ECE276A: Sensing \& Estimation in Robotics Lecture 6: Matrix Lie Groups

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Topology

- Topology on set \mathcal{X} is a set \mathcal{T} of subsets of \mathcal{X}, called open sets, such that:
- \mathcal{X} and \emptyset are open
- finite intersection of open sets is open
- uncountable infinite union of open sets is open
- Topological space: set \mathcal{X} with topology \mathcal{T}
- Hausdorff space: topological space \mathcal{X} such that $\forall x, y \in \mathcal{X}$ with $x \neq y$ there exists disjoint neighborhoods \mathcal{U} of x and \mathcal{V} of y
- Separable space: topological space \mathcal{X} with a countable dense subset, ie., there exists a sequence in \mathcal{X} such that every nonempty open set contains at least one element of the sequence
- Second-countable space: topological space \mathcal{X} with a countable base, ie., countable collection of open sets that can express any open set as a union

Manifold

- Homeomorphism: continuous bijective function $f: \mathcal{X} \mapsto \mathcal{Y}$ between two topological spaces with continuous inverse f^{-1}
- Topological n-manifold: Hausdorff second-countable topological space \mathcal{M} such that every $p \in \mathcal{M}$ has a neighborhood \mathcal{U} homeomorphic to an open subset of \mathbb{R}^{n}
- Chart on \mathcal{M} : pair (\mathcal{U}, ϕ) such $\phi: \mathcal{U} \subseteq \mathcal{M} \mapsto \mathcal{V} \subseteq \mathbb{R}^{n}$ is a homeomorphism
- Atlas on \mathcal{M} : set of charts $\left\{\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha}$ that cover \mathcal{M}
- Coordinates of $p \in \mathcal{M}$: elements $\phi(p) \in \mathbb{R}^{n}$ of a chart (\mathcal{U}, ϕ) containing p
- Smooth n-manifold: the change of coordinates function $\phi_{\beta} \circ \phi_{\alpha}^{-1}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ between any charts $\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right)$ and $\left(\mathcal{U}_{\beta}, \phi_{\beta}\right)$ with $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \neq \emptyset$ is infinitely differentiable
- An open subset of a smooth n-manifold is a smooth n-manifold
- The product of smooth n_{1} and n_{2} manifolds is a smooth $\left(n_{1}+n_{2}\right)$-manifold

Manifold

Embedded Submanifold

- Directional derivative: of $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ at $\mathbf{p} \in \mathbb{R}^{n}$ in direction $\mathbf{v} \in \mathbb{R}^{n}$:

$$
D f(\mathbf{p})[\mathbf{v}]=\lim _{t \rightarrow 0} \frac{f(\mathbf{p}+t \mathbf{v})-f(\mathbf{p})}{t}
$$

- A nonempty subset \mathcal{M} of d-dimensional Euclidean space \mathcal{E} is a smooth embedded submanifold of dimension $n \leq d$ such that either

1. $n=d$ and \mathcal{M} is an open set in \mathcal{E}, called an open submanifold, or
2. $n=d-k$ and, for each $p \in \mathcal{M}$, there exists a neighborhood \mathcal{U}_{p} in \mathcal{E} and a smooth function $h: \mathcal{U}_{p} \mapsto \mathbb{R}^{k}$ such that
2.1 if $y \in \mathcal{U}_{p}$, then $y \in \mathcal{M}$ iff $h(y)=0$
$2.2 \operatorname{rank}(\operatorname{Dh}(p))=k$ (rank is the range space dimension)
The function h is called a local defining function for \mathcal{M} at p.

- Example:
- unit sphere $\mathcal{S}^{d-1}:=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{x}^{\top} \mathbf{x}=1\right\}$ is an embedded submanifold of \mathbb{R}^{d}
- \mathcal{S}^{d-1} has local defining function $h(\mathbf{x})=\mathbf{x}^{\top} \mathbf{x}-1$
- the directional derivative of h is $\operatorname{Dh}(\mathbf{x})[\mathbf{v}]=2 \mathbf{x}^{\top} \mathbf{v}$ and has rank $k=1$
- the dimension of \mathcal{S}^{d-1} is $n=d-1$

Tangent Space

- How should directional derivative be defined for $f: \mathcal{M} \mapsto \mathbb{R}$?
- For $p \in \mathcal{M}$, the operation $p+t v$ may not be defined. Instead, use a curve $\gamma: \mathbb{R} \mapsto \mathcal{M}$ such that $\gamma(0)=p$.
- Let $C^{\infty}\left(\mathcal{U}_{p}, \mathbb{R}\right)$ be the set of smooth real-valued functions defined on a neighborhood \mathcal{U}_{p} of a point p on a manifold \mathcal{M}. A tangent vector v_{p} to \mathcal{M} at p is a function from $C^{\infty}\left(\mathcal{U}_{p}, \mathbb{R}\right)$ to \mathbb{R} such that there exists a curve $\gamma: \mathbb{R} \mapsto \mathcal{M}$ with $\gamma(0)=p$ and:

$$
v_{p}[f]=\left.\frac{d f(\gamma(t))}{d t}\right|_{t=0}
$$

- Tangent space to \mathcal{M} at p : set $T_{p} \mathcal{M}$ of all tangent vectors v_{p} to \mathcal{M} at p

Tangent Space of Embedded Submanifold

- If \mathcal{M} is an embedded submanifold, then $v \in T_{p} \mathcal{M}$ if and only if there exists a smooth curve γ on \mathcal{M} passing through p with velocity v :

$$
T_{p} \mathcal{M}=\left\{\left.\frac{d \gamma}{d t}(0) \right\rvert\, \gamma: \mathcal{I} \mapsto \mathcal{M} \quad \text { and } \quad \gamma(0)=p\right\}
$$

where \mathcal{I} is any open interval containing $t=0$.

- Let \mathcal{M} be an embedded submanifold of Euclidean space \mathcal{E}.
- If \mathcal{M} is an open submanifold of \mathcal{E}, then $T_{p} \mathcal{M}=\mathcal{E}$.
- Otherwise, $T_{p} \mathcal{M}=\operatorname{ker}(\operatorname{Dh}(p))$ for any local defining function h at p.

Tangent Space

- Tangent space $T_{p} \mathcal{M}$: set of all tangent vectors to \mathcal{M} at p
- The tangent space $T_{p} \mathcal{M}$ is a vector space of the same dimension as \mathcal{M} and can be equipped with an inner product $\langle\cdot, \cdot\rangle_{p}: T_{p} \mathcal{M} \times T_{p} \mathcal{M} \mapsto \mathbb{R}$
- Tangent bundle of \mathcal{M} : disjoint union of the tangent spaces of \mathcal{M} :

$$
T \mathcal{M}=\left\{(p, v) \mid p \in \mathcal{M}, v \in T_{p} \mathcal{M}\right\}
$$

Unit Sphere

- $\mathcal{S}^{d-1}:=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{x}^{\top} \mathbf{x}=1\right\}$
- $T_{x} \mathcal{S}^{d-1}=\left\{\mathbf{v} \in \mathbb{R}^{d}: \mathbf{x}^{\top} \mathbf{v}=0\right\}$

Lie Group

- A group is a set \mathcal{G} with an associated composition operator \odot that satisfies:
- Closure: $a \odot b \in \mathcal{G}, \forall a, b \in \mathcal{G}$
- Identity element: $\exists e \in \mathcal{G}$ (unique) such that $e \odot a=a \odot e=a$
- Inverse element: for $a \in \mathcal{G}, \exists b \in G$ (unique) such that $a \odot b=b \odot a=e$
- Associativity: $(a \odot b) \odot c=a \odot(b \odot c), \forall a, b, c, \in \mathcal{G}$
- The notion of a group is weaker than a vector space because it does not require commutativity and does not have scalar multiplication and its associated axioms (compatibility, identity, inverse, distributivity)
- General linear group $G L(n ; \mathbb{C})$: the set of all invertible matrices in $\mathbb{C}^{n \times n}$
- A subgroup of group \mathcal{G} is a subset that contains the identity of \mathcal{G} and is closed under group composition and inverse
- Lie group: set \mathcal{G} that is both a smooth manifold and a group with smooth composition $\odot: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}$ and inverse $(\cdot)^{-1}: \mathcal{G} \mapsto \mathcal{G}$
- Matrix Lie group: subgroup of $G L(n ; \mathbb{C})$ and embedded submanifold of $\mathbb{C}^{n \times n}$

Lie Algebra

- A Lie algebra is a vector space \mathfrak{g} over some field \mathcal{F} with a binary operation, $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \mapsto \mathfrak{g}$, called a Lie bracket
- For all $X, Y, Z \in \mathfrak{g}$ and $a, b \in \mathcal{F}$, the Lie bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \mapsto \mathfrak{g}$ satisfies:

$$
\begin{aligned}
\text { bilinearity : } & {[a X+b Y, Z]=a[X, Z]+b[Y, Z] } \\
& {[Z, a X+b Y]=a[Z, X]+b[Z, Y] } \\
\text { skew-symmetry : } & {[X, Y]=-[Y, X] } \\
\text { Jacobi identity : } & {[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 }
\end{aligned}
$$

- The adjoint $a d_{X}: \mathfrak{g} \mapsto \mathfrak{g}$ of a Lie algebra at $X \in \mathfrak{g}$ is:

$$
\operatorname{ad}_{X}(Y)=[X, Y]
$$

- Example: \mathbb{R}^{3} with $[\mathbf{x}, \mathbf{y}]=\mathbf{x} \times \mathbf{y}$ is a Lie algebra

Lie Group and Lie Algebra

- Each matrix Lie group \mathcal{G} has an associated Lie algebra \mathfrak{g}
- The Lie algebra \mathfrak{g} of a matrix Lie group \mathcal{G} is the set of all matrices X whose matrix $\operatorname{exponential} \exp (t X)$ is in \mathcal{G} for all $t \in \mathbb{R}$:

$$
\mathfrak{g}=\{X \mid \exp (t X) \in \mathcal{G}, \forall t \in \mathbb{R}\}
$$

- The Lie algebra \mathfrak{g} of a Lie group \mathcal{G} is the tangent space at identity $T_{I} \mathcal{G}$
- For $X \in \mathfrak{g}$, let $\gamma(t)=\exp (t X)$ such that $\gamma(0)=I$ and $\gamma^{\prime}(0)=X$
- The adjoint $A d_{A}: \mathfrak{g} \mapsto \mathfrak{g}$ of a Lie group \mathcal{G} at $A \in \mathcal{G}$ is:

$$
A d_{A}(Y)=A Y A^{-1}
$$

- The algebra adjoint $a d_{X}$ is the derivative of the group adjoint $A d_{A}$ at $A=I$:

$$
A d_{\exp (X)}=\exp \left(a d_{X}\right) \quad a d_{X}=\left.\frac{d}{d t} A d_{\exp (t X)}\right|_{t=0}
$$

- Let \mathcal{G} be a matrix Lie group with Lie algebra \mathfrak{g}. For $X, Y \in \mathfrak{g}$:
- $t X \in \mathfrak{g}$ for all $t \in \mathbb{R}$
- $X+Y \in \mathfrak{g}$
- $\operatorname{ad}_{X}(Y)=[X, Y]=X Y-Y X \in \mathfrak{g}$
- $\operatorname{Ad}_{A}(X)=A X A^{-1} \in \mathfrak{g}$ for all $A \in \mathcal{G}$

Lie Group and Lie Algebra

- The exponential and logarithm maps relate a matrix Lie group \mathcal{G} with its Lie algebra \mathfrak{g} :

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} \quad \log (A)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(A-I)^{n}
$$

- Theorem: Let $\mathcal{V}_{\epsilon}=\left\{X \in \mathbb{C}^{n \times n} \mid\|X\|<\epsilon\right\}$ and $\mathcal{U}_{\epsilon}=\exp \left(\mathcal{V}_{\epsilon}\right)$. Suppose \mathcal{G} is a matrix Lie group with Lie algebra \mathfrak{g}. Then, there exists $\epsilon \in(0, \log 2)$ such that for all $A \in \mathcal{U}_{\epsilon}, A \in \mathcal{G}$ if and only if $\log (A) \in \mathfrak{g}$.

Figure: $S E(3)$ and corresponding Lie algebra $\mathfrak{s e}(3)$ as tangent space at identity

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Special Orthogonal Lie Group $S O(3)$

- $S O(3):=\left\{R \in \mathbb{R}^{3 \times 3} \mid R^{\top} R=I, \operatorname{det}(R)=1\right\}$
- $S O(3)$ is a group:
- Closure: $R_{1} R_{2} \in S O$ (3)
- Identity: $I \in S O(3)$
- Inverse: $R^{-1}=R^{\top} \in S O(3)$
- Associativity: $\left(R_{1} R_{2}\right) R_{3}=R_{1}\left(R_{2} R_{3}\right)$ for all $R_{1}, R_{2}, R_{3} \in S O(3)$
- $S O(3)$ is an embedded submanifold of $\mathbb{R}^{3 \times 3}$ with local defining function:

$$
h(R)=\left(R^{\top} R-I, \operatorname{det}(R)-1\right)
$$

- The tangent space of $S O(3)$ is:

$$
T_{R} S O(3)=\operatorname{ker}(D h(R))=\left\{V \in \mathbb{R}^{3 \times 3} \mid R^{\top} V+V^{\top} R=0, \operatorname{tr}\left(R^{\top} V\right)=0\right\}
$$

- $S O(3)$ is a matrix Lie group

Special Orthogonal Lie Algebra $\mathfrak{s o (3)}$

- The Lie algebra of $S O(3)$ is the space of skew-symmetric matrices:

$$
\mathfrak{s o}(3)=T_{I} S O(3)=\left\{\hat{\boldsymbol{\theta}} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^{3}\right\}
$$

- The Lie bracket of $\mathfrak{s o}(3)$ is:

$$
\left[\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}\right]=\hat{\boldsymbol{\theta}}_{1} \hat{\boldsymbol{\theta}}_{2}-\hat{\boldsymbol{\theta}}_{2} \hat{\boldsymbol{\theta}}_{1}=\left(\hat{\boldsymbol{\theta}}_{1} \boldsymbol{\theta}_{2}\right)^{\wedge} \in \mathfrak{s o (3)}
$$

- The elements $R \in S O(3)$ are related to the elements $\hat{\boldsymbol{\theta}} \in \mathfrak{s o}$ (3) through the exponential and logarithm maps:

$$
\begin{gathered}
R=\exp (\hat{\boldsymbol{\theta}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\theta}})^{n}=I+\left(\frac{\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2} \\
\hat{\boldsymbol{\theta}}=\log (R)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(R-I)^{n}=\frac{\|\boldsymbol{\theta}\|}{2 \sin \|\boldsymbol{\theta}\|}\left(R-R^{\top}\right) \\
\|\boldsymbol{\theta}\|=\arccos \left(\frac{\operatorname{tr}(R)-1}{2}\right)
\end{gathered}
$$

Distance in $S O(3)$

- What is the distance between two rotations $R_{1}, R_{2} \in S O(3)$?
- Inner product on $\mathfrak{s o (3)}$:

$$
\left\langle\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}\right\rangle=\frac{1}{2} \operatorname{tr}\left(\hat{\boldsymbol{\theta}}_{1}^{\top} \hat{\boldsymbol{\theta}}_{2}\right)=\boldsymbol{\theta}_{1}^{\top} \boldsymbol{\theta}_{2}
$$

- Geodesic distance on $S O(3)$: the length of the shortest path between R_{1} and R_{2} on the $S O(3)$ manifold is equal to the rotation angle $\left\|\boldsymbol{\theta}_{12}\right\|_{2}$ of the axis-angle representation θ_{12} of the relative rotation $R_{12}=R_{1}^{\top} R_{2}$:

$$
\begin{aligned}
\boldsymbol{\theta}_{12} & =\log \left(R_{1}^{\top} R_{2}\right)^{\vee} \\
d_{\theta}\left(R_{1}, R_{2}\right) & =\sqrt{\left\langle\hat{\boldsymbol{\theta}}_{12}, \hat{\boldsymbol{\theta}}_{12}\right\rangle}=\left\|\boldsymbol{\theta}_{12}\right\|_{2}=\left|\arccos \left(\frac{\operatorname{tr}\left(R_{1}^{\top} R_{2}\right)-1}{2}\right)\right|
\end{aligned}
$$

Distance in $S O(3)$

- Chordal distance on $S O(3)$:

$$
d_{c}\left(R_{1}, R_{2}\right)=\left\|R_{1}-R_{2}\right\|_{F}=\sqrt{\operatorname{tr}\left(\left(R_{1}-R_{2}\right)^{\top}\left(R_{1}-R_{2}\right)\right)}=2 \sqrt{2}\left|\sin \left(\frac{\left\|\boldsymbol{\theta}_{12}\right\|}{2}\right)\right|
$$

Figure: (a) Geodesic and (b) chordal distance in $S O(2)$

Baker-Campbell-Hausdorff Formulas

- The left Jacobian of $S O(3)$ is the matrix:

$$
J_{L}(\boldsymbol{\theta}):=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}(\hat{\boldsymbol{\theta}})^{n} \quad R=I+\hat{\boldsymbol{\theta}} J_{L}(\boldsymbol{\theta})
$$

- The right Jacobian of $S O(3)$ is the matrix:

$$
J_{R}(\theta):=\sum_{n=0}^{\infty} \frac{1}{(n+1)!}(-\hat{\theta})^{n} \quad J_{R}(\theta)=J_{L}(-\theta)=J_{L}(\theta)^{\top}=R^{\top} J_{L}(\theta)
$$

- Baker-Campbell-Hausdorff Formulas: the $S O(3)$ Jacobians relate small perturbations $\delta \boldsymbol{\theta}$ in $\mathfrak{s o (3)}$ to small perturbations in $\mathrm{SO}(3)$:

$$
\begin{aligned}
\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right) & \approx \exp (\hat{\boldsymbol{\theta}}) \exp \left(\left(J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \\
& \approx \exp \left(\left(J_{L}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\theta}}) \\
\log \left(\exp \left(\hat{\boldsymbol{\theta}}_{1}\right) \exp \left(\hat{\boldsymbol{\theta}}_{2}\right)\right)^{\vee} & \approx \begin{cases}J_{L}\left(\boldsymbol{\theta}_{2}\right)^{-1} \boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2} & \text { if } \boldsymbol{\theta}_{1} \text { is small } \\
\boldsymbol{\theta}_{1}+J_{R}\left(\boldsymbol{\theta}_{1}\right)^{-1} \boldsymbol{\theta}_{2} & \text { if } \boldsymbol{\theta}_{2} \text { is small }\end{cases}
\end{aligned}
$$

Closed-forms of the SO(3) Jacobians

$$
\begin{aligned}
J_{L}(\boldsymbol{\theta}) & =I+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\theta}}^{2} \approx I+\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{L}(\boldsymbol{\theta})^{-1} & =I-\frac{1}{2} \hat{\boldsymbol{\theta}}+\left(\frac{1}{\|\boldsymbol{\theta}\|^{2}}-\frac{1+\cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2} \approx I-\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{R}(\boldsymbol{\theta}) & =I-\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\theta}}^{2} \approx I-\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{R}(\boldsymbol{\theta})^{-1} & =I+\frac{1}{2} \hat{\boldsymbol{\theta}}+\left(\frac{1}{\|\boldsymbol{\theta}\|^{2}}-\frac{1+\cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2} \approx I+\frac{1}{2} \hat{\boldsymbol{\theta}} \\
J_{L}(\boldsymbol{\theta}) J_{L}(\boldsymbol{\theta})^{T} & =I+\left(1-2 \frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\theta}}^{2} \succ 0 \\
\left(J_{L}(\boldsymbol{\theta}) J_{L}(\boldsymbol{\theta})^{T}\right)^{-1} & =I+\left(1-2 \frac{\|\boldsymbol{\theta}\|^{2}}{1-\cos \|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\theta}}^{2}
\end{aligned}
$$

Integration in $S O(3)$

- The geodesic distance between a rotation $R=\exp (\hat{\boldsymbol{\theta}})$ and a small perturbation $\exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right)$ can be approximated using the BCH formulas:

$$
\log \left(\exp (\hat{\boldsymbol{\theta}})^{\top} \exp \left((\boldsymbol{\theta}+\delta \boldsymbol{\theta})^{\wedge}\right)\right)^{\vee} \approx \log \left(R^{\top} R \exp \left(\left(J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}\right)^{\wedge}\right)\right)^{\vee}=J_{R}(\boldsymbol{\theta}) \delta \boldsymbol{\theta}
$$

- This allows to define an infinitesimal volume element:

$$
d R=\left|\operatorname{det}\left(J_{R}(\boldsymbol{\theta})\right)\right| d \boldsymbol{\theta}=2\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) d \boldsymbol{\theta} \quad \operatorname{det}\left(J_{R}(\boldsymbol{\theta})\right)=\operatorname{det}\left(J_{L}(\boldsymbol{\theta})\right)
$$

- Integrating functions of rotations can be carried out as follows:

$$
\int_{S O(3)} f(R) d R=\int_{\|\boldsymbol{\theta}\|<\pi} f(\exp (\hat{\boldsymbol{\theta}}))\left|\operatorname{det}\left(J_{R}(\boldsymbol{\theta})\right)\right| d \boldsymbol{\theta}
$$

Adjoint SO(3) Lie Group and Lie Algebra

- The adjoint operator $A d_{A}: \mathfrak{g} \mapsto \mathfrak{g}$ represents the elements A of a Lie group \mathcal{G} as linear transformations on the Lie algebra \mathfrak{g}
- The adjoint $A d_{R}$ at $R \in S O$ (3) transforms $\hat{\boldsymbol{\omega}} \in \mathfrak{s o}(3)$ from one coordinate frame (e.g., body frame) to another (e.g., world frame):

$$
A d_{R}(\hat{\omega})=R \hat{\omega} R^{-1}=(R \omega)^{\wedge}
$$

- The adjoint operator $\operatorname{Ad}(\hat{\omega})$ is linear and can be represented as a matrix R acting on $\boldsymbol{\omega} \in \mathbb{R}^{3}$
- The space of adjoint operators on $S O(3)$ is a matrix Lie group $\operatorname{Ad}(S O(3)) \cong S O(3)$ with associated Lie algebra ad $(\mathfrak{s o}(3)) \cong \mathfrak{s o}(3)$

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Special Euclidean Lie Group $S E(3)$

- $\operatorname{SE}(3):=\left\{\left.T=\left[\begin{array}{rr}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, R \in S O(3), \mathbf{p} \in \mathbb{R}^{3}\right\}$
- $S E(3)$ is a group:
- Closure: $T_{1} T_{2}=\left[\begin{array}{cc}R_{1} & \mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right]\left[\begin{array}{cc}R_{2} & \mathbf{p}_{2} \\ \mathbf{0}^{\top} & 1\end{array}\right]=\left[\begin{array}{cc}R_{1} R_{2} & R_{1} \mathbf{p}_{2}+\mathbf{p}_{1} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$
- Identity: $I \in S E(3)$
- Inverse: $\left[\begin{array}{cc}R & \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}R^{\top} & -R^{\top} \mathbf{p} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \operatorname{SE}(3)$
- Associativity: $\left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right)$ for all $T_{1}, T_{2}, T_{3} \in S E(3)$
- $S E(3)$ is an embedded submanifold of $\mathbb{R}^{4 \times 4}$
- $S E(3)$ is a matrix Lie group

Special Euclidean Lie Algebra se(3)

- The Lie algebra of $S E(3)$ is the space of twist matrices:

$$
\mathfrak{s e}(3):=T_{I} S E(3)=\left\{\hat{\boldsymbol{\xi}}: \left.=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{\xi}=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6}\right\}
$$

- The Lie bracket of $\mathfrak{s e}(3)$ is:

$$
\left[\hat{\boldsymbol{\xi}}_{1}, \hat{\boldsymbol{\xi}}_{2}\right]=\hat{\boldsymbol{\xi}}_{1} \hat{\boldsymbol{\xi}}_{2}-\hat{\boldsymbol{\xi}}_{2} \hat{\boldsymbol{\xi}}_{1}=\left(\hat{\boldsymbol{\xi}}_{1} \boldsymbol{\xi}_{2}\right)^{\wedge} \in \mathfrak{s e}(3) \quad \hat{\boldsymbol{\xi}}:=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \hat{\rho} \\
0 & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The elements $T \in S E(3)$ are related to the elements $\hat{\boldsymbol{\xi}} \in \mathfrak{s e}(3)$ through the exponential and logarithm maps:

$$
\begin{aligned}
& T=\exp (\hat{\boldsymbol{\xi}})=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\xi}})^{n} \\
& \hat{\boldsymbol{\xi}}=\log (T)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(T-I)^{n}
\end{aligned}
$$

Exponential Map from $\mathfrak{s e (3)}$ to $S E(3)$

- Exponential map exp : se(3) $\mapsto S E(3)$: has closed-form expression obtained using $\hat{\boldsymbol{\xi}}^{4}+\|\boldsymbol{\theta}\|^{2} \hat{\boldsymbol{\xi}}^{2}=0$:

$$
\begin{aligned}
T & =\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\xi}}^{n}= \\
& =I+\hat{\boldsymbol{\xi}}+\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\xi}}^{2}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\xi}}^{3}
\end{aligned}
$$

- The exponential map is surjective but not injective, i.e., every element of $S E(3)$ can be generated from multiple elements of $\mathfrak{s e}(3)$
- Logarithm map log : $S E(3) \rightarrow \mathfrak{s e}(3)$: for any $T \in S E(3)$, there exists a (non-unique) $\boldsymbol{\xi} \in \mathbb{R}^{6}$ such that:

$$
\boldsymbol{\xi}=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right]=\log (T)^{\vee}= \begin{cases}\boldsymbol{\theta}=\log (R)^{\vee}, \boldsymbol{\rho}=J_{L}^{-1}(\boldsymbol{\theta}) \mathbf{p}, & \text { if } R \neq \boldsymbol{I}, \\
\boldsymbol{\theta}=0, \boldsymbol{\rho}=\mathbf{p}, & \text { if } R=\boldsymbol{I}\end{cases}
$$

Distance in $S E(3)$

- Inner product on $\mathfrak{s e}(3)$:

$$
\left\langle\hat{\boldsymbol{\xi}}_{1}, \hat{\boldsymbol{\xi}}_{2}\right\rangle=\operatorname{tr}\left(\hat{\boldsymbol{\xi}}_{1}\left[\begin{array}{ll}
\frac{1}{2} \boldsymbol{I} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \hat{\boldsymbol{\xi}}_{2}^{\top}\right)=\boldsymbol{\xi}_{1}^{\top} \boldsymbol{\xi}_{2}
$$

- Distance on $S E(3)$: induced by the inner product on $\mathfrak{s e}(3)$ evaluated at the vector representation $\hat{\xi}_{12}$ of the relative pose $T_{12}=T_{1}^{-1} T_{2}$:

$$
\begin{aligned}
\boldsymbol{\xi}_{12} & =\log \left(T_{1}^{-1} T_{2}\right)^{\vee} \\
d\left(T_{1}, T_{2}\right) & =\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{12}, \hat{\boldsymbol{\xi}}_{12}\right\rangle}=\left\|\boldsymbol{\xi}_{12}\right\|_{2}
\end{aligned}
$$

Baker-Campbell-Hausdorff Formulas

- Left Jacobian of $S E(3): \mathcal{J}_{L}(\xi)=\left[\begin{array}{cc}J_{L}(\boldsymbol{\theta}) & Q_{L}(\boldsymbol{\xi}) \\ 0 & J_{L}(\boldsymbol{\theta})\end{array}\right]$
- Right Jacobian of $\operatorname{SE}(3): \mathcal{J}_{R}(\boldsymbol{\xi})=\left[\begin{array}{cc}J_{R}(\boldsymbol{\theta}) & Q_{R}(\boldsymbol{\xi}) \\ 0 & J_{R}(\boldsymbol{\theta})\end{array}\right]$
- Baker-Campbell-Hausdorff Formulas: the SE(3) Jacobians relate small perturbations $\delta \boldsymbol{\xi}$ in $\mathfrak{s e}(3)$ to small perturbations in $S E(3)$:

$$
\begin{aligned}
\exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right) & \approx \exp (\hat{\boldsymbol{\xi}}) \exp \left(\left(\mathcal{J}_{R}(\boldsymbol{\xi}) \delta \boldsymbol{\xi}\right)^{\wedge}\right) \\
& \approx \exp \left(\left(\mathcal{J}_{L}(\boldsymbol{\xi}) \delta \boldsymbol{\xi}\right)^{\wedge}\right) \exp (\hat{\boldsymbol{\xi}}) \\
\log \left(\exp \left(\hat{\boldsymbol{\xi}}_{1}\right) \exp \left(\hat{\boldsymbol{\xi}}_{2}\right)\right)^{\vee} & \approx \begin{cases}\mathcal{J}_{L}\left(\boldsymbol{\xi}_{2}\right)^{-1} \boldsymbol{\xi}_{1}+\boldsymbol{\xi}_{2} & \text { if } \boldsymbol{\xi}_{1} \text { is small } \\
\boldsymbol{\xi}_{1}+\mathcal{J}_{R}\left(\boldsymbol{\xi}_{1}\right)^{-1} \boldsymbol{\xi}_{2} & \text { if } \boldsymbol{\xi}_{2} \text { is small }\end{cases}
\end{aligned}
$$

Closed-forms of the $S E(3)$ Jacobians

$$
\begin{aligned}
\mathcal{J}_{L}(\boldsymbol{\xi})= & \sum_{n=0}^{\infty} \frac{1}{(n+1)!}(\hat{\boldsymbol{\xi}})^{n}=\left[\begin{array}{cc}
J_{L}(\boldsymbol{\theta}) & Q_{L}(\boldsymbol{\xi}) \\
0 & J_{L}(\boldsymbol{\theta})
\end{array}\right] \\
= & I+\left(\frac{4-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-4 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{2}}\right) \hat{\boldsymbol{\xi}}+\left(\frac{4\|\boldsymbol{\theta}\|-5 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{3}}\right) \hat{\boldsymbol{\xi}}^{2} \\
& +\left(\frac{2-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-2 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{4}}\right) \hat{\boldsymbol{\xi}}^{3}+\left(\frac{2\|\boldsymbol{\theta}\|-3 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{5}}\right) \hat{\boldsymbol{h}}^{4} \\
\approx & I+\frac{1}{2} \hat{\boldsymbol{\xi}} \\
\mathcal{J}_{L}(\boldsymbol{\xi})^{-1}= & {\left[\begin{array}{cc}
J_{L}(\boldsymbol{\theta})^{-1} & -J_{L}(\boldsymbol{\theta})^{-1} Q_{L}(\boldsymbol{\xi}) J_{L}(\boldsymbol{\theta})^{-1} \\
J_{L}(\boldsymbol{\theta})^{-1}
\end{array}\right] \approx I-\frac{1}{2} \hat{\boldsymbol{\xi}} } \\
Q_{L}(\boldsymbol{\xi})= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(n+m+2)!} \hat{\boldsymbol{\theta}}^{n} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}^{m} \\
= & \frac{1}{2} \hat{\boldsymbol{\rho}}+\left(\frac{\|\boldsymbol{\theta}\|-\sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{3}}\right)(\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}+\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}})+\left(\frac{\|\boldsymbol{\theta}\|^{2}+2 \cos \|\boldsymbol{\theta}\|-2}{2\|\boldsymbol{\theta}\|^{4}}\right)\left(\hat{\boldsymbol{\theta}}^{2} \hat{\boldsymbol{\rho}}+\hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}^{2}-3 \hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}\right) \\
& +\left(\frac{2\|\boldsymbol{\theta}\|-3 \sin \|\boldsymbol{\theta}\|+\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{5}}\right)\left(\hat{\boldsymbol{\theta}} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}^{2}+\hat{\boldsymbol{\theta}}^{2} \hat{\boldsymbol{\rho}} \hat{\boldsymbol{\theta}}\right) \\
Q_{R}(\boldsymbol{\xi})= & Q_{L}(-\boldsymbol{\xi})=R Q_{L}(\boldsymbol{\xi})+\left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} R J_{L}(\boldsymbol{\theta})
\end{aligned}
$$

Integration in $S E(3)$

- The distance between a pose $T=\exp (\hat{\boldsymbol{\xi}})$ and a small perturbation $\exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right)$ can be approximated using the BCH formulas:

$$
\log \left(\exp (\hat{\boldsymbol{\xi}})^{-1} \exp \left((\boldsymbol{\xi}+\delta \boldsymbol{\xi})^{\wedge}\right)\right)^{\vee} \approx \mathcal{J}_{R}(\boldsymbol{\xi}) \delta \boldsymbol{\xi}
$$

- This allows to define an infinitesimal volume element:

$$
d T=\left|\operatorname{det}\left(\mathcal{J}_{R}(\boldsymbol{\xi})\right)\right| d \boldsymbol{\xi}=\left|\operatorname{det}\left(J_{R}(\boldsymbol{\theta})\right)\right|^{2} d \boldsymbol{\xi}=4\left(\frac{1-\cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^{2}}\right)^{2} d \boldsymbol{\xi}
$$

- Integrating functions of poses can then be carried out as follows:

$$
\int_{S E(3)} f(T) d T=\int_{\mathbb{R}^{3},\|\boldsymbol{\theta}\|<\pi} f(\exp (\hat{\boldsymbol{\xi}}))\left|\operatorname{det}\left(\mathcal{J}_{R}(\boldsymbol{\xi})\right)\right| d \boldsymbol{\xi}
$$

Adjoint $S E(3)$ Lie Group and Lie Algebra

- The adjoint $A d_{T}$ at $T \in S E(3)$ transforms $\hat{\zeta} \in \mathfrak{s e}(3)$ from one coordinate frame to another:

$$
A d_{T}(\hat{\zeta})=T \hat{\zeta} T^{-1}=(\mathcal{T} \zeta)^{\wedge}
$$

- The adjoint operator $A d_{T}$ is linear and can be represented as a matrix \mathcal{T} acting on $\zeta \in \mathbb{R}^{6}$:

$$
\mathcal{T}=\left[\begin{array}{cc}
R & \hat{\mathbf{p}} R \\
\mathbf{0} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6}
$$

- The space of adjoint operators on $S E(3)$ is a matrix Lie group:

$$
\operatorname{Ad}(S E(3))=\left\{\left.\mathcal{T}=\left[\begin{array}{cc}
R & \hat{\mathbf{p}} R \\
\mathbf{0} & R
\end{array}\right] \in \mathbb{R}^{6 \times 6} \right\rvert\, T=\left[\begin{array}{cc}
R & \mathbf{p} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in S E(3)\right\}
$$

- The Lie algebra associated with $\operatorname{Ad}(S E(3))$ is:

$$
\operatorname{ad}(\mathfrak{s e}(3))=\left\{\left.\begin{array}{c}
\hat{\boldsymbol{\xi}}
\end{array}=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6} \right\rvert\, \boldsymbol{\xi}=\left[\begin{array}{c}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6}\right\}
$$

Rodrigues Formula for the Adjoint of $S E(3)$

- Rodrigues Formula: using $(\hat{\boldsymbol{\xi}})^{5}+2\|\boldsymbol{\theta}\|^{2}(\hat{\boldsymbol{\xi}})^{3}+\|\boldsymbol{\theta}\|^{\hat{}} \boldsymbol{\xi}=0$ we can obtain a direct expression of $\mathcal{T} \in \operatorname{Ad}(\operatorname{SE}(3))$ in terms of $\boldsymbol{\xi}=\left[\begin{array}{l}\boldsymbol{\rho} \\ \boldsymbol{\theta}\end{array}\right] \in \mathbb{R}^{6}$:

$$
\begin{aligned}
\mathcal{T}= & A d(T)=\exp \left(\begin{array}{l}
\hat{\boldsymbol{\xi}}
\end{array}\right)=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right]=\sum_{n=0}^{\infty} \frac{1}{n!}(\hat{\boldsymbol{\xi}})^{n} \\
= & I+\left(\frac{3 \sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|}\right) \hat{\boldsymbol{\xi}}+\left(\frac{4-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-4 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{2}}\right)(\hat{\boldsymbol{\xi}})^{2} \\
& +\left(\frac{\sin \|\boldsymbol{\theta}\|-\|\boldsymbol{\theta}\| \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{3}}\right)(\hat{\boldsymbol{\xi}})^{3}+\left(\frac{2-\|\boldsymbol{\theta}\| \sin \|\boldsymbol{\theta}\|-2 \cos \|\boldsymbol{\theta}\|}{2\|\boldsymbol{\theta}\|^{4}}\right)(\hat{\boldsymbol{\xi}})^{4}
\end{aligned}
$$

- The exponential map is surjective but not injective, ie., every element of $\operatorname{Ad}(S E(3))$ can be generated from multiple elements of $\operatorname{ad}(\mathfrak{s e}(3))$

Distance in $\operatorname{Ad}(S E(3))$

- Inner product on $\operatorname{ad}(\mathfrak{s e}(3))$:

$$
\left.\left\langle\hat{\xi}_{1}, \hat{\xi}_{2}\right\rangle=\operatorname{tr}\left(\begin{array}{cc}
\hat{\xi}_{1} & {\left[\frac{1}{4} I\right.} \\
\mathbf{0} & \frac{1}{2} l
\end{array}\right] \hat{\xi}_{2}^{\top}\right)=\boldsymbol{\xi}_{1}^{\top} \xi_{2}
$$

- Distance on $\operatorname{Ad}(S E(3))$: induced by the inner product on $\operatorname{ad}(\mathfrak{s e}(3))$ evaluated at the vector representation $\hat{\xi}_{12}$ of $\mathcal{T}_{12}=\mathcal{T}_{1}^{-1} \mathcal{T}_{2}$:

$$
\begin{aligned}
\boldsymbol{\xi}_{12} & =\log \left(\mathcal{T}_{1}^{-1} \mathcal{T}_{2}\right)^{\curlyvee} \\
d\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) & =\sqrt{\left\langle\hat{\boldsymbol{\xi}}_{12}, \hat{\boldsymbol{\xi}}_{12}\right\rangle}=\left\|\boldsymbol{\xi}_{12}\right\|_{2}
\end{aligned}
$$

Pose Lie Groups and Lie Algebras

Lie algebra
Lie group

$$
\begin{array}{cccc}
4 \times 4 & \boldsymbol{\xi}^{\wedge} \in \mathfrak{s e}(3) \quad \xrightarrow{\exp } \quad \mathbf{T} \in S E(3) \\
& \stackrel{\downarrow}{ } & \downarrow \operatorname{Ad} \\
6 \times 6 & \boldsymbol{\xi}^{\curlywedge} \in \operatorname{ad}(\mathfrak{s e}(3)) \xrightarrow{\exp } \boldsymbol{T} \in \operatorname{Ad}(S E(3))
\end{array}
$$

$$
\begin{aligned}
\mathcal{T} & =A d \underbrace{(\exp (\hat{\xi}))}_{T}=\exp \underbrace{(\operatorname{ad}(\hat{\xi}))}_{\hat{\xi}} \quad \xi=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right] \in \mathbb{R}^{6} \\
& =\operatorname{Ad}\left(\exp \left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{T} & 0
\end{array}\right]\right)\right)=\exp \left(\operatorname{ad}\left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{T} & 0
\end{array}\right]\right)\right) \\
& =\operatorname{Ad}\left(\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]\right)=\exp \left(\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right]
\end{aligned}
$$

$\mathfrak{s e}(3)$ Identities

$$
\begin{aligned}
& \hat{\boldsymbol{\xi}}=\left[\begin{array}{l}
\hat{\boldsymbol{\rho}} \\
\boldsymbol{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\
\mathbf{0}^{\top} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \hat{\boldsymbol{\xi}}=\operatorname{ad}(\hat{\boldsymbol{\xi}})=\left[\begin{array}{l}
\boldsymbol{\rho} \\
\boldsymbol{\theta}
\end{array}\right]=\left[\begin{array}{ll}
\hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\
\mathbf{0} & \hat{\boldsymbol{\theta}}
\end{array}\right] \in \mathbb{R}^{6 \times 6} \\
& \hat{\boldsymbol{\zeta}} \boldsymbol{\xi}=-\hat{\boldsymbol{\xi}} \boldsymbol{\zeta} \\
& \hat{\boldsymbol{\xi}} \boldsymbol{\xi}=0 \\
& \hat{\boldsymbol{\xi}}^{4}+\left(\mathbf{s}^{\top} \mathbf{s}\right) \hat{\boldsymbol{\xi}}^{2}=0 \quad \boldsymbol{\zeta} \in \mathbb{R}^{6} \\
& \left(\begin{array}{l}
\hat{\boldsymbol{\xi}}
\end{array}\right)^{5}+2\left(\mathbf{s}^{\top} \mathbf{s}\right)\left(\begin{array}{l}
\hat{\boldsymbol{\xi}}
\end{array}\right)^{3}+\left(\mathbf{s}^{\top} \mathbf{s}\right)^{2} \hat{\boldsymbol{\xi}}=0 \\
& \mathbf{m}^{\odot}:=\left[\begin{array}{l}
\mathbf{s} \\
\lambda
\end{array}\right]^{\odot}=\left[\begin{array}{ll}
\lambda \boldsymbol{l} & -\hat{\mathbf{s}} \\
\mathbf{0}^{\top} & \mathbf{0}^{\top}
\end{array}\right] \in \mathbb{R}^{4 \times 6} \quad \mathbf{m}^{\odot}:=\left[\begin{array}{c}
\mathbf{s} \\
\lambda
\end{array}\right]^{\odot}=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{s} \\
-\hat{\mathbf{s}} & \mathbf{0}
\end{array}\right] \in \mathbb{R}^{6 \times 4} \\
& \hat{\boldsymbol{\xi}} \mathbf{m}=\mathbf{m}^{\odot} \boldsymbol{\xi}
\end{aligned}
$$

SE(3) Identities

$$
\begin{aligned}
& T=\exp (\hat{\boldsymbol{\xi}})=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right] \\
& \operatorname{det}(T)=1 \\
& \operatorname{tr}(T)=2 \cos \|\boldsymbol{\theta}\|+2 \\
& \mathcal{T}=\operatorname{Ad}(T)=\exp \left(\begin{array}{l}
\hat{\boldsymbol{\xi}}
\end{array}\right)=\left[\begin{array}{cc}
\exp (\hat{\boldsymbol{\theta}}) & \left(J_{L}(\boldsymbol{\theta}) \boldsymbol{\rho}\right)^{\wedge} \exp (\hat{\boldsymbol{\theta}}) \\
\mathbf{0} & \exp (\hat{\boldsymbol{\theta}})
\end{array}\right] \\
& T \hat{\boldsymbol{\xi}}=\hat{\boldsymbol{\xi}} T \\
& \mathcal{T} \xi=\boldsymbol{\xi} \\
& (\mathcal{T} \zeta)^{\wedge}=T \hat{\zeta} T^{-1} \\
& \mathcal{T} \hat{\boldsymbol{\xi}}=\stackrel{\curlywedge}{\boldsymbol{\xi}} \mathcal{T} \\
& (\hat{\mathcal{T}} \boldsymbol{\zeta})=\hat{\mathcal{T}} \boldsymbol{\zeta} \mathcal{T}^{-1} \quad \boldsymbol{\zeta} \in \mathbb{R}^{6} \\
& \exp \left((\mathcal{T} \boldsymbol{\zeta})^{\wedge}\right)=T \exp (\hat{\boldsymbol{\zeta}}) T^{-1} \\
& \exp ((\hat{\mathcal{T} \boldsymbol{\zeta}}))=\mathcal{T} \exp (\hat{\boldsymbol{\zeta}}) \mathcal{T}^{-1} \\
& (T \mathbf{m})^{\odot}=T \mathbf{m}^{\odot} \mathcal{T}^{-1} \quad\left((T \mathbf{m})^{\odot}\right)^{T}(T \mathbf{m})^{\odot}=\mathcal{T}^{-T}\left(\mathbf{m}^{\odot}\right)^{T} \mathbf{m}^{\odot} \mathcal{T}^{-1}
\end{aligned}
$$

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Riemannian Manifold

- Riemannian manifold: a smooth manifold \mathcal{M} equipped with a (Riemannian) metric $\langle\cdot, \cdot\rangle_{p}: T_{p} \mathcal{M} \times T_{p} \mathcal{M} \mapsto \mathbb{R}$ that varies smoothly with p
- Riemannian manifolds allow generalizing the notion of Euclidean distance to curved surfaces
- The shortest path between two points in Euclidean space is a straight line
- The shortest path between two points on a Riemannian manifold \mathcal{M} is a geodesic, ie., the shortest continuous curve on \mathcal{M} connecting the two points
- Smooth manifold function: Let \mathcal{N} be a smooth n-manifold and \mathcal{M} be a smooth m-manifold. A function $f: \mathcal{N} \mapsto \mathcal{M}$ is smooth at $p \in \mathcal{N}$ if, for any charts (\mathcal{U}, ϕ) around p and (\mathcal{V}, ψ) around $f(p)$ with $f(\mathcal{U}) \subseteq \mathcal{V}$, its coordinate representation $\psi \circ f \circ \phi^{-1}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ is smooth at $\phi(p)$

Riemannian Gradient

- A vector field on a manifold \mathcal{M} is a map $V: \mathcal{M} \mapsto T \mathcal{M}$ such that $V(p) \in T_{p} \mathcal{M}$ for all $p \in \mathcal{M}$
- Riemannian gradient: Let $f: \mathcal{M} \mapsto \mathbb{R}$ be smooth on a Riemannian manifold \mathcal{M}. The Riemannian gradient of f is a vector field $\operatorname{grad} f: \mathcal{M} \mapsto T \mathcal{M}$ uniquely defined by:

$$
D f(p)[v]=\langle\operatorname{grad} f(p), v\rangle_{p}, \quad \forall(p, v) \in T \mathcal{M}
$$

- A retraction on a manifold \mathcal{M} is a smooth map $R: T \mathcal{M} \mapsto \mathcal{M}$ such that each curve $\gamma(t)=R_{p}(t v)$ satisfies $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$ for $(p, v) \in T \mathcal{M}$
- Let $f: \mathcal{M} \mapsto \mathbb{R}$ be a smooth function on a Riemannian manifold \mathcal{M} equipped with a retraction R. Then:

$$
\operatorname{grad} f(p)=\left.\nabla_{v} f\left(R_{p}(v)\right)\right|_{v=0}
$$

Relationship Between Riemannian and Euclidean Gradient

- Let \mathcal{M} be a Riemannian manifold with metric $\langle\cdot, \cdot\rangle_{p}$ embedded in Euclidean space \mathcal{E} with metric $\langle\cdot, \cdot\rangle$
- Orthogonal projection to $T_{p} \mathcal{M}$: linear map $\Pi_{p}: \mathcal{E} \mapsto T_{p} \mathcal{M}$ that satisfies:
- $\Pi_{p}\left(\Pi_{p}(u)\right)=\Pi_{p}(u)$ for all $u \in \mathcal{E}$
- $\left\langle u-\Pi_{p}(u), v\right\rangle=0$ for all $v \in T_{p} \mathcal{M}$ and $u \in \mathcal{E}$
- Let $f: \mathcal{E} \mapsto \mathbb{R}$ be a smooth function. Since its Euclidean gradient $\nabla f(p)$ is a vector in \mathcal{E} and $T_{p} \mathcal{M}$ is a subspace of \mathcal{E}, there is a unique decomposition:

$$
\nabla f(p)=\nabla f(p)_{\|}+\nabla f(p)_{\perp}
$$

where $\nabla f(p)_{\|}=\Pi_{p}(\nabla f(p)) \in T_{p} \mathcal{M}$ and $\left\langle\nabla f(p)_{\perp}, v\right\rangle=0$ for all $v \in T_{p} \mathcal{M}$

- Relationship between Riemannian and Euclidean gradient:

$$
\langle\operatorname{grad} f(p), v\rangle_{p}=\operatorname{Df}(p)[v]=\left\langle\nabla f(p)_{\|}, v\right\rangle=\left\langle\Pi_{p}(\nabla f(p)), v\right\rangle
$$

Riemannian Gradient Descent

- Consider an optimization problem with smooth objective function $f: \mathcal{M} \mapsto \mathbb{R}$ defined on a Riemannian manifold \mathcal{M} :

$$
\min _{x \in \mathcal{M}} f(x)
$$

- Riemannian gradient descent: given $x_{0} \in \mathcal{M}$ and retraction R on \mathcal{M} :

$$
x_{k+1}=R_{x_{k}}\left(-\alpha_{k} \operatorname{grad} f\left(x_{k}\right)\right)
$$

where the step size α_{k} is obtained via line search:

$$
\alpha_{k} \in \underset{\alpha>0}{\arg \min } f\left(R_{x_{k}}\left(-\alpha \operatorname{grad} f\left(x_{k}\right)\right)\right)
$$

Riemannian Gradient Descent Convergence

Let $f: \mathcal{M} \mapsto \mathbb{R}$ be smooth and bounded below, i.e., $f(x) \geq b$ for some $b \in \mathbb{R}$ and all $x \in \mathcal{M}$. Let the step size α_{k} ensure sufficient cost decrease for constant $c>0$:

$$
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq c\left\|\operatorname{grad} f\left(x_{k}\right)\right\|_{2}^{2}
$$

Then,

$$
\lim _{k \rightarrow \infty}\left\|\operatorname{grad} f\left(x_{k}\right)\right\|=0
$$

Lie Group Gradient Descent

- Consider $\min _{\mathrm{x}} f(\mathbf{x})$
- Gradient descent in $\mathbb{R}^{d}: \mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla f\left(\mathbf{x}_{k}\right)$
- The gradient of f can be identified from the first-order Taylor series:

$$
f(\mathbf{x}+\delta \mathbf{x}) \approx f(\mathbf{x})+\nabla f(\mathbf{x})^{\top} \delta \mathbf{x}
$$

- Consider $\min _{p \in \mathcal{G}} f(p)$
- On a Lie group \mathcal{G}, the exponential map $R_{p}(v)=p \exp (v)$ is a retraction that can be used to define $p+v$
- Gradient descent in $\mathcal{G}: p_{k+1}=p_{k} \exp \left(-\alpha_{k} \operatorname{grad} f\left(p_{k}\right)\right)$
- The Riemannian gradient of $f: \mathcal{G} \mapsto \mathbb{R}$ can be identified from:

$$
f(p \exp (v)) \approx f(p)+\langle\operatorname{grad} f(p), v\rangle_{p} \quad(p, v) \in T \mathcal{G}
$$

Example: Gradient Descent in $S O(3)$

- Consider $f(R, \mathbf{x})=\mathbf{x}^{\top} R^{\top} A R \mathbf{x}$
- Euclidean gradient with respect to x using Taylor series:

$$
\begin{aligned}
f(R, \mathbf{x}+\delta \mathbf{x}) & =(\mathbf{x}+\delta \mathbf{x})^{\top} R^{\top} A R(\mathbf{x}+\delta \mathbf{x}) \\
& =\mathbf{x}^{\top} R^{\top} A R \mathbf{x}+\mathbf{x}^{\top} R^{\top} A R \delta \mathbf{x}+\delta \mathbf{x}^{\top} R^{\top} A R \mathbf{x}+o\left(\|\delta \mathbf{x}\|_{2}^{2}\right) \\
& \approx f(R, \mathbf{x})+\underbrace{\mathbf{x}^{\top} R^{\top}\left(A+A^{\top}\right) R}_{\nabla f^{\top}} \delta \mathbf{x} \\
& \Rightarrow \nabla_{\mathbf{x}} f(R, \mathbf{x})=R^{\top}\left(A+A^{\top}\right) R \mathbf{x}
\end{aligned}
$$

- Verify using the product rule:

$$
\begin{aligned}
\frac{d}{d \mathbf{x}} f(R, \mathbf{x}) & =\mathbf{x}^{\top} R^{\top} A R \frac{d \mathbf{x}}{d \mathbf{x}}+\mathbf{x}^{\top} R^{\top} A^{\top} R \frac{d \mathbf{x}}{d \mathbf{x}} \\
& =\mathbf{x}^{\top} R^{\top}\left(A+A^{\top}\right) R \\
& \Rightarrow \nabla_{\mathbf{x}} f(R, \mathbf{x})=\left[\frac{d}{d \mathbf{x}} f(R, \mathbf{x})\right]^{\top}=R^{\top}\left(A+A^{\top}\right) R \mathbf{x}
\end{aligned}
$$

- Gradient descent: $\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} R^{\top}\left(A+A^{\top}\right) R \mathbf{x}_{k}$

Example: Gradient Descent in $S O(3)$

- Consider $f(R, \mathbf{x})=\mathbf{x}^{\top} R^{\top} A R \mathbf{x}$
- Riemannian gradient with respect to R using Taylor series:

$$
\begin{aligned}
f(R \exp (\hat{\psi}), \mathbf{x}) & =\mathbf{x}^{\top}(R \exp (\hat{\psi}))^{\top} A R \exp (\hat{\psi}) \mathbf{x} \\
& \approx \mathbf{x}^{\top}\left(I+\hat{\psi}^{\top}\right) R^{\top} A R(I+\hat{\psi}) \mathbf{x} \\
& =f(R, \mathbf{x})+\mathbf{x}^{\top} R^{\top} A R \hat{\psi} \mathbf{x}+\mathbf{x}^{\top} \hat{\psi}^{\top} R^{\top} A R \mathbf{x}+o\left(\|\boldsymbol{\psi}\|_{2}^{2}\right) \\
& \approx f(R, \mathbf{x})-\mathbf{x}^{\top} R^{\top} A R \hat{\mathbf{x}} \psi+(\hat{\boldsymbol{\psi}} \mathbf{x})^{\top} R^{\top} A R \mathbf{x} \\
& =f(R, \mathbf{x})-\mathbf{x}^{\top} R^{\top} A R \hat{\mathbf{x}} \psi-\psi^{\top} \hat{\mathbf{x}}^{\top} R^{\top} A R \mathbf{x} \\
& =f(R, \mathbf{x}) \underbrace{-\mathbf{x}^{\top} R^{\top}\left(A+A^{\top}\right) R \hat{\mathbf{x}}}_{\operatorname{grad} f^{\top}} \psi \\
& \Rightarrow \operatorname{grad} f(R, x)=\hat{\mathbf{x}} R^{\top}\left(A+A^{\top}\right) R \mathbf{x}
\end{aligned}
$$

- Riemannian gradient descent: $R_{k+1}=R_{k} \exp \left(-\alpha_{k}\left(\hat{\mathbf{x}} R_{k}^{\top}\left(A+A^{\top}\right) R_{k} \mathbf{x}\right)^{\wedge}\right)$

