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Manifolds and Matrix Lie Groups



Topology

v

Topology on set X is a set T of subsets of X, called open sets, such that:
» X and () are open
> finite intersection of open sets is open
» uncountably infinite union of open sets is open

Topological space: set X' with topology 7

Hausdorff space: topological space X such that Vx,y € X with x # y there
exists disjoint neighborhoods U/ of x and V of y

Separable space: topological space X with a countable dense subset, i.e.,
there exists a sequence in X’ such that every non-empty open set contains at
least one element of the sequence

Second-countable space: topological space X with a countable base, i.e.,
countable collection of open sets that can express any open set as a union



Manifold

» Homeomorphism: continuous bijective function f : X — ) between two
topological spaces with continuous inverse f 1

» Topological n-manifold: Hausdorff second-countable topological space M
such that every p € M has a neighborhood ¢ homeomorphic to an open
subset of R”

» Chart on M: pair (U, @) such ¢ : U C M +— YV CR" is a homeomorphism
» Atlas on M: set of charts {(Uq, ¢o)},, that cover M
> Coordinates of p € M: elements ¢(p) € R" of a chart (U, ¢) containing p

» Smooth n-manifold: the change of coordinates function
¢p o ¢5t R — R" between any charts (Ua, ¢o) and (Us, ¢5) with
Uy NU5 # O is infinitely differentiable

» An open subset of a smooth n-manifold is a smooth n-manifold

» The product of smooth n; and n, manifolds is a smooth (n; 4+ nz)-manifold



Manifold




Embedded Submanifold
» Directional derivative: of f : R" — R at p € R” in direction v € R™:

DF(p)[v] = lim PF V) = f(P)

t—0 t

> A nonempty subset M of d-dimensional Euclidean space £ is a smooth
embedded submanifold of dimension n < d such that either

1. n=d and M is an open set in &, called an open submanifold, or

2. n=d — k and, for each p € M, there exists a neighborhood U, in £ and a
smooth function h : U, — R¥ such that
2.1 if y € Up, then y € M iff h(y) =0
2.2 rank(Dh(p)) = k (rank is the range space dimension)

The function h is called a local defining function for M at p.

» Example:

> unit sphere S := {x eR?: x"x= 1} is an embedded submanifold of R?

> S9! has local defining function h(x) = x"x — 1

> the directional derivative of h is Dh(x)[v] = 2x v and has rank k = 1
> the dimension of S 'isn=d -1



Tangent Space

>

>

How should directional derivative be defined for f : M — R?

For p € M, the operation p + tv may not be defined. Instead, use a curve
v : R+~ M such that v(0) = p.

Let C*°(U,, R) be the set of smooth real-valued functions defined on a
neighborhood U, of a point p on a manifold M. A tangent vector v, to M
at p is a function from C>°(U,,R) to R such that there exists a curve
v : R +— M with 4(0) = p and:
df (y(t))
volf] =

dt =0

Tangent space to M at p: set T, M of all tangent vectors v, to M at p



Tangent Space of Embedded Submanifold

> If M is an embedded submanifold, then v € T, M if and only if there exists
a smooth curve v on M passing through p with velocity v:

ToM = {ZZ(OHW:IHM and W(O):p}

where 7 is any open interval containing t = 0.

» Let M be an embedded submanifold of Euclidean space €.
» If M is an open submanifold of £, then T,M = €£.

» Otherwise, T, M = ker(Dh(p)) for any local defining function h at p.



Tangent Space
> Tangent space T,M: set of all tangent vectors to M at p

> The tangent space T,M is a vector space of the same dimension as M and
can be equipped with an inner product (-,-), : TpM x ToM — R

» Tangent bundle of M: disjoint union of the tangent spaces of M:
TM={(p,v)|pe M,ve T,M}




Unit Sphere

T,S¢ !

> S9li={xeR?:x"x=1}

> TSt ={veR?:x"v=0}
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Lie Group

> A group is a set G with an associated composition operator ® that satisfies:
» Closure: a®@ be G, Va,be g

> Identity element: Je € G (unique) such thate®@a=a0e=a
> Inverse element: for a € G, 3b € G (unique) such thata©@b=boa=¢e
>

Associativity: (a©b)Oc=a0(b®c¢), Va,b,c,e g

» The notion of a group is weaker than a vector space because it does not
require commutativity and does not have scalar multiplication and its
associated axioms (compatibility, identity, inverse, distributivity)

> General linear group GL(n; C): the set of all invertible matrices in C"*"

» A subgroup of group G is a subset that contains the identity of G and is
closed under group composition and inverse

> Lie group: set G that is both a smooth manifold and a group with smooth
composition ® : G x G+ G and inverse (:)"1: G+ G

> Matrix Lie group: subgroup of GL(n; C) and embedded submanifold of C"*"
11



Lie Algebra

» A Lie algebra is a vector space g over some field F with a binary operation,
[,-] : 8 X g+ g, called a Lie bracket

> Forall X,Y,Z e ganda,be F, the Lie bracket [-,-] : g X g +— g satisfies:

bilinearity : [aX + bY, Z] = a[X, Z] + b]Y, Z]
[Z,aX + bY] = a[Z,X] + b[Z,Y]
skew-symmetry : X,Y]=-[Y,X]
Jacobi identity :  [X,[Y,Z]| +[Y.[Z. X]] +[Z,[X, Y]] =0

» The adjoint adx : g — g of a Lie algebra at X € g is:
adx(Y) = [X, Y]

> Example: R3 with [x,y] = x x y is a Lie algebra
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Lie Group and Lie Algebra

>

>

Each matrix Lie group G has an associated Lie algebra g

The Lie algebra g of a matrix Lie group G is the set of all matrices X whose
matrix exponential exp(tX) is in G for all t € R:

g={X|exp(tX) € G, Vt € R}

The Lie algebra g of a Lie group G is the tangent space at identity T;G
> For X € g, let y(t) = exp(tX) such that v(0) = / and +/(0) = X

The adjoint Ada : g+— gof aLiegroupGat AeGis:
Ada(Y) = AYA™!

The algebra adjoint adx is the derivative of the group adjoint Ads at A= 1I:

d
Adexp(X) = exp(adx) adx = EAdexp(tX)
t=0
Let G be a matrix Lie group with Lie algebra g. For X, Y € g:
> tX cgforallteR
> X+Yeg
> adx(Y)=[X,Y]=XY -YXeg
> Ada(X)=AXA lcgforall Ac g
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Lie Group and Lie Algebra

» The exponential and logarithm maps relate a matrix Lie group G with its

Lie algebra g:
0 1 . o] _1)n-1L .
exp(A) =) —A log(A) =) %(A -1
n=0 " n=1

> Theorem: Let V. = {X € C"*" | || X|| < €} and U = exp(V.). Suppose G is
a matrix Lie group with Lie algebra g. Then, there exists € € (0, log2) such
that for all A€ U, A € G if and only if log(A) € g.

Lie algebra corresponding to the
~ tangent space at identity

T,SE(3) = 50(3,D)

Jlog

SE(3) = SO(3,D)

~ Manifold belonging to the
Lie group of the Euclidean motions

Figure: SE(3) and corresponding Lie algebra se(3) as tangent space at identity
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Outline

S0O(3) Geometry
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Special Orthogonal Lie Group SO(3)

> SO3):={ReR¥>3|RTR=1, det(R) =1}
> SO(3) is a group:
» Closure: RiR, € SO(3)
> Identity: / € SO(3)
> Inverse: R™' = R' € SO(3)
> Associativity: (RiR2)R3 = Ri(R:R3) for all Ri, Rz, Rs € SO(3)
» SO(3) is an embedded submanifold of R3*3 with local defining function:
h(R) = (RTR — I,det(R) — 1)
> The tangent space of SO(3) is:
TRSO(3) = ker(Dh(R)) = {V e R¥*3 | RTV + VTR =0, tr(R" V) =0}

> SO(3) is a matrix Lie group
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Special Orthogonal Lie Algebra s0(3)
> The Lie algebra of SO(3) is the space of skew-symmetric matrices:
50(3) = T;S0(3) = {6 e R>*3 | 9 ¢ R%}
> The Lie bracket of s0(3) is:

~

~ ~ ~ ~ A ~ A\
[01,00] = 0,0, — 8,0, = (0102) € 50(3)

> The elements R € SO(3) are related to the elements § € so0(3) through the
exponential and logarithm maps:

> 1 sin[|0] 4 1—cos||0]\ A2
= — 9 — 10
=ew(®)=>_ (6 < I ASRNEE

n=0
o~ (-1 16]]

6 =log(R)=)_ . (R—I)":2Sin”0”(R—RT)

n=1
tr(R) —1
||| = arccos (r(é)
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Distance in SO(3)

» What is the distance between two rotations Ry, Ry € SO(3)?

> Inner product on so(3):

~

A 1 AT A
(01,02) = S tr (01 02) ~ 9]0,

> Geodesic distance on SO(3): the length of the shortest path between R;
and R, on the SO(3) manifold is equal to the rotation angle ||@12||2 of the
axis-angle representation 61, of the relative rotation Ry, = I-?lT Ry:

012 = |Og (R;R2)V

dy(Ry, Ro) = 1/ (012,012) = [|612]|> =

tr(Ry Ry) — 1
arccos <r(122)>’
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Distance in SO(3)

> Chordal distance on SO(3):

de(R1, Ra) = Ry — Rolle =/t (R — R2)T(Ry — R»)) Q\f‘ <| 1z|>'

Figure: (a) Geodesic and (b) chordal distance in SO(2)
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Baker-Campbell-Hausdorff Formulas
> The left Jacobian of SO(3) is the matrix:

oo

i1)! (8)" R=1+0J.(6)
n=0

» The right Jacobian of SO(3) is the matrix:

0%ty (0 RO s

n=

> Baker-Campbell-Hausdorff Formulas: the SO(3) Jacobians relate small
perturbations 40 in so0(3) to small perturbations in SO(3):

exp (6 +66)") ~ exp(B) exp ((Jr(6)56)")
NeXP(( 1(6)56)") exp(8)

JL(92)_101 + 6> if B is small

| 0 9,)) ~
og(exp(6r) exp(02)) {01+JR(01)—192 if 0, is small
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Closed-forms of the SO(3) Jacobians

1~ cos|0] 100 —sin 0]\ ;2 1,
9) =1 il AR -0 " 110 =]+ -6
I(6) *( o )T e 2

_ 1, 1 1+ cos |6 1,
l_y_Z _ ~l—
$(6) 20" (||e||2 enanter)® ' 30

+

1 cos||0> (|0||—sm||0||)A 1,
(PSP 8% ) - 2
( Tk GE 2

1 1 1+cos||0] \ 52 1,

Jr(0)” 2"*(”0”2 2efsinger)? =20

2
-

J(0)4(0)T =1 + (1 - 21”:"'52.”(’”) 8~ 0
< 1 —cos||0]]
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Integration in SO(3)

~

> The geodesic distance between a rotation R = exp(6) and a small
perturbation exp((0 + 86)") can be approximated using the BCH formulas:

log (exp(@)T exp((0 + 5¢9)A)>v ~ log (RT Rexp ((Jr(6)50)"))" = Jr(6)50

» This allows to define an infinitesimal volume element:

1 —cos||@]|

dR = | det(Jr(0))[|dO = 2 ( 16]2

) d0  det(Jg(0)) = det(J.(0))

> Integrating functions of rotations can be carried out as follows:

/50(3) F(R)dR = /|e|<7r f <exp(9)> | det(Jr(0))|d0
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Adjoint SO(3) Lie Group and Lie Algebra

» The adjoint operator Ady : g — g represents the elements A of a Lie group G
as linear transformations on the Lie algebra g

» The adjoint Adgr at R € SO(3) transforms & € so(3) from one coordinate
frame (e.g., body frame) to another (e.g., world frame):

Adr(&) = ROR™ = (Rw)"

> The adjoint operator Adr(&®) is linear and can be represented as a matrix R
acting on w € R®

> The space of adjoint operators on SO(3) is a matrix Lie group
Ad(S0(3)) = SO(3) with associated Lie algebra ad(so(3)) = s0(3)
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Outline

SE(3) Geometry
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Special Euclidean Lie Group SE(3)

> SE(3) = {T: [ORT '1’] € RAx4

R € SO(3),p € R3}

> SE(3) is a group:
. _|Ri p1| |Re p2| _ |RiR2 Rip2+p1
> CIOSure. T1T2 = |:OT 1:| |:0T 1:| = |: OT 1 :| c 5E(3)
> Identity: | € SE(3)
R p ! RT —R'p
> N =
Inverse: {OT 1} {OT 1 € SE(3)

» Associativity: (T172) T3 = T1(T2T3) for all Ty, T2, T3 € SE(3)

> SE(3) is an embedded submanifold of R***

> SE(3) is a matrix Lie group
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Special Euclidean Lie Algebra se¢(3)

» The Lie algebra of SE(3) is the space of twist matrices:

-[gex)

A N .
[élvéZ] :é122 _ézé1 = <§1§2> € se(3) £ = [g g} € RO%6

se(3) := T;SE(3) = {é — {g g] c RAX4

> The Lie bracket of se(3) is:

> The elements T € SE(3) are related to the elements & € se¢(3) through the
exponential and logarithm maps:

— o)=Y (@)

§=log(T) =) (=1
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Exponential Map from s¢(3) to SE(3)

> Exponential map exp : s¢(3) — SE(3): has closed-form expression obtained
. a4 22
using £ +6]1°6” = 0:

= oo = (730 M) =5 Te

o 1—cos||9|>A2 (|0|—sin||0|>A3

- i | nall} 1Yl = sIn 9]
*“( AR EEA

» The exponential map is surjective but not injective, i.e., every element of
SE(3) can be generated from multiple elements of se(3)

> Logarithm map log : SE(3) — se(3): for any T € SE(3), there exists a
(non-unique) & € R such that:

B 0 =log(R)Y, p=J "(8)p, ifR#I,
g_[ﬂ] o&(T)" {H—O,p—p, ifR=1.
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Distance in SE(3)

» Inner product on se(3):
- . 1 0],
Gt - (&g 1)) -de

> Distance on SE(3): induced by the inner product on se(3) evaluated at the
vector representation &, of the relative pose T2 = T1’1T2:

&1 = log( Tl_l T2)V

d(Tla T2) - <§12a§12> = ||€12||2
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Baker-Campbell-Hausdorff Formulas

> Left Jacobian of SE(3): J.(&) = {JL(()O) S)f((g))]

> Right Jacobian of SE(3): Jr(£) = {JR(SO) ?:((g))}

> Baker-Campbell-Hausdorff Formulas: the SE(3) Jacobians relate small
perturbations 0€ in se(3) to small perturbations in SE(3):

exp ((€ + 3€)" ) (E)exp((JR( £)3€)")
xp ((TL(€)3€)") exp(é)

Ji(&) e, + &, if & is small

log(exp(&1) exp(&5))Y ~ {61 + Jr(&;)71E, if &, is small
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Closed-forms of the SE(3) Jacobians

o~ 1 Ju(0) Qu(¢ )
Jue) = ;(Hl [ 0 J(6)
4—|@]lsin[[0]| —4C°SH9H> 4 <4H0H —5sin [|6]] + [|0]] COSH9||> 42
=1+ +
2]10]12 ¢ 2|e)® ¢
. <2 101 sin [|6]] —2605\\9H> <2H9H —3sin||@] + [|0]] COSH9|\>
2|0l 2|°
1A
~ g
o [I(O)t —U(8)1Qu(€) () ! 14
JuE) 1 = { L(o) L( )JL(GL)(Q 1.(6) } ~ - o
oo 00 1 i am
QE=> miay? P
n=0 m=0
1, 8] —sin [|0]| AB L A 611 +2cos B =2\ (42, | +22 57
§p+ < e 0p+p0+0p0) + W (0 p+pb 30p0)
2[10] —3sin [[0] + 1€l cos 101\ (552 | 224
+ ( 2107 <0p9 +0 pe)

Qr(€) = Qu(—€) = RQL(&) + (JL(8)p)"RIL(O)

30



Integration in SE(3)

~

> The distance between a pose T = exp(&) and a small perturbation
exp((& + 0¢)") can be approximated using the BCH formulas:

og (exp(@) " exp((€ +66)")) = Tr(€)0¢

» This allows to define an infinitesimal volume element:

2
dT = | det(Tr(€))|d€ = |det(Jr(8))2dE = 4 <1—”C;SQ|0||> dé

» Integrating functions of poses can then be carried out as follows:

/55(3) AT)eT = /qu f (exp(&)) |det(Tr(€))Ide
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Adjoint SE(3) Lie Group and Lie Algebra

> The adjoint Adr at T € SE(3) transforms ¢ € s¢(3) from one coordinate
frame to another:

Adr($)=TCT ™ =(T¢)"
» The adjoint operator Ady is linear and can be represented as a matrix 7

acting on ¢ € RS:
T = {’g Plf} c R6%6

> The space of adjoint operators on SE(3) is a matrix Lie group:

T— {ORT ﬂ € 55(3)}

~[ex)

Ad(SE(3)) = {T: {’g ﬁﬂ < ROX6

» The Lie algebra associated with Ad(SE(3)) is:

[é ’:)] € RO*®

ad(se(3)) = {5 o

32



Rodrigues Formula for the Adjoint of SE(3)

A A A
» Rodrigues Formula: using (£)° + 2||0]12(£)3 + ||0]|*¢ = 0 we can obtain a

direct expression of T € Ad(SE(3)) in terms of £ = [g] € RS

B o [£) — [exP(8)  (Ju(0)p) exp(B)] _ <014,
T=Ad(T)=e p(5> [ A oo(8) } > (9

n=0
3sin]0]] - 6] cosne) ) (4 |10y sin]j6]] - 4cose||) s,
=1+ ( £+ 3
276 e (&)
sin ||0||—||0||cos||0||) . <2—||0||sin|0||—2cos|o||> A
+ £) + 13
< GE (&) R (&)

> The exponential map is surjective but not injective, i.e., every element of
Ad(SE(3)) can be generated from multiple elements of ad(se(3))
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Distance in Ad(SE(3))

» Inner product on ad(se(3)):
AA A Tl 01T -
(£1,€7) =1tr <§1 [‘b 1,] €2> =& &
2

> Distance on Ad(SE(3)): induced by the inner product on ad(se(3))

A
evaluated at the vector representation £, of 712 = 7'1717'2:
—1 Y
1o =log (T7 ' T2)

d(7-177—2) = <§12,§12> = ||£12||2
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Pose Lie Groups and Lie Algebras

Lie algebra Lie group

4x4 ¢ ese(3) L, TeSE®3)

|ad |Ad

exp

6x6 £ cad(se(3)) —— T € Ad(SE(3))
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s¢(3) Identities

e=fo] <o g emwm=fg] =g Fex

ce=—&c ¢ RS
£€=0
é4+(STS)é2:O scR3

(2)5 L2(sTs) (2)3 (58 E=0

o) A ®
o |s|” _[Al -8 4x6 o._|s| _ [0 s 6x4

ém _ m@€ mTé — sTm@
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SE(3) Identities

T = exp (£) = [ex; (9)

T = Ad(T) = exp (2) = {

TE=ET
TE=¢
(TQ)" =T¢T™
exp ((T€)") = Texp (&) T

(Tm)® = Tm®71

det(T) =1
tr(T) = 2cos||0] + 2

exp (8)  (Ju(0)p) " exp (B)

oo (9) ]

A A
TE=ET
(TQ) =TT ¢ers

exp ((Tb) — Texp (2) 71

((Tm)) " (Tm)® =77 (m®) " o7
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Outline

Manifold Optimization
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Riemannian Manifold

Riemannian manifold: a smooth manifold M equipped with a
(Riemannian) metric (-,-), : TpM x TpM — R that varies smoothly with p

Riemannian manifolds allow generalizing the notion of Euclidean distance to
curved surfaces

The shortest path between two points in Euclidean space is a straight line

The shortest path between two points on a Riemannian manifold M is a
geodesic, i.e., the shortest continuous curve on M connecting the two points

Smooth manifold function: Let N be a smooth n-manifold and M be a
smooth m-manifold. A function f : '+ M is smooth at p € A/ if, for any
charts (U, ¢) around p and (V, ) around f(p) with f(U/) C V, its coordinate
representation ) o f o =1 : R" — R™ is smooth at ¢(p)
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Riemannian Gradient

> A vector field on a manifold M is a map V : M +— TM such that
V(p) € ToM for all pe M

> Riemannian gradient: Let f : M — R be smooth on a Riemannian
manifold M. The Riemannian gradient of f is a vector field
grad f : M +— T M uniquely defined by:

Df(p)lv] = (grad f(p), v)p, ~ V(p,v) € TM

> A retraction on a manifold M is a smooth map R : T M +— M such that
each curve v(t) = R,(tv) satisfies v(0) = p and +/(0) = v for (p,v) € TM

» Let f : M — R be a smooth function on a Riemannian manifold M
equipped with a retraction R. Then:

grad f(p) = va(Rp(V))|v:0
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Relationship Between Riemannian and Euclidean Gradient

> Let M be a Riemannian manifold with metric (-,-), embedded in Euclidean
space & with metric (-, -)

> Orthogonal projection to T,M: linear map I, : £ — T, M that satisfies:
> My(Mp(u)) =Np(u) for all u e &
> (u—TMp(u),v)=0forallve TpM andue &

> Let f: & +— R be a smooth function. Since its Euclidean gradient V£ (p) is a
vector in £ and T, M is a subspace of &, there is a unique decomposition:

Vi(p) = VE(p)) + VF(p)L
where Vf(p) = Ny(Vf(p)) € TopM and (VF(p)L,v) =0 forall ve T,M

» Relationship between Riemannian and Euclidean gradient:

(grad f(p), v)p = Df (p)[v] = (V£ (p)y, v) = (Mp(V£(p)), v)
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Riemannian Gradient Descent
» Consider an optimization problem with smooth objective function f : M — R
defined on a Riemannian manifold M:

min f(x)

xeM
» Riemannian gradient descent: given xp € M and retraction R on M:

Xk+1 = Ry, (—ak grad f(xx))
where the step size «ay is obtained via line search:

ak € argmin f(Ry, (—agrad f(xx)))
a>0

Riemannian Gradient Descent Convergence

Let f : M — R be smooth and bounded below, i.e., f(x) > b for some b € R and
all x € M. Let the step size ay ensure sufficient cost decrease for constant ¢ > 0:

f(xi) — F(xie1) > cll grad £ (i) I3

Then,

lim || grad f(xx)|| = 0.
k— 00




Lie Group Gradient Descent

>

>

Consider miny f(x)
Gradient descent in RY: x; 1 = xx — ax VF(xk)
The gradient of f can be identified from the first-order Taylor series:

f(x + 6x) = f(x) + VF(x) " dx

Consider minpeg f(p)

On a Lie group G, the exponential map R,(v) = pexp(v) is a retraction that
can be used to define p+ v

Gradient descent in G: py1 = pxexp(—ax grad f(px))

The Riemannian gradient of f : G — R can be identified from:

f(pexp(v)) = f(p) + (grad f(p),v),  (p,v) € TG
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Example: Gradient Descent in SO(3)
» Consider f(R,x) =x' RTARx

» Euclidean gradient with respect to x using Taylor series:

f(R,x 4 6x) = (x + 6x) "RT AR(x + 6x)

=x' RTARx +x"RTARSx + 6x' RT ARx + o(||6x|3)

~ f(R,x)+x"'RT(A+ AT)R6x
N—— —
VT
= V,f(R,x) = RT(A+ A")Rx

» Verify using the product rule:

d _ TpTApdX | T T T pdX
dxf(R,x)_x R ARdx+x R'A Rdx
=x'RT(A+ANR

d T
= V,f(R,x) = {dxf(R,x)} =RT(A+AT)Rx

» Gradient descent: X411 = xx — xR (A+ AT)Rx,
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Example: Gradient Descent in SO(3)
» Consider f(R,x) = x" RTARx

» Riemannian gradient with respect to R using Taylor series:

~ A\ T ~
F(Rexp(),x) = (Rexp(w)) AR exp(ih)x
~xT (1 4+ JRTAR( + $)x

— f(R,x) + x"RTARDx + x" 9 RTARx + o(||%|2)
~ f(R,x) —x' RTARXy + (¢x) " RT ARx
= f(R,x) —x"RTAR%Y — ' & RT ARx
= f(R,x) —x' RT(A+ AT)Rxp
grad f T

= grad f(R,x) = %R (A+ A")Rx

» Riemannian gradient descent: Ry = Ry exp (—ak (*R (A+ AT)ka)A)
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