)^{k+1} \|
abla f(\mathbf{x}_0)\|$$

b By the Mean Value Theorem for some $\tilde{\mathbf{c}}_k$ between \mathbf{x}_k and \mathbf{x}_* :

$$\mathbf{x}_{k+1} - \mathbf{x}_* = (\mathbf{x}_k - \mathbf{x}_*) - \alpha_k (\nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}_*)) = (\mathbf{x}_k - \mathbf{x}_*) - \alpha_k \nabla^2 f(\tilde{\mathbf{c}}_k) (\mathbf{x}_k - \mathbf{x}_*)$$

$$T = \text{Since } mI \leq \nabla^2 f(\tilde{\mathbf{c}}_k) \leq LI:$$

$$\|\mathbf{x}_{k+1} - \mathbf{x}_*\| \le (1 - m/L) \|\mathbf{x}_k - \mathbf{x}_*\| \le (1 - m/L)^{k+1} \|\mathbf{x}_0 - \mathbf{x}_*\|$$

Projected Gradient Descent

Constrained optimization problem over a closed convex set $C \subseteq \mathbb{R}^n$:

 $\min_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})$

- **Constrained optimality condition**: for differentiable convex function *f*:
 - $$\begin{split} \mathbf{x}_* \in \argmin_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) \qquad \Leftrightarrow \qquad \langle \nabla f(\mathbf{x}_*), \mathbf{y} \mathbf{x}_* \rangle \geq 0, \quad \forall \mathbf{y} \in \mathcal{C} \end{split}$$
- Euclidean projection onto C:

$$\mathsf{\Pi}_{\mathcal{C}}(\mathsf{x}) := rgmin_{\mathsf{y}\in\mathcal{C}} \|\mathsf{y}-\mathsf{x}\|$$

Projected gradient descent:

$$\mathbf{x}_{k+1} = \Pi_{\mathcal{C}}(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)), \qquad \alpha > 0$$

Projected Gradient Descent

Projected Gradient Descent Convergence

Suppose f is twice continuously differentiable with

$$mI \preceq \nabla^2 f(\mathbf{x}) \preceq LI, \qquad \forall \mathbf{x} \in \mathbb{R}^n.$$

The iterates \mathbf{x}_k of projected gradient descent with step size $\alpha = \frac{1}{L}$ satisfy:

$$\|\mathbf{x}_{k+1} - \mathbf{x}_{*}\| \leq (1 - m/L)^{k+1} \|\mathbf{x}_{0} - \mathbf{x}_{*}\|.$$

The proof is based on:

Euclidean projection is non-expansive:

$$\|\Pi_{\mathcal{C}}(\mathbf{x}) - \Pi_{\mathcal{C}}(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|, \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

Constrained optimizers are fixed points of the projected gradient descent operator with α > 0:

$$\mathbf{x}_* \in \operatorname*{arg\,min}_{\mathbf{x}\in\mathcal{C}} f(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x}_* = \Pi_{\mathcal{C}}(\mathbf{x}_* - \alpha \nabla f(\mathbf{x}_*))$$

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Consider the unconstrained optimization problem:

 $\min_{\mathbf{x}\in\mathbb{R}^d}f(\mathbf{x})$

▶ Newton's method iteratively approximates *f* by a quadratic function

For a small change $\delta \mathbf{x}$ to \mathbf{x}_k , we can approximate f using Taylor series:

$$f(\mathbf{x}_{k} + \delta \mathbf{x}) \approx f(\mathbf{x}_{k}) + \underbrace{\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathbf{x}_{k}}\right)}_{\text{Gradient Transpose}} \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^{\top} \underbrace{\left(\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x} = \mathbf{x}_{k}}\right)}_{\text{Hessian}} \delta \mathbf{x}$$
$$=: \underbrace{q(\delta \mathbf{x}, \mathbf{x}_{k})}_{\text{quadratic function in } \delta \mathbf{x}}$$

► The symmetric Hessian matrix ∇²f(x_k) needs to be positive-definite for this method to work

Find $\delta \mathbf{x}$ that minimizes the quadratic approximation to $f(\mathbf{x}_k + \delta \mathbf{x})$:

$$\min_{\delta \mathbf{x} \in \mathbb{R}^d} q(\delta \mathbf{x}, \mathbf{x}_k)$$

Since this is an unconstrained optimization problem, δx can be determined by setting the derivative of q with respect to δx to zero:

$$0 = \frac{\partial q(\delta \mathbf{x}, \mathbf{x}_k)}{\partial \delta \mathbf{x}} = \nabla f(\mathbf{x}_k)^\top + \delta \mathbf{x}^\top \nabla^2 f(\mathbf{x}_k)$$

This is a linear system of equations in δx and can be solved uniquely when the Hessian is invertible, i.e., ∇²f(x_k) > 0:

$$\delta \mathbf{x} = -\left[\nabla^2 f(\mathbf{x}_k)\right]^{-1} \nabla f(\mathbf{x}_k)$$

Newton's method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \left[\nabla^2 f(\mathbf{x}_k) \right]^{-1} \nabla f(\mathbf{x}_k), \qquad \alpha_k > 0$$

- Like other descent methods, Newton's method converges to a local minimum
- Damped Newton phase: when the iterates are "far away" from the optimum, the function value is decreased sublinearly, i.e., the step sizes α_k are small
- Quadratic convergence phase: when the iterates are "sufficiently close" to the optimum, full Newton steps are taken, i.e., α_k = 1, and the function value converges quadratically to the optimum
- A **disadvantage** of Newton's method is the need to form the Hessian $\nabla^2 f(\mathbf{x}_k)$, which can be numerically ill-conditioned or computationally expensive in high-dimensional problems

Gauss-Newton's Method

Gauss-Newton is an approximation to Newton's method that avoids computing the Hessian. It is applicable when the objective function has the following quadratic form:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{e}(\mathbf{x})^{\top} \mathbf{e}(\mathbf{x}) \qquad \mathbf{e}(\mathbf{x}) \in \mathbb{R}^{m}$$

Derivative and Hessian:

Jacobian:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}} = \mathbf{e}(\mathbf{x}_{k})^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)$$
Hessian:

$$\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}_{k}} = \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)$$

$$+ \sum_{i=1}^{m} e_{i}(\mathbf{x}_{k}) \left(\frac{\partial^{2} e_{i}(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)$$

Gauss-Newton's Method

Near the minimum of f, the second term in the Hessian is small relative to the first. The Hessian can be approximated without second derivatives:

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{\top}}\Big|_{\mathbf{x}=\mathbf{x}_k} \approx \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_k}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_k}\right)$$

• Approximation of $f(\mathbf{x}_k + \delta \mathbf{x})$:

$$f(\mathbf{x}_{k} + \delta \mathbf{x}) \approx f(\mathbf{x}_{k}) + \mathbf{e}(\mathbf{x}_{k})^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}_{k}} \right) \delta \mathbf{x} + \delta \mathbf{x}^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}_{k}} \right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}_{k}} \right) \delta \mathbf{x}$$

Setting the gradient of this new quadratic approximation of f with respect to δx to zero, leads to the system:

$$\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top} \left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right) \delta \mathbf{x} = -\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top} \mathbf{e}(\mathbf{x}_{k})$$

Gauss-Newton's method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \delta \mathbf{x}, \qquad \alpha_k > \mathbf{0}$$

Levenberg-Marquardt's Method

The Levenberg-Marquardt modification to the Gauss-Newton method uses a positive diagonal matrix D to condition the Hessian approximation:

$$\left(\left.\left(\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right) + \lambda D\right)\delta\mathbf{x} = -\left.\left(\left.\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=\mathbf{x}_{k}}\right)^{\top}\mathbf{e}(\mathbf{x}_{k})\right.$$

► λD compensates for the missing Hessian term $\sum_{i=1}^{m} e_i(\mathbf{x}_k) \left(\frac{\partial^2 e_i(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^\top} \Big|_{\mathbf{x}=\mathbf{x}_k} \right)$

When λ ≥ 0 is large, the descent direction δx corresponds to a small step in the direction of steepest descent. This helps when the Hessian approximation is poor or poorly conditioned by providing a meaningful direction.

Gauss-Newton's Method

> An iterative optimization approach for the unconstrained problem:

$$\min_{\mathbf{x}} f(\mathbf{x}) := rac{1}{2} \sum_{j} \mathbf{e}_{j}(\mathbf{x})^{ op} \mathbf{e}_{j}(\mathbf{x}) \qquad \mathbf{e}_{j}(\mathbf{x}) \in \mathbb{R}^{m_{j}}, \ \mathbf{x} \in \mathbb{R}^{n_{j}}$$

• Given an initial guess \mathbf{x}_k , determine a descent direction $\delta \mathbf{x}$ by solving:

$$\left(\sum_{j} J_j(\mathbf{x}_k)^\top J_j(\mathbf{x}_k) + \lambda D\right) \delta \mathbf{x} = -\left(\sum_{j} J_j(\mathbf{x}_k)^\top \mathbf{e}_j(\mathbf{x}_k)\right)$$

where $J_j(\mathbf{x}) := \frac{\partial \mathbf{e}_j(\mathbf{x})}{\partial \mathbf{x}} \in \mathbb{R}^{m_j \times n}$, $\lambda \ge 0$, $D \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix, e.g., $D = \operatorname{diag}\left(\sum_j J_j(\mathbf{x}_k)^\top J_j(\mathbf{x}_k)\right)$

Obtain an updated estimate according to:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \delta \mathbf{x}, \qquad \alpha_k > 0$$

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton's and Gauss-Newton's Methods

Example

Unconstrained Optimization Example

• Let $f(\mathbf{x}) := \frac{1}{2} \sum_{j=1}^n \|A_j \mathbf{x} + b_j\|_2^2$ for $\mathbf{x} \in \mathbb{R}^d$ and assume $\sum_{j=1}^n A_j^\top A_j \succ 0$

- Solve the unconstrained optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$ using:
 - The necessary and sufficient optimality condition for convex function f
 - Gradient descent
 - Newton's method
 - Gauss-Newton's method

• We will need $\nabla f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$:

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \frac{1}{2} \sum_{j=1}^{n} \frac{d}{d\mathbf{x}} ||A_j \mathbf{x} + b_j||_2^2 = \sum_{j=1}^{n} (A_j \mathbf{x} + b_j)^\top A_j$$
$$\nabla f(\mathbf{x}) = \frac{df(\mathbf{x})}{d\mathbf{x}}^\top = \left(\sum_{j=1}^{n} A_j^\top A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^\top b_j\right)$$
$$\nabla^2 f(\mathbf{x}) = \frac{d}{d\mathbf{x}} \nabla f(\mathbf{x}) = \sum_{j=1}^{n} A_j^\top A_j \succ 0$$

Necessary and Sufficient Optimality Condition

Solve $\nabla f(\mathbf{x}) = 0$ for \mathbf{x} :

$$0 = \nabla f(\mathbf{x}) = \left(\sum_{j=1}^{n} A_j^{\top} A_j\right) \mathbf{x} + \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$
$$\mathbf{x} = -\left(\sum_{j=1}^{n} A_j^{\top} A_j\right)^{-1} \left(\sum_{j=1}^{n} A_j^{\top} b_j\right)$$

▶ The solution above is unique since we assumed that $\sum_{j=1}^{n} A_j^{\top} A_j \succ 0$

Gradient Descent

Start with an initial guess x₀ = 0

• At iteration k, gradient descent uses the descent direction $\delta \mathbf{x}_k = -\nabla f(\mathbf{x}_k)$

• Determine the Lipschitz constant of $\nabla f(\mathbf{x})$:

$$\|\nabla f(\mathbf{x}_1) - \nabla f(\mathbf{x}_2)\| = \left\| \left(\sum_{j=1}^n A_j^\top A_j \right) (\mathbf{x}_1 - \mathbf{x}_2) \right\| \le \underbrace{\left\| \sum_{j=1}^n A_j^\top A_j \right\|}_{L} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

• Choose step size $\alpha_k = \frac{1}{L}$ and iterate:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \delta \mathbf{x}_k$$
$$= \mathbf{x}_k - \frac{1}{L} \left(\sum_{j=1}^n A_j^\top A_j \right) \mathbf{x}_k - \frac{1}{L} \left(\sum_{j=1}^n A_j^\top b_j \right)$$

Newton's Method

Start with an initial guess x₀ = 0

At iteration k, Newton's method uses the descent direction:

$$egin{aligned} \delta \mathbf{x}_k &= -\left[
abla^2 f(\mathbf{x}_k)
ight]^{-1}
abla f(\mathbf{x}_k) \ &= -\mathbf{x}_k - \left(\sum_{j=1}^n A_j^\top A_j
ight)^{-1} \left(\sum_{j=1}^n A_j^\top b_j
ight) \end{aligned}$$

• With $\alpha_k = 1$, Newton's method converges in one iteration:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \delta \mathbf{x}_k = -\left(\sum_{j=1}^n A_j^\top A_j\right)^{-1} \left(\sum_{j=1}^n A_j^\top b_j\right)$$

Gauss-Newton's Method

- $f(\mathbf{x})$ is of the form $\frac{1}{2} \sum_{j=1}^{n} \mathbf{e}_j(\mathbf{x})^\top \mathbf{e}_j(\mathbf{x})$ for $\mathbf{e}_j(\mathbf{x}) := A_j \mathbf{x} + b_j$
- The Jacobian of $\mathbf{e}_j(\mathbf{x})$ is $J_j(\mathbf{x}) = A_j$
- Start with an initial guess x₀ = 0
- ▶ At iteration *k*, Gauss-Newton's method uses the descent direction:

$$\delta \mathbf{x}_{k} = -\left(\sum_{j=1}^{n} J_{j}(\mathbf{x}_{k})^{\top} J_{j}(\mathbf{x}_{k})\right)^{-1} \left(\sum_{j=1}^{n} J_{j}(\mathbf{x}_{k})^{\top} \mathbf{e}_{j}(\mathbf{x}_{k})\right)$$
$$= -\left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1} \left(\sum_{j=1}^{n} A_{j}^{\top} (A_{j} \mathbf{x}_{k} + b_{j})\right)$$
$$= -\mathbf{x}_{k} - \left(\sum_{j=1}^{n} A_{j}^{\top} A_{j}\right)^{-1} \left(\sum_{j=1}^{n} A_{j}^{\top} b_{j}\right)$$

With α_k = 1, in this problem, Gauss-Newton's method behaves like Newton's method and converges in one iteration