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Measurable Space

I Experiment: repeatable procedure with a well-defined set of outcomes

I Sample space: set Ω of possible experiment outcomes
I Example: Ω = {HH,HT ,TH,TT} or Ω = { , , , , , }

I Event: subset A of the sample space Ω
I Example: A = {HH}, B = {HT ,TH}, A,B ⊆ Ω

I σ-algebra: set F of subsets of Ω closed under complementation and
countable union

I Borel σ-algebra: the smallest σ-algebra B containing all open sets from a
topological space Ω (needed because there is no translation invariant way to
assign a finite measure to all subsets of [0, 1))

I Measurable space: tuple (Ω,F), where Ω is a sample space and F is a
σ-algebra
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Probability Space

I Measure on (Ω,F): function µ : F → R satisfying:
I non-negativity: µ(A) ≥ 0 for all A ∈ F and µ(∅) = 0

I countable additivity: µ (∪iAi ) =
∑

i µ(Ai ) for countable number of sets
Ai ∈ F that are pairwise disjoint, i.e., Ai ∩ Aj = ∅

I Properties of measure µ on (Ω,F):
I subadditivity: µ (∪iAi ) ≤

∑
i µ(Ai ) for countable number of sets Ai ∈ F

I max{µ(A), µ(B)} ≤ µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B) ≤ µ(A) + µ(B)

I Probability measure: measure P : F → [0, 1] that satisfies P(Ω) = 1

I Probability space: tuple (Ω,F ,P), where Ω is a sample space, F is a
σ-algebra, and P is a probability measure
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Conditional and Totial Probability
I Conditional probability: P(A ∩ B) = P(A | B)P(B)

I Bayes rule: assume P(B) > 0

P(A | B) =
P(A ∩ B)

P(B)
=

P(B | A)P(A)

P(B)

I Total probability law: if {A1, . . . ,An} is a partition of Ω, i.e., Ω =
⋃

i Ai

and Ai ∩ Aj = ∅, ∀i 6= j , then:

P(B) =
n∑

i=1

P(B ∩ Ai )

I Corollary: if {A1, . . . ,An} is a partition of Ω, then:

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

I Independent events: P (
⋂

i Ai ) =
∏

i P(Ai )
I observing one event does not give any information about another
I disjoint events are not independent: observing one tells us that the other will

not occur
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Random Variable

I Random variable: function X : Ω→ Rn from (Ω,F) to (Rn,B) such that,
for every B ∈ B, the set A = {ω ∈ Ω | X (ω) ∈ B} is contained in F

I Cumulative distribution function (CDF) of random variable X : function
F (x) := P(X ≤ x) with the following properties:
I non-decreasing: x ≤ y (elementwise) ⇒ F (x) ≤ F (y)

I right-continuous: lim
x↓y

F (x) = F (y) for all y ∈ Rn

I lim
x1,...,xn→∞

F (x) = 1 and lim
xi→−∞

F (x) = 0 for all i

(a) Discrete CDF (b) Continuous CDF (c) Mixed CDF
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Random Variable
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CDF Examples
I X ∼ U([a, b])

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b

I X ∼ U({a, b})

F (x) =


0 x < a

1/2 a ≤ x < b

1 x ≥ b

I X ∼ Exp(λ) with λ > 0

F (x) =

{
0 x < 0

1− e−λx x ≥ 0

I X ∼ N (µ, σ2)

F (x) =
1√

2πσ2

∫ x

−∞
exp

(
−1

2

(y − µ)2

σ2

)
dy
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Probability Density Function

I Probability density function (pdf) of a continuous random variable
X : (Ω,F)→ (Rn,B): function p : Rn 7→ [0, 1] such that:

I p(x) ≥ 0

I
∫
p(x)dx = 1

I Intuition: the pdf p(x) of X behaves like a derivative of the CDF F (x):
I F (x) = P(X ≤ x) =

∫ x

−∞ p(y)dy

I P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
p(y)dy

I P(X = x) = limε→0

∫ x+εδx

x
p(y)dy = 0
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Probability Mass Function
I Integer set: Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
I Probability mass function (pmf) of a discrete random variable

X : (Ω,F)→ (Z, 2Z): function m : Z 7→ [0, 1] such that:

I m[i ] ≥ 0
I
∑

i∈Z m[i ] = 1

I Properties of the pmf m of X :
I F (i) = P(X ≤ i) =

∑
j≤i m[j ]

I P(a < X ≤ b) = F (b)− F (a) =
∑

a<j≤b m[j ]

I P(X = i) = m[i ] ∈ [0, 1]

I Dirac delta function:

δ(x) :=

{
∞ x = 0

0 x 6= 0

∫ ∞
−∞

f (x)δ(x)dx = f (0)

∫ ∞
−∞

δ(x)dx = 1

I A pdf can be defined for a discrete random variable X ∈ Z with pmf m using
the Dirac delta function:

p(x) =
∑
i∈Z

m[i ]δ(x − i)
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pdf and pmf Examples

I X ∼ U([a, b])

p(x) =


0 x < a

1
b−a a ≤ x ≤ b

0 x > b

I X ∼ U({a, b})

m[i ] =

{
1
2 i ∈ {a, b}
0 else

I X ∼ Exp(λ) with λ > 0

p(x) =

{
0 x < 0

λe−λx x ≥ 0

I X ∼ N (µ, σ2)

p(x) =
1√

2πσ2
exp

(
−1

2

(x − µ)2

σ2

)

11



Expectation and Variance

I Consider a random variable X with pdf p and a (measurable) function g

I The expectation of g(X ) is:

E [g(X )] =

∫
g(x)p(x)dx

I The variance of g(X ) is:

Var [g(X )] = E
[
(g(X )− E[g(X )]) (g(X )− E[g(X )])>

]
= E

[
g(X )g(X )>

]
− E[g(X )]E[g(X )]>

I The variance of a sum of random variables is:

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi ] +
n∑

i=1

∑
j 6=i

Cov [Xi ,Xj ]

Cov [Xi ,Xj ] = E
[
(Xi − E[Xi ])(Xj − E[Xj ])

>] = E
[
XiX

>
j

]
− E[Xi ]E[Xj ]

>
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Expectation and Variance Examples

I X ∼ U([a, b])

E[X ] =

∫
yp(y)dy =

1

b − a

∫ b

a

ydy =
b2 − a2

2(b − a)
=

1

2
(a + b)

Var [X ] =

∫
y2p(y)dy − E[X ]2 =

b3 − a3

3(b − a)
− 1

4
(a + b)2 =

1

12
(b − a)2

I X ∼ U({a, b})

E[X ] =
∑

i∈{a,b}

i m[i ] =
1

2
(a + b)

Var [X ] = E[X 2]− E[X ]2 =
1

2
(a2 + b2)− 1

4
(a + b)2 =

1

4
(b − a)2
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Expectation and Variance Examples
I X ∼ Exp(λ) with λ > 0

E[X ] =

∫ ∞
0

yλe−λydy
z=λy , dz=λdy

==========
1

λ

∫ ∞
0

ze−zdz

u=z, dv=e−zdz
===========
du=dz, v=−e−z

1

λ

((
−ze−z

) ∣∣∣∣∞
0

+

∫ ∞
0

e−zdz

)
=

1

λ
(0 + 1) =

1

λ

Var [X ] =

∫ ∞
0

y2λe−λydy − 1

λ2

z=λy , dz=λdy
==========

1

λ2

(∫ ∞
0

z2e−zdz − 1

)
u=z2, dv=e−zdz

============
du=2zdz, v=−e−z

1

λ2

((
−z2e−z

) ∣∣∣∣∞
0

+ 2

∫ ∞
0

e−zdz − 1

)
=

1

λ2

I X ∼ N (µ, σ2)

E[X − µ] =
1√
2π

∫ ∞
−∞

(y − µ)

σ
exp

(
−1

2

(y − µ)2

σ2

)
dy

z= (y−µ)2

2σ========
dz= (y−µ)

σ dy

1√
2π

(∫ µ2/2σ

∞
e−z/σdz +

∫ ∞
µ2/2σ

e−z/σdz

)
= 0
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Gaussian Distribution

I Gaussian random vector X ∼ N (µ,Σ)
I parameters: mean µ ∈ Rn, covariance Σ ∈ Sn

�0 (symmetric positive definite
n × n matrix)

I pdf: φ(x;µ,Σ) := 1√
(2π)n det(Σ)

exp
(
− 1

2
(x− µ)>Σ−1(x− µ)

)
I expectation: E[X ] =

∫
xφ(x;µ,Σ)dx = µ

I variance: Var [X ] = E
[
(X − E[X ]) (X − E[X ])>

]
= Σ

I Gaussian mixture X ∼ NM({αk}, {µk}, {Σk})
I parameters: weights αk ≥ 0,

∑
k αk = 1,

means µk ∈ Rn, covariances Σk ∈ Sn
�0

I pdf: p(x) :=
∑

k αkφ(x;µk ,Σk)

I expectation: E[X ] =
∫

xp(x)dx =
∑

k αkµk =: µ̄

I variance: Var [X ] = E
[
XX>

]
− E[X ]E[X ]>=

∑
kαk

(
Σk + µkµ

>
k

)
− µ̄µ̄>
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pdf of a Mixture of Two 2-D Gaussians
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Independent Random Variables

I The random variables {Xi}ni=1 with joint CDF F (x1, . . . , xn) and marginal
CDFs {Fi (xi )}ni=1 are jointly independent iff:

F (x1, . . . , xn) =
n∏

i=1

Fi (xi ), for all x1, . . . , xn ∈ R.

I The random variables {Xi}ni=1 with joint pdf/pmf p(x1, . . . , xn) and marginal
pdfs/pmfs {pi (xi )}ni=1 are jointly independent iff:

p(x1, . . . , xn) =
n∏

i=1

pi (xi ), for all x1, . . . , xn ∈ R.

I Let X and Y be random variables and suppose E[X ], E[Y ], and E[XY ] exist.
Then, X and Y are uncorrelated iff E[XY ] = E[X ]E[Y ] or equivalently
Cov [X ,Y ] = 0.

I Independence implies uncorrelatedness
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Conditional and Total Probability

I Total probability: If two random variables X ,Y have a joint pdf p(x , y), the
marginal pdf p(x) of X is:

p(x) =

∫
p(x , y)dy

I Conditional probability: If two random variables X ,Y have a joint pdf
p(x , y), the pdf p(x |y) of X conditioned on Y = y and the pdf p(y |x) of Y
conditioned on X = x satisfy

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

I Bayes rule: The pdf p(x |y) of X conditioned on Y = y can be expressed in
terms of the pdf p(y |x) of Y conditioned on X = x and the marginal pdf
p(x) of X :

p(x |y) =
p(y |x)p(x)

p(y)
=

p(y |x)p(x)∫
p(y | x ′)p(x ′)dx ′
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Joint and Marginal Distribution Example

I Suppose V = (X ,Y ) is a continuous random vector with density
pV (x , y) = 8xy for 0 < y < x and 0 < x < 1

I Let g(x , y) = 2x + y

I Determine E [g(V )]

I Evaluate E [X ] and E [Y ] by finding the marginal densities of X and Y and
then evaluating the appropriate univariate integrals

I Determine Var [g(V )]
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Joint and Marginal Distribution Example

E [2X + Y ] =

∫ 1

0

∫ x

0

(2x + y)8xy dydx =
32

15

pX (x) =

∫ x

0

8xy dy = 4x3 for 0 ≤ x ≤ 1

E [X ] =

∫ 1

0

xpX (x)dx =

∫ 1

0

4x4dx =
4

5

pY (y) =

∫ 1

y

8xy dx = 4y − 4y3 for 0 ≤ y ≤ 1

E [Y ] =

∫ 1

0

ypY (y)dy =

∫ 1

0

4y2 − 4y4dy =
8

15

Var [g(V )] = E
[
(g(V )− E [g(V )])2

]
= E

[(
2X + Y − 32

15

)2
]

=

∫ 1

0

∫ x

0

(
2x + y − 32

15

)2

8xy dydx =
17

75
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Conditional Probability Example

I Suppose that V = (X ,Y ) is a discrete random vector with probability mass
function:

pV (x , y) =



0.10 if (x , y) = (0, 0)

0.20 if (x , y) = (0, 1)

0.30 if (x , y) = (1, 0)

0.15 if (x , y) = (1, 1)

0.25 if (x , y) = (2, 2)

0 elsewhere

I What is the conditional probability that V is (0, 0) given that V is (0, 0) or
(1, 1)?

I What is the conditional probability that X is 1 or 2 given that Y is 0 or 1?

I What is the probability that X is 1 or 2?

I What is the probability mass function of X | Y = 0?

I What is the expected value of X | Y = 0?
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Conditional Probability Example

P (V ∈ {(0, 0)} | V ∈ {(0, 0), (1, 1)}) =
P (V ∈ {(0, 0)} ∩ {(0, 0), (1, 1)})

P (V ∈ {(0, 0), (1, 1)})

=
0.10

0.25
= 0.4

P (X ∈ {1, 2} | Y ∈ {0, 1}) = P (V ∈ {1, 2} × R | V ∈ R× {0, 1})

=
P (V ∈ {(1, 0), (1, 1)})

P (V ∈ {(0, 0), (0, 1), (1, 0), (1, 1)})
=

0.45

0.75
= 0.6

P (X ∈ {1, 2}) = P (V ∈ {1, 2} × R) = 0.7

pX |Y=0(x) =
pV (x , 0)∑

x′∈{0,1} pV (x ′, 0)
=

1

0.4
pV (x , 0) =

{
0.25 if x = 0

0.75 if x = 1

E [X | Y = 0] =
∑

x∈{0,1}

xpX |Y=0(x) = pX |Y=0(1) = 0.75
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Change of Density

I Convolution: Let X and Y be independent random variables with pdfs p
and q, respectively. Then, the pdf of Z = X + Y is given by the convolution
of p and q:

[p ∗ q](z) =

∫
p(z − y)q(y)dy =

∫
p(x)q(z − x)dx

I Change of Density: Let Y = f (X ) be random variables related by an
invertible function f such that dy =

∣∣det
(
df
dx (x)

)∣∣ dx . The pdf of py (y) of Y
and the pdf px(x) of X are related by change of variables:

P(Y ∈ A) = P(X ∈ f −1(A)) =

∫
f−1(A)

px(x)dx

=

∫
A

1∣∣det
(
df
dx (f −1(y))

)∣∣px(f −1(y))︸ ︷︷ ︸
py (y)

dy
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Change of Density Example

I Let X ∼ N (0, σ2) and Y = f (X ) = exp(X )

I Note that f (x) is invertible f −1(y) = log(y)

I The infinitesimal integration volumes for y and x are related by:

dy =

∣∣∣∣det

(
df

dx
(x)

)∣∣∣∣ dx = exp(x)dx

I Using change of density with A = [0,∞) and f −1(A) = (−∞,∞):

P(Y ∈ [0,∞)) =

∫ ∞
−∞

φ(x ; 0, σ2)dx =

∫ ∞
0

1

exp(log(y))
φ(log(y); 0, σ2)dy

=

∫ ∞
0

1

y

1√
2πσ2

exp

(
−1

2

log2(y)

σ2

)
︸ ︷︷ ︸

p(y)

dy
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Change of Density Example

I Let V := (X ,Y ) be a random vector with pdf:

pV (x , y) :=

{
2y − x x < y < 2x and 1 < x < 2

0 else

I Let T := (M,N) = g(V ) :=
(

2X−Y
3 , X+Y

3

)
be a function of V

I Note that X = M + N and Y = 2N −M and, hence, the pdf of V is
non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

det

(
dg

dv

)
= det

[
2/3 −1/3
1/3 1/3

]
=

1

3

I The pdf T is:

pT (m, n) =


1

|det( dg
dv (m+n,2n−m))|pV (m + n, 2n −m),

0 < m < n/2 and

1 < m + n < 2,

0, else.
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Structure of Robotics Problems
I Time: t (discrete or continuous)

I Robot state: xt (e.g., position, orientation, velocity)

I Control input: ut (e.g., force, torque)

I Observation: zt (e.g., image, laser scan, inertial measurements)

I Map state: mt (e.g., occupancy map)
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Markov Assumption
I The control inputs u0:t and observations z0:t are known (observable)

I The robot states x0:t and map states m0:t are unknown (partially observable)

I Overloaded notation: often, we consider the joint robot and map state
(xt ,mt) as a single random variable xt

I Markov Assumptions
I The state xt+1 only depends on the previous input ut and state xt , i.e., xt+1

given ut , xt is independent of the history x0:t−1, z0:t−1, u0:t−1

I The observation zt only depends on the state xt

I Motion Model: function f or equivalently probability density function pf
that describes the state xt+1 resulting from applying input ut at state xt :

xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut) wt = motion noise

I Observation Model: function h or equivalently probability density function
ph that describes the observation zt depending on xt

zt = h(xt , vt) ∼ ph(· | xt) vt = observation noise
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Joint Distribution Factorization

I The Markov assumptions induce a factorization of the joint probability
density function of the states x0:T , observations z0:T , and inputs u0:T−1:

p(x0:T , z0:T ,u0:T−1)

Conditional
=======

probability
p(zT |x0:T , z0:T−1,u0:T−1)p(x0:T , z0:T−1,u0:T−1)

Markov
=======
assumption

ph(zT |xT )︸ ︷︷ ︸
observation model

p(x0:T , z0:T−1,u0:T−1)

Conditional
=======

probability
ph(zT |xT )p(xT |x0:T−1, z0:T−1,u0:T−1)p(x0:T−1, z0:T−1,u0:T−1)

Markov
=======
assumption

ph(zT |xT ) pf (xT |xT−1,uT−1)︸ ︷︷ ︸
motion model

p(uT−1|xT−1)︸ ︷︷ ︸
control policy

p(x0:T−1, z0:T−1,u0:T−2)

= · · ·

= p(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T−1∏
t=0

pf (xt+1 | xt ,ut)︸ ︷︷ ︸
motion model

T−1∏
t=0

p(ut | xt)︸ ︷︷ ︸
control policy
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Bayes Filter

I Bayes filter: a probabilistic inference technique for estimating the state xt of
a dynamical system by combining evidence from control inputs ut and
observations zt using the Markov assumptions, conditional probability,
total probability, and Bayes rule

I The Bayes filter keeps track of:
I Predicted pdf: pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

I Updated pdf: pt+1|t+1(xt+1) := p(xt+1 | z0:t+1, u0:t)

I Special cases of the Bayes filter:
I Particle filter

I Kalman filter

I Forward algorithm for Hidden Markov Models
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Bayes Filter Prediction and Update Steps

I Starting with a prior pdf pt|t(xt), the Bayes filter uses a prediction step to
obtain a predicted pdf pt+1|t(xt+1) by incorporating information about the
motion model pf and input ut and an update step to obtain an updated pdf
pt+1|t+1(xt+1) by incorporating information about the observation model ph
and observation zt+1

I Prediction step: given a prior pdf pt|t of xt and control input ut , use the
motion model pf to compute the predicted pdf pt+1|t of xt+1:

pt+1|t(x) =

∫
pf (x | s,ut)pt|t(s)ds

I Update step: given a predicted pdf pt+1|t of xt+1 and measurement zt+1,
use the observation model ph to obtain the updated pdf pt+1|t+1 of xt+1:

pt+1|t+1(x) =
ph(zt+1 | x)pt+1|t(x)∫
ph(zt+1 | s)pt+1|t(s)ds
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Bayes Filter Illustration
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Bayes Filter Derivation

pt+1|t+1(xt+1) =p(xt+1 | z0:t+1,u0:t)

Bayes
====

rule

1

ηt+1
p(zt+1 | xt+1, z0:t ,u0:t)p(xt+1 | z0:t ,u0:t)

Markov
=======
assumption

1

ηt+1
ph(zt+1 | xt+1)p(xt+1 | z0:t ,u0:t)

Total
=======
probability

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1, xt | z0:t ,u0:t)dxt

Conditional
=======

probability

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1 | z0:t ,u0:t , xt)p(xt | z0:t ,u0:t)dxt

Markov
=======
assumption

1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt ,ut)p(xt | z0:t ,u0:t−1)dxt

=
1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt

I Normalization constant: ηt+1 = p(zt+1 | z0:t ,u0:t)
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Bayes Filter Summary

I Motion model: xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut)

I Observation model: zt = h(xt , vt) ∼ ph(· | xt)

I Filtering: recursive computation of p(xT |z0:T ,u0:T−1) that tracks:
I Updated pdf: pt|t(xt) := p(xt | z0:t , u0:t−1)

I Predicted pdf: pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

I Bayes filter:

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t ,u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt︸ ︷︷ ︸

Update
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Bayes Smoother

I Recursive computation of a pdf p(x0:T |z0:T ,u0:T−1) over the whole state
trajectory x0:T instead of only the most recent state xT

I The Bayes smoother keeps track of:
I Smoothed pdf: pt|T (xt) := p(xt | z0:T , u0:T−1) for t ∈ {0, . . . ,T}

I Forward pass: compute p(xt+1 | z0:t+1,u0:t) and p(xt+1 | z0:t ,u0:t) for
t = 0, . . . ,T via the Bayes filter

I Backward pass: for t = T − 1, . . . , 0 compute:

p(xt | z0:T ,u0:T−1)
Total

=======
Probability

∫
p(xt | xt+1, z0:T ,u0:T−1)p(xt+1 | z0:T ,u0:T−1)dxt+1

Markov
========
Assumption

∫
p(xt | xt+1, z0:t ,u0:t)p(xt+1 | z0:T ,u0:T−1)dxt+1

Bayes
====

Rule
p(xt | z0:t ,u0:t−1)︸ ︷︷ ︸

forward pass

∫ [ motion model︷ ︸︸ ︷
pf (xt+1 | xt ,ut) p(xt+1 | z0:T ,u0:T−1)

p(xt+1 | z0:t ,u0:t)︸ ︷︷ ︸
forward pass

]
dxt+1
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Histogram Filter
I Histogram filter: implementation of the Bayes filter for discrete random

variable xt that belongs to a discrete set X

I In this case, we can work with probability mass functions (pmfs) mt|t [x],
mt+1|t [x], and mf [x′|x,u] over the discrete set X

I Due to the connection between a pdf and a pmf, integration in the Bayes
filter reduces to summation

I Prediction step: given prior pmf mt|t and input ut , use the motion model
mf to compute a predicted pmf mt+1|t :

mt+1|t [xt+1] =
∑
s∈X

mf [xt+1 | s,ut ]mt|t [s]

I Update step: given predicted pmf mt+1|t and observation zt+1, use the
observation model ph to obtain an updated pmf mt+1|t+1:

mt+1|t+1[xt+1] =
ph(zt+1 | xt+1)mt+1|t [xt+1]∑

s∈X ph(zt+1 | s)mt+1|t [s]
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Efficient Histogram Filter Prediction

I Let X be a regular grid discretization of Rd

I Motion model: x′ = f [x,u] + w

I Assume bounded “Gaussian” noise w

I Prediction step:
I shift the prior pmf data mt|t [x] at each grid index x ∈ X to a new grid index x′

according to the motion model x′ = f [x, u]

I convolve the shifted grid values with a separable Gaussian kernel:

I This reduces the prediction step cost from O(n2) to O(n) where n is the
number of grid cells in X
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Adaptive Histogram Filter

I The accuracy of the histogram filter is limited by the size of the grid X

I A high-resolution grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in the
number of dimensions

I Adaptive Histogram Filter: represents the pmf via adaptive discretization,
e.g., an octree data structure
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Histogram Filter Localization
I Robot Localization Problem: Given a map m, a sequence of inputs u0:t−1,

and a sequence of measurements z0:t , infer the state of the robot xt

Prior:

Update:

Predict:

Update:
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