ECE276A: Sensing \& Estimation in Robotics Lecture 3: Rotations

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Outline

Rigid Body Motion

Euler-Angle Rotation Parametrization

Axis-Angle Rotation Parametrization

Quaternions

Poses

Rigid Body Motion

- Consider a rigid body moving in a fixed world reference frame $\{W\}$
- Body reference frame $\{B\}$: it is sufficient to specify the motion of one point $\mathbf{p}(t) \in \mathbb{R}^{3}$ and 3 coordinate axes $\mathbf{r}_{1}(t), \mathbf{r}_{2}(t), \mathbf{r}_{3}(t)$ attached to the point

- A point \mathbf{s} on the rigid body has fixed coordinates $\mathbf{s}_{B} \in \mathbb{R}^{3}$ in the body frame $\{B\}$ but time-varying coordinates $\mathbf{s}_{W}(t) \in \mathbb{R}^{3}$ in the world frame $\{W\}$

Rigid Body Motion

- A rigid body in 3D is free to translate (3 degrees of freedom) and rotate (3 degrees of freedom)
- The pose $T(t) \in S E(3)$ of a rigid body reference frame $\{B\}$ at time t in a fixed world frame $\{W\}$ is determined by:

1. the position $\mathbf{p}(t) \in \mathbb{R}^{3}$ of $\{B\}$ relative to $\{W\}$,
2. the orientation $R(t) \in S O(3)$ of $\{B\}$ relative to $\{W\}$, determined by the 3 coordinate axes $\mathbf{r}_{1}(t), \mathbf{r}_{2}(t), \mathbf{r}_{3}(t)$.

- The space of positions \mathbb{R}^{3} is familiar
- How do we describe the space of orientations $S O(3)$ and the space of poses SE (3)?

Special Euclidean Group

- Rigid body motion is described by a sequence of functions that describe how the coordinates of 3-D points on the object change with time
- Rigid body motion preserves distances (vector norms) and does not allow reflection of the coordinate system (vector cross products)
- Euclidean Group $E(3):$ a set of functions $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm of any two vectors
- Special Euclidean Group $\operatorname{SE}(3)$: a set of functions $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that preserve the norm and the cross product of any two vectors

1. Norm: $\left\|g_{*}(\mathbf{u})-g_{*}(\mathbf{v})\right\|=\|\mathbf{v}-\mathbf{u}\|, \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$
2. Cross product: $g_{*}(\mathbf{u}) \times g_{*}(\mathbf{v})=g_{*}(\mathbf{u} \times \mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$
where $g_{*}(\mathbf{x}):=g(\mathbf{x})-g(\mathbf{0})$.

- Corollary: $S E(3)$ elements g also preserve:

1. Angle: $\mathbf{u}^{\top} \mathbf{v}=\frac{1}{4}\left(\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}\right) \Rightarrow \mathbf{u}^{\top} \mathbf{v}=g_{*}(\mathbf{u})^{\top} g_{*}(\mathbf{v}), \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$
2. Volume: $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}, g_{*}(\mathbf{u})^{\top}\left(g_{*}(\mathbf{v}) \times g_{*}(\mathbf{w})\right)=\mathbf{u}^{\top}(\mathbf{v} \times \mathbf{w})$ (volume of parallelepiped spanned by $\mathbf{u}, \mathbf{v}, \mathbf{w}$)

Orientation and Rotation

- Pure rotational motion is a special case of rigid body motion
- The orientation of a body frame $\{B\}$ in the world frame $\{W\}$ is determined by the coordinates of the three orthogonal vectors $\mathbf{r}_{1}=g\left(\mathbf{e}_{1}\right), \mathbf{r}_{2}=g\left(\mathbf{e}_{2}\right)$, $\mathbf{r}_{3}=g\left(\mathbf{e}_{3}\right)$, transformed from $\{B\}$ to $\{W\}$
- The vectors organized in a 3×3 matrix specify the orientation of $\{B\}$ in $\{W\}$:

$$
\{W\} R_{\{B\}}=\left[\begin{array}{lll}
\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

- Consider a point with coordinates $\mathbf{s}_{B} \in \mathbb{R}^{3}$ in $\{B\}$
- Its coordinates \mathbf{s}_{W} in $\{W\}$ are:

$$
\begin{aligned}
\mathbf{s}_{W} & =\left[s_{B}\right]_{1} \mathbf{r}_{1}+\left[s_{B}\right]_{2} \mathbf{r}_{2}+\left[s_{B}\right]_{3} \mathbf{r}_{3} \\
& =R \mathbf{s}_{B}
\end{aligned}
$$

- The rotation transformation g from $\{B\}$ to $\{W\}$ is a linear function:

$$
g(\mathbf{s})=R \mathbf{s}
$$

Special Orthogonal Group $S O(3)$

$-\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ form an orthonormal basis: $\mathbf{r}_{i}^{\top} \mathbf{r}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}$

- Since $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ form an orthonormal basis, the inverse of R is its transpose:

$$
R^{\top} R=I \quad R^{-1}=R^{\top}
$$

- R belongs to the orthogonal group:

$$
O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=R R^{\top}=I\right\}
$$

- Distances are preserved since $R^{\top} R=I$:

$$
\|R(\mathbf{x}-\mathbf{y})\|_{2}^{2}=(\mathbf{x}-\mathbf{y})^{\top} R^{\top} R(\mathbf{x}-\mathbf{y})=(\mathbf{x}-\mathbf{y})^{\top}(\mathbf{x}-\mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

- Reflections are not allowed since $\operatorname{det}(R)=\mathbf{r}_{1}^{\top}\left(\mathbf{r}_{2} \times \mathbf{r}_{3}\right)=1$:

$$
R(\mathbf{x} \times \mathbf{y})=R\left(\mathbf{x} \times\left(R^{\top} R \mathbf{y}\right)\right)=\left(R \hat{\mathbf{x}} R^{\top}\right) R \mathbf{y}=\frac{1}{\operatorname{det}(R)}(R \mathbf{x}) \times(R \mathbf{y})
$$

- R belongs to the special orthogonal group:

$$
S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{T} R=I, \operatorname{det}(R)=1\right\}
$$

Parametrizing 2-D Rotations

- There are 2 common ways to parametrize a rotation matrix $R \in S O(2)$
- Rotation angle: a 2-D rotation of a point $\mathbf{s}_{B} \in \mathbb{R}^{2}$ can be parametrized by an angle θ around the z-axis:

$$
\mathbf{s}_{W}=R(\theta) \mathbf{s}_{B}:=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \mathbf{s}_{B}
$$

- $\theta>0$: counterclockwise rotation

- Unit-norm complex number: a 2-D rotation of $\left[s_{B}\right]_{1}+i\left[s_{B}\right]_{2} \in \mathbb{C}$ can be parametrized by a unit-norm complex number $e^{i \theta} \in \mathbb{C}$:

$$
e^{i \theta}\left(\left[s_{B}\right]_{1}+i\left[s_{B}\right]_{2}\right)=\left(\left[s_{B}\right]_{1} \cos \theta-\left[s_{B}\right]_{2} \sin \theta\right)+i\left(\left[s_{B}\right]_{1} \sin \theta+\left[s_{B}\right]_{2} \cos \theta\right)
$$

Parametrizing 3-D Rotations

- There are 3 common ways to parametrize a rotation matrix $R \in S O(3)$
- Euler angles: an extension of the rotation angle parametrization of 2-D rotations that specifies rotation angles around the three principal axes
- Axis-Angle: an extension of the rotation angle parametrization of 2-D rotations that allows the axis of rotation to be chosen freely instead of being a fixed principal axis
- Unit Quaternion: an extension of the unit-norm complex number parametrization of 2-D rotations

Outline

Rigid Body Motion

Euler-Angle Rotation Parametrization

Axis-Angle Rotation Parametrization

Quaternions

Poses

Euler Angle Parametrization

- Uses three angles that specify rotations around the three principal axes
- There are 24 different ways to apply these rotations
- Extrinsic axes: the rotation axes remain static
- Intrinsic axes: the rotation axes move with the rotations
- Each of the two groups (intrinsic and extrinsic) can be divided into:
- Euler Angles: rotation about one axis, then a second, and then the first
- Tait-Bryan Angles: rotation about all three axes
- The Euler and Tait-Bryan Angles each have 6 possible choices for each of the extrinsic/intrinsic groups leading to $2 * 2 * 6=24$ possible conventions to specify a rotation sequence with three given angles
- For simplicity, we refer to all 24 conventions as Euler Angles and explicitly specify:
- r (rotating $=$ intrinsic) or s (static $=$ extrinsic)
- $x y z$ or $z y x$ or $z x z$, etc. (order of rotation axes)
- An extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with inverted rotation order:

$$
s x y z=r z y x
$$

Principal 3-D Rotations

- A rotation by an angle ϕ around the x-axis is represented by:

$$
R_{x}(\phi):=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
$$

- A rotation by an angle θ around the y-axis is represented by:

$$
R_{y}(\theta):=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

- A rotation by an angle ψ around the z-axis is represented by:

$$
R_{z}(\psi):=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Roll Pitch Yaw Convention

- Roll (ϕ), pitch (θ), yaw (ψ) angles are used in aerospace engineering to specify rotation of an aircraft around the x, y, and z axes, respectively

- Intrinsic yaw (ψ), pitch (θ), roll (ϕ) rotation (rzyx):
- A rotation ψ about the original z-axis
- A rotation θ about the intermediate y-axis
- A rotation ϕ about the transformed x-axis
- Extrinsic roll (ϕ), pitch (θ), yaw (ψ) rotation (sxyz):
- A rotation ϕ about the global x-axis
- A rotation θ about the global y-axis
- A rotation ψ about the global z-axis
- Both conventions define the following body-to-world rotation:

$$
\begin{aligned}
R & =R_{z}(\psi) R_{y}(\theta) R_{x}(\phi) \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
\end{aligned}
$$

Gimbal Lock

- Angle parametrizations are widely used due to their simplicity
- Unfortunately, in 3-D, angle parametrizations are not one-to-one and lead to singularities known as gimbal lock
- Example: if the pitch becomes $\theta=90^{\circ}$, the roll and yaw become associated with the same degree of freedom and cannot be uniquely determined.
- The following leads to the same rotation matrix R for any choice of δ :

$$
R=R_{z}(\psi) R_{y}(\pi / 2) R_{x}(\phi+\delta)
$$

- Gimbal lock is a problem only if we want to recover the rotation angles from a rotation matrix

Outline

Rigid Body Motion

Euler-Angle Rotation Parametrization

Axis-Angle Rotation Parametrization

Quaternions

Cross Product and Hat Map

- The cross product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ is also a vector in \mathbb{R}^{3} :

$$
\mathbf{x} \times \mathbf{y}:=\left[\begin{array}{l}
x_{2} y_{3}-x_{3} y_{2} \\
x_{3} y_{1}-x_{1} y_{3} \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\hat{\mathbf{x}} \mathbf{y}
$$

- The cross product $\mathbf{x} \times \mathbf{y}$ can be represented by a linear map $\hat{\mathbf{x}}$ called the hat map
- The hat map $\hat{~}: \mathbb{R}^{3} \rightarrow \mathfrak{s o}(3)$ transforms a vector $\mathbf{x} \in \mathbb{R}^{3}$ to a skew-symmetric matrix:

$$
\hat{\mathbf{x}}:=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right] \quad \hat{\mathbf{x}}^{\top}=-\hat{\mathbf{x}}
$$

- The vector space \mathbb{R}^{3} and the space of skew-symmetric 3×3 matrices $\mathfrak{s o}(3)$ are isomorphic, i.e., there exists a one-to-one map (the hat map) that preserves their structure

Hat Map Properties

- Lemma: A matrix $M \in \mathbb{R}^{3 \times 3}$ is skew-symmetric iff $M=\hat{\mathbf{x}}$ for some $\mathbf{x} \in \mathbb{R}^{3}$.
- The inverse of the hat map is the vee map, $V: \mathfrak{s o}(3) \rightarrow \mathbb{R}^{3}$, that extracts the components of the vector $\mathbf{x}=\hat{\mathbf{x}}^{\vee}$ from the matrix $\hat{\mathbf{x}}$.
- Hat map properties: for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}, A \in \mathbb{R}^{3 \times 3}$:
- $\hat{\mathbf{x}} \mathbf{y}=\mathbf{x} \times \mathbf{y}=-\mathbf{y} \times \mathbf{x}=-\hat{\mathbf{y}} \mathbf{x}$
- $\hat{\mathbf{x}}^{2}=\mathrm{xx}^{\top}-\mathrm{x}^{\top} \mathrm{x}$ l
- $\hat{\mathbf{x}}^{2 k+1}=\left(-\mathbf{x}^{\top} \mathbf{x}\right)^{k} \hat{\mathbf{x}}$
- $-\frac{1}{2} \operatorname{tr}(\hat{\mathbf{x}} \hat{\mathbf{y}})=\mathbf{x}^{\top} \mathbf{y}$
- $\hat{\mathbf{x}} A+A^{\top} \hat{\mathbf{x}}=((\operatorname{tr}(A) I-A) \mathbf{x})^{\wedge}$
- $\operatorname{tr}(\hat{\mathbf{x}} A)=\frac{1}{2} \operatorname{tr}\left(\hat{\mathbf{x}}\left(A-A^{\top}\right)\right)=-\mathbf{x}^{\top}\left(A-A^{\top}\right)^{\vee}$
- $(A \mathbf{x})^{\wedge}=\operatorname{det}(A) A^{-\top} \hat{\mathbf{x}} A^{-1}$

Axis-Angle Parametrization

- Consider a point $\mathbf{s} \in \mathbb{R}^{3}$ rotating about an axis $\boldsymbol{\eta} \in \mathbb{R}^{3}$ at constant unit velocity:

$$
\dot{\mathbf{s}}(t)=\boldsymbol{\eta} \times \mathbf{s}(t)=\hat{\boldsymbol{\eta}} \mathbf{s}(t)
$$

- This is a linear time-invariant (LTI) system of ordinary differential equations determined by the skew-symmetric matrix $\hat{\boldsymbol{\eta}}$

- The solution to this LTI system specifies the trajectory of the point s:

$$
\mathbf{s}(t)=\exp (t \hat{\boldsymbol{\eta}}) \mathbf{s}(0)
$$

- Since \mathbf{s} undergoes pure rotation, we know that:

$$
\mathbf{s}(t)=R(t) \mathbf{s}(0)
$$

- Since the rotation is determined by constant unit velocity, the elapsed time t is equal to the angle of rotation θ :

$$
R(\theta)=\exp (\theta \hat{\boldsymbol{\eta}})
$$

Exponential Map from $\mathfrak{s o (3)}$ to $S O(3)$

- Any rotation can be represented as a rotation about a unit-vector axis $\boldsymbol{\eta} \in \mathbb{R}^{3}$ through angle $\theta \in \mathbb{R}$
- The axis-angle parametrization can be combined in a single rotation vector $\boldsymbol{\theta}:=\theta \boldsymbol{\eta} \in \mathbb{R}^{3}$
- Exponential map $\exp : \mathfrak{s o}(3) \mapsto S O(3)$ maps a skew-symmetric matrix $\hat{\boldsymbol{\theta}}$ obtained from an axis-angle vector $\boldsymbol{\theta}$ to a rotation matrix R :

$$
R=\exp (\hat{\boldsymbol{\theta}}):=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\theta}}^{n}=I+\hat{\boldsymbol{\theta}}+\frac{1}{2!} \hat{\boldsymbol{\theta}}^{2}+\frac{1}{3!} \hat{\boldsymbol{\theta}}^{3}+\ldots
$$

- The matrix exponential defines a map from the space of skew-symmetric matrices $\mathfrak{s o}$ (3) to the space of rotation matrices $S O(3)$
- The exponential map is surjective but not injective: every element of $S O(3)$ can be generated from multiple elements of $\mathfrak{s o}(3)$, e.g., any vector $(\|\boldsymbol{\theta}\|+2 \pi k) \frac{\theta}{\|\boldsymbol{\theta}\|}$ for integer k leads to the same R
- The exponential map is not commutative: $e^{\hat{\theta}_{1}} e^{\hat{\theta}_{2}} \neq e^{\hat{\theta}_{2}} e^{\hat{\theta}_{1}} \neq e^{\hat{\theta}_{1}+\hat{\boldsymbol{\theta}}_{2}}$, unless $\hat{\boldsymbol{\theta}}_{1} \hat{\boldsymbol{\theta}}_{2}-\hat{\boldsymbol{\theta}}_{2} \hat{\boldsymbol{\theta}}_{1}=0$

Rodrigues Formula

- Rodrigues Formula: closed-from expression for the exponential map from $\mathfrak{s o (3)}$ to $S O(3)$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2}
$$

- The formula is derived using that $\hat{\boldsymbol{\theta}}^{2 n+1}=\left(-\boldsymbol{\theta}^{\top} \boldsymbol{\theta}\right)^{n} \hat{\boldsymbol{\theta}}$:

$$
\begin{aligned}
\exp (\hat{\boldsymbol{\theta}}) & =I+\sum_{n=1}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\theta}}^{n} \\
& =I+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} \hat{\boldsymbol{\theta}}^{2 n+1}+\sum_{n=0}^{\infty} \frac{1}{(2 n+2)!} \hat{\boldsymbol{\theta}}^{2 n+2} \\
& =I+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\|\boldsymbol{\theta}\|^{2 n}}{(2 n+1)!}\right) \hat{\boldsymbol{\theta}}+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\|\boldsymbol{\theta}\|^{2 n}}{(2 n+2)!}\right) \hat{\boldsymbol{\theta}}^{2} \\
& =I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2}
\end{aligned}
$$

Logarithm Map from $S O(3)$ to $\mathfrak{s o}(3)$

- $\forall R \in S O(3)$, there exists a (non-unique) $\boldsymbol{\theta} \in \mathbb{R}^{3}$ such that $R=\exp (\hat{\boldsymbol{\theta}})$
- Logarithm map $\log : S O(3) \rightarrow \mathfrak{s o}(3)$ is the inverse of $\exp (\hat{\boldsymbol{\theta}})$:

$$
\begin{aligned}
& \theta=\|\boldsymbol{\theta}\|=\arccos \left(\frac{\operatorname{tr}(R)-1}{2}\right) \\
& \boldsymbol{\eta}=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}=\frac{1}{2 \sin (\|\boldsymbol{\theta}\|)}\left[\begin{array}{l}
R_{32}-R_{23} \\
R_{13}-R_{31} \\
R_{21}-R_{12}
\end{array}\right] \\
& \hat{\boldsymbol{\theta}}=\log (R)=\frac{\|\boldsymbol{\theta}\|}{2 \sin \|\boldsymbol{\theta}\|}\left(R-R^{\top}\right)
\end{aligned}
$$

- If $R=I$, then $\theta=0$ and η is undefined
- If $\operatorname{tr}(R)=-1$, then $\theta=\pi$ and for any $i \in\{1,2,3\}$:

$$
\eta=\frac{1}{\sqrt{2\left(1+R_{i j}\right)}}(I+R) e_{i}
$$

- The matrix exponential "integrates" $\hat{\boldsymbol{\theta}} \in \mathfrak{s o}(3)$ for one second; the matrix logarithm "differentiates" $R \in S O(3)$ to obtain $\hat{\boldsymbol{\theta}} \in \mathfrak{s o}(3)$

Outline

Rigid Body Motion

Euler-Angle Rotation Parametrization

Axis-Angle Rotation Parametrization

Quaternions

Poses

Quaternions

- Quaternions: $\mathbb{H}=\mathbb{C}+\mathbb{C} j$ generalize complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i$

$$
\mathbf{q}=q_{s}+q_{1} i+q_{2} j+q_{3} k=\left[q_{s}, \mathbf{q}_{v}\right] \quad i j=-j i=k, i^{2}=j^{2}=k^{2}=-1
$$

- As in 2-D, 3-D rotations can be represented using "unit complex numbers", i.e., unit-norm quaternions:

$$
\mathbb{H}_{*}:=\left\{\mathbf{q} \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}=1\right\}
$$

- To represent rotations without singularities, we embed a 3-D space $S O$ (3) into a 4-D space \mathbb{H} and introduce a unit-norm constraint
- A rotation matrix $R \in S O(3)$ can be obtained from a unit quaternion \mathbf{q} :

$$
R(\mathbf{q})=E(\mathbf{q}) G(\mathbf{q})^{\top} \quad \begin{array}{ll}
E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\hat{\mathbf{q}}_{v}\right] \\
G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\hat{\mathbf{q}}_{v}\right]
\end{array}
$$

- The space of quaternions \mathbb{H}_{*} is a double covering of $S O(3)$ because two unit quaternions correspond to the same rotation: $R(\mathbf{q})=R(-\mathbf{q})$

Quaternion Axis-Angle Parametrization

- A rotation around a unit axis $\boldsymbol{\eta}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|} \in \mathbb{R}^{3}$ by angle $\theta:=\|\boldsymbol{\theta}\|$ can be represented by a unit quaternion:

$$
\mathbf{q}=\left[\cos \left(\frac{\theta}{2}\right), \sin \left(\frac{\theta}{2}\right) \boldsymbol{\eta}\right] \in \mathbb{H}_{*}
$$

- A rotation around a unit axis $\boldsymbol{\eta} \in \mathbb{R}^{3}$ by angle θ can be recovered from a unit quaternion $\mathbf{q}=\left[q_{s}, \mathbf{q}_{v}\right] \in \mathbb{H}_{*}$:

$$
\theta=2 \arccos \left(q_{s}\right) \quad \boldsymbol{\eta}= \begin{cases}\frac{1}{\sin (\theta / 2)} \mathbf{q}_{v}, & \text { if } \theta \neq 0 \\ 0, & \text { if } \theta=0\end{cases}
$$

- The inverse transformation above has a singularity at $\theta=0$ because the transformation from $\boldsymbol{\theta}$ to \mathbf{q} is many-to-one and there are infinitely many rotation axes that can be used

Quaternion Operations

Addition	$\mathbf{q}+\mathbf{p}:=\left[q_{s}+p_{s}, \mathbf{q}_{v}+\mathbf{p}_{v}\right]$								
Multiplication	$\mathbf{q} \circ \mathbf{p}:=\left[q_{s} p_{s}-\mathbf{q}_{v}^{T} \mathbf{p}_{v}, q_{s} \mathbf{p}_{v}+p_{s} \mathbf{q}_{v}+\mathbf{q}_{v} \times\right.$								
Conjugation	$\overline{\mathbf{q}}:=\left[q_{s},-\mathbf{q}_{v}\right]$								
Norm	$\\|\mathbf{q}\\|:=\sqrt{q_{s}^{2}+\mathbf{q}_{v}^{T} \mathbf{q}_{v}} \quad\\|\mathbf{q} \circ \mathbf{p}\\|=\\|\mathbf{q}\\|\\|\mathbf{p}\\|$								
Inverse	$\mathbf{q}^{-1}:=\frac{\bar{q}}{\\|\mathbf{q}\\|^{2}}$								
Rotation	$\left[0, \mathbf{x}^{\prime}\right]=\mathbf{q} \circ[0, \mathbf{x}] \circ \mathbf{q}^{-1}=[0, R(\mathbf{q}) \mathbf{x}]$								
Velocity	$\dot{\mathbf{q}}=\frac{1}{2} \mathbf{q} \circ[0, \omega]=\frac{1}{2} G(\mathbf{q})^{\top} \boldsymbol{\omega}$								
Exp	$\exp (\mathbf{q}):=e^{q_{s}}\left[\cos \left\\|\mathbf{q}_{v}\right\\|, \frac{\mathbf{q}_{v}}{\left\\|\mathbf{q}_{v}\right\\|} \sin \left\\|\mathbf{q}_{v}\right\\|\right]$								
Log	$\log (\mathbf{q}):=\left[\log \\|\mathbf{q}\\|, \frac{\mathbf{q}_{v}}{\left\\|\mathbf{q}_{v}\right\\|} \arccos \frac{q_{s}}{\\|\mathbf{q}\\|}\right]$								

- Exp: constructs $\mathbf{q} \in \mathbb{H}_{*}$ from rotation vector $\boldsymbol{\theta} \in \mathbb{R}^{3}: \mathbf{q}=\exp \left(\left[0, \frac{\theta}{2}\right]\right)$
- Log: recovers a rotation vector $\boldsymbol{\theta} \in \mathbb{R}^{3}$ from $\mathbf{q} \in \mathbb{H}_{*}:[0, \boldsymbol{\theta}]=2 \log (\mathbf{q})$

Quaternion Multiplication and Rotation

\rightarrow Quaternion multiplication: $\mathbf{q} \circ \mathbf{p}:=\left[q_{s} p_{s}-\mathbf{q}_{v}^{T} \mathbf{p}_{v}, q_{s} \mathbf{p}_{v}+p_{s} \mathbf{q}_{v}+\mathbf{q}_{v} \times \mathbf{p}_{v}\right]$

- Quaternion multiplication $\mathbf{q} \circ \mathbf{p}$ can be represented using linear operations:

$$
\begin{array}{rlrl}
\mathbf{q} \circ \mathbf{p} & =[\mathbf{q}]_{L} \mathbf{p}=[\mathbf{p}]_{R} \mathbf{q} & & \\
{[\mathbf{q}]_{L}} & :=\left[\begin{array}{ll}
\mathbf{q} & G(\mathbf{q})^{\top}
\end{array}\right] & G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\hat{\mathbf{q}}_{v}\right] \\
{[\mathbf{q}]_{R}:=\left[\begin{array}{ll}
\mathbf{q} & E(\mathbf{q})^{\top}
\end{array}\right]} & E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\hat{\mathbf{q}}_{v}\right]
\end{array}
$$

- Rotating a vector $\mathbf{x} \in \mathbb{R}^{3}$ by quaternion $\mathbf{q} \in \mathbb{H}_{*}$ is performed as:

$$
\mathbf{q} \circ[0, \mathbf{x}] \circ \mathbf{q}^{-1}=\left[0, \mathbf{x}^{\prime}\right]=[0, R(\mathbf{q}) \mathbf{x}]
$$

- This provides the relationship between a quaternion \mathbf{q} and its corresponding rotation matrix $R(\mathbf{q})$:

$$
\begin{aligned}
{\left[\begin{array}{c}
0 \\
R(\mathbf{q}) \mathbf{x}
\end{array}\right] } & =\mathbf{q} \circ[0, \mathbf{x}] \circ \mathbf{q}^{-1}=[\overline{\mathbf{q}}]_{R}[\mathbf{q}]_{L}\left[\begin{array}{l}
0 \\
\mathbf{x}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\overline{\mathbf{q}} & \left.E(\overline{\mathbf{q}})^{\top}\right]\left[\begin{array}{ll}
\mathbf{q} & G(\mathbf{q})^{\top}
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{q}^{\top} \\
E(\mathbf{q})
\end{array}\right]\left[\begin{array}{ll}
\mathbf{q} & G(\mathbf{q})^{\top}
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathbf{x}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbf{q}^{\top} \mathbf{q} & \mathbf{q}^{\top} G(\mathbf{q})^{\top} \\
E(\mathbf{q}) \mathbf{q} & E(\mathbf{q}) G(\mathbf{q})^{\top}
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathbf{x}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{q}^{\top} G(\mathbf{q})^{\top} \mathbf{x} \\
E(\mathbf{q}) G(\mathbf{q})^{\top} \mathbf{x}
\end{array}\right]
\end{array}\right. \text {. }
\end{aligned}
$$

Example: Rotation with a Quaternion

- Let $\mathbf{x}=\mathbf{e}_{2}$ be a point in frame $\{A\}$
- What are the coordinates of \mathbf{x} in frame $\{B\}$ which is rotated by $\theta=\pi / 3$ with respect to $\{A\}$ around the x-axis?
- The quaternion corresponding to the rotation from $\{B\}$ to $\{A\}$ is:

$$
{ }_{A} \mathbf{q}_{B}=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) \boldsymbol{\eta}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right]
$$

- The quaternion corresponding to the rotation from $\{A\}$ to $\{B\}$ is:

$$
{ }_{B} \mathbf{q}_{A}={ }_{A} \mathbf{q}_{B}^{-1}={ }_{A} \overline{\mathbf{q}}_{B}=\frac{1}{2}\left[\begin{array}{c}
\sqrt{3} \\
-\mathbf{e}_{1}
\end{array}\right]
$$

- The coordinates of \mathbf{x} in frame $\{B\}$ are:

$$
\begin{aligned}
{ }_{B} \mathbf{q}_{A} \circ[0, \mathbf{x}] \circ{ }_{B} \mathbf{q}_{A}^{-1} & =\frac{1}{4}\left[\begin{array}{c}
\sqrt{3} \\
-\mathbf{e}_{1}
\end{array}\right] \circ\left[\begin{array}{c}
0 \\
\mathbf{e}_{2}
\end{array}\right] \circ\left[\begin{array}{c}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
0 \\
\sqrt{3} \mathbf{e}_{2}-\mathbf{e}_{1} \times \mathbf{e}_{2}
\end{array}\right] \circ\left[\begin{array}{c}
\sqrt{3} \\
\mathbf{e}_{1}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
0 \\
\mathbf{e}_{2}-\sqrt{3} \mathbf{e}_{3}
\end{array}\right]
\end{aligned}
$$

Representations of Orientation (Summary)

- Rotation Matrix: an element of the Special Orthogonal Group:

$$
R \in S O(3):=\{R \in \mathbb{R}^{3 \times 3} \mid \underbrace{R^{\top} R=1}_{\text {distances preserved }}, \underbrace{\operatorname{det}(R)=1}_{\text {no reflection }}\}
$$

- Euler Angles: roll ϕ, pitch θ, yaw ψ specifying a sxyz or rzyx rotation:

$$
R=R_{z}(\psi) R_{y}(\theta) R_{x}(\phi)
$$

- Axis-Angle: $\boldsymbol{\theta} \in \mathbb{R}^{3}$ specifying rotation about axis $\boldsymbol{\eta}:=\frac{\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|}$ through angle $\theta:=\|\boldsymbol{\theta}\|$:

$$
R=\exp (\hat{\boldsymbol{\theta}})=I+\hat{\boldsymbol{\theta}}+\frac{1}{2!} \hat{\boldsymbol{\theta}}^{2}+\frac{1}{3!} \hat{\boldsymbol{\theta}}^{3}+\ldots=I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2}
$$

- Unit Quaternion: $\mathbf{q}=\left[q_{s}, \mathbf{q}_{v}\right] \in \mathbb{H}_{*}:=\left\{\mathbf{q} \in \mathbb{H} \mid q_{s}^{2}+\mathbf{q}_{v}^{\top} \mathbf{q}_{v}=1\right\}:$

$$
\begin{array}{ll}
R=E(\mathbf{q}) G(\mathbf{q})^{\top} & E(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I+\hat{\mathbf{q}}_{v}\right] \\
G(\mathbf{q})=\left[-\mathbf{q}_{v}, q_{s} I-\hat{\mathbf{q}}_{v}\right]
\end{array}
$$

Outline

Rigid Body Motion

Euler-Angle Rotation Parametrization

Axis-Angle Rotation Parametrization

Quaternions

Poses

Rigid Body Pose

- Let $\{B\}$ be a body frame whose position and orientation with respect to the world frame $\{W\}$ are $\mathbf{p} \in \mathbb{R}^{3}$ and $R \in S O$ (3), respectively
- The coordinates of a point $s_{B} \in \mathbb{R}^{3}$ can be converted to the world frame by first rotating the point and then translating it to the world frame:

$$
\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p}
$$

- The homogeneous coordinates of a point $\mathbf{s} \in \mathbb{R}^{3}$ are

$$
\underline{\mathbf{s}}:=\lambda\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right] \propto\left[\begin{array}{l}
\mathbf{s} \\
1
\end{array}\right] \in \mathbb{R}^{4}
$$

where the scale factor λ allows representing points arbitrarily far away from the origin as $\lambda \rightarrow 0$, e.g., $\underline{\mathbf{s}}=\left[\begin{array}{llll}1 & 2 & 1 & 0\end{array}\right]^{\top}$

- Rigid-body transformations are linear in homogeneous coordinates:

$$
\underline{\mathbf{s}}_{W}=\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]=T \underline{\mathbf{s}}_{B}
$$

Special Euclidean Group $S E(3)$

- The pose of a rigid body can be described by a matrix T in the special Euclidean group:

$$
S E(3):=\left\{\left.T=\left[\begin{array}{rr}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{4 \times 4}
$$

- The pose of a rigid body T specifies a transformation from the body frame $\{B\}$ to the world frame $\{W\}$:

$$
{ }_{\{W\}} T_{\{B\}}:=\left[\begin{array}{cc}
\{W\} & R_{\{B\}} \\
\mathbf{0}^{\top} & \left\{{ }^{\top} \mathbf{p}_{\{B\}}\right. \\
1
\end{array}\right]
$$

- A point with body-frame coordinates \mathbf{s}_{B}, has world-frame coordinates:

$$
\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p} \quad \text { equivalent to } \quad\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]
$$

- A point with world-frame coordinates \mathbf{s}_{W}, has body-frame coordinates:

$$
\left[\begin{array}{c}
\mathbf{s}_{B} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R^{\top} & -R^{\top} \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{s}_{W} \\
1
\end{array}\right]
$$

Composing Transformations

- Given a robot with pose ${ }_{\{W\}} T_{\{1\}}$ at time t_{1} and ${ }_{\{W\}} T_{\{2\}}$ at time t_{2}, the relative transformation from inertial frame $\{2\}$ at time t_{2} to inertial frame $\{1\}$ at time t_{1} is:

$$
\left.\begin{array}{rl}
\{1\}
\end{array} T_{\{2\}}={ }_{\{1\}} T_{\{W\}}\{w\} T_{\{2\}}=\left(\{w\} T_{\{1\}}\right)^{-1}{ }_{\{W\}} T_{\{2\}}\right]
$$

- The pose T_{k} of a robot at time t_{k} always specifies a transformation from the body frame at time t_{k} to the world frame so we will not explicitly write the world frame subscript
- The relative transformation from inertial frame $\{2\}$ with world-frame pose T_{2} to an inertial frame $\{1\}$ with world-frame pose T_{1} is:

$$
{ }_{1} T_{2}=T_{1}^{-1} T_{2}
$$

Summary

	Rotation $S O(3)$	Pose $S E(3)$
Representation	$R:\left\{\begin{array}{l}R^{\top} R=I \\ \operatorname{det}(R)=1\end{array}\right.$	$T=\left[\begin{array}{cc}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Transformation	$\mathbf{s}_{W}=R \mathbf{s}_{B}$	$\mathbf{s}_{W}=R \mathbf{s}_{B}+\mathbf{p}$
Inverse	$R^{-1}=R^{\top}$	$T^{-1}=\left[\begin{array}{cc}R^{\top} & -R^{\top} \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]$
Composition	$w R_{B}={ }_{w} R_{A} A_{B} R_{B}$	$w T_{B}={ }_{w} T_{A} T_{B}$

