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Extended Kalman Filter Summary



Kalman Filter

Prior:

Motion model:

Observation model:

Prediction:

Update:

Kalman gain:

Xt | Zo:.t, Up:t—1 ~~ N(ut\tv Zt|t)
Xty1 = FXt + Gut + Wi, W; NN(O, W)

Z; = th + Vi, V¢ "V./\/(O7 V)

Hig1e = Fpye + Gue
zt+1\t = th\tFT + W

Miya)ee1 = Meg1e + Kir1)e(zer1 — H/’"H—l\t)
Zt+1\t+1 = (/ - Kt+1|tH)Zt+1\t

-1
Kt+1\t = zt+1\tHT (Hzt+1|tHT =+ V)



Extended Kalman Filter

Prior: X | Zy:t, Ug:p—1 ™ N(Nt\ta Zt|t)

Xt41 = f(Xt, ut7wt)7 Wi ~ N(0> W)

Motion model: df df
Fe:= a(/’l’t\ta u;,0), Q:= d—w(uﬂt,ut,O)
2 = h(xe,ve), Ve~ N(0,V)
Observation model: dh dh
Hy = E(”f\tfl’O)V Re = E(p’ﬂtflao)
= f b u b 0
Prediction: Hreia)e (1212 Tf ) .
zH—l\t = tht|tFt + Q: WQt
Update: Pertjenn = Bepae + Kepaje(Zen = b(Bei)e:0))

Zt+1\t+1 = (/ - Kt+1|th+1)Zt+1|t

. -1
Kalman gain: Kiie == Zt+1|thT+1 (Ht+12t+1|thT+1 + Rit1 VRtTH)
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Visual-Inertial Simultaneous Localization and Mapping

> Input:
> IMU: linear acceleration a; € R® and rotational velocity w; € R®

> Camera: features z,; € R* (left and right image pixels) for i = 1,..., N,

> Assumption: The transformation o T; € SE(3) from the IMU to the camera
optical frame (extrinsic parameters) and the stereo camera calibration matrix
Ks (intrinsic parameters) are known.

s, 0 -« 0 f = focal length [m]
K. — 0 fs, ¢ 0 Su, Sy = pixel scaling [pixels/m]
° fsu 0 ¢y —fsub Cu, ¢, = principal point [pixels]

0 fs o 0 b = stereo baseline [m]



Visual-Inertial Simultaneous Localization and Mapping
» Output:
> World-frame IMU pose w T; € SE(3) over time (green)

> World-frame coordinates m; € R® of the j = 1,..., M point landmarks (black)
that generated the visual features z;; € R*
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Visual Mapping

» Consider the mapping-only problem first

> Assumption: the IMU pose T; := T} € SE(3) is known

— . : T
> Objective: given the observations z, := [z/; --- z[y] &R for
. . T
t=0,..., T, estimate the coordinates m := [m{ --- mj| €R3 of

the landmarks that generated them

> Assumption: the data association A; : {1,..., M} — {1,..., N;}
stipulating that landmark j corresponds to observation z,; € R* with
i = A(j) at time t is known or provided by an external algorithm

» Assumption: the landmarks m are static, i.e., it is not necessary to consider
a motion model or a prediction step for m



Visual Mapping via the EKF

> Observation model: with measurement noise v, ; ~ N (0, V)

zei=h(Te,m)) +ve =K (o) Tt_lmj) + Ve

. m;
» Homogeneous coordinates: m; := { 1’}

» Projection function and its derivative:

_a

q3
_ 92

q3

0
_
q3

7(q) = —q € R IT(q) = =

- c R4><4
g3 dq e8]

o O O+
OO = O
= O O O

» All observations, stacked as a 4/; vector, at time t with notation abuse:

1%
2. =K (0T Ty 'm) +ve v ~N(0,/0V) 1@V =
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Visual Mapping via the EKF
> Prior: m | zo.r ~ N(py, ) with p, € R3M and &, € R3M*3M

> EKF update step: given a new observation z,,; € R¥Vi+1:
-1
K1 = ZeH g (Hen ZeH + 1@ V)

Bepr = By + Kega <Zt+1 - Ksm (O T Tt+11#t>)

Zr1

Zt+1 = (/ - Kt+1Ht+1)zt

» 7,1 € R*Vitt s the predicted observation based on the landmark position
estimates p, at time ¢t

> We need the observation model Jacobian H; 1 € R*V:X3M evaluated at p,
with block elements H;.1,;; € R**3:

aimjh(TH»lamj) ) if At(./):la
Hitij = m=he
, otherwise.
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Stereo Camera Jacobian (by Chain Rule)

» Observation model: h(T1,m;) = Kemr (O T, T;llmj)

?

» How do we obtain %h(TtH,mj)
/ mj=p;

> Let P= [/ 0] € R®* and apply the chain rule:

8 877 1 8 1
ijh(-’-tﬂ,mj) = Ksafq( T t+1mj)87mj (O Ti t+1mj)
on 1 _, Om;
= KSOﬂTq ( Ti Tt+1mj) ol Tf“aTé
on _ _
- Ksa? (oTiTZAm) o TI TP
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Stereo Camera Jacobian (by Perturbation)

» The Jacobian of a function f(x) can also be obtained using first-order Taylor
series with perturbation dx:

F(x + 0x) ~ F(x) + [gi (x)} 5x

» The Jacobian of f(x) is the part that is linear in dx in the first-order Taylor
series expansion

> Consider a perturbation dp, ; € R3 for the position of landmark j:
mj = pe;+0p,
» First-order Taylor series approximation of the observation model:

Kor (o Ti T (e + 1) ) = Kom (o TiTh (1, + P o1ey))

dm

~ Kor (oTiTiim, ) +Ks o (0Ti Tk, ) o TiTeAPT e,

i .
t41,i Hei1,ij
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Visual Mapping via the EKF (Summary)

» Prior: Gaussian with mean p, € R3™ and covariance ¥, € R3M*3M

> Known: stereo calibration matrix Kj, extrinsics o T; € SE(3), IMU pose
Tiy1 € SE(3), new observation z,; € R*Ne+t

P> Predicted observation based on p, and known correspondences Ay q:
~ —1 .
Zi11,i = KsTm (o T Tt+1ﬁtj) e R* fori=1,..., N1
> Jacobian of Z;,1,; with respect to m; evaluated at p, ;:
d -1 -1 pT . N
Hons, = [ K% (oTiTim,,) oTITAAPT, i A) =1,
; otherwise

» EKF update:

-1
Ker1 = ZeH oy (HeiZeH L + 1@ V) 4

By = My + Keg (Zeyr — Ze41) I®V .= _
z1r+1 = (I - Kt+1Ht+1)zt 4
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Visual-Inertial Odometry

Now, consider the localization-only problem

We will simplify the prediction step by using kinematic rather than dynamic
equations of motion for the IMU pose

Assumption: linear velocity v; € R3? instead of linear acceleration a, € R3
measurements are available

Assumption: known world-frame landmark coordinates m € R3M

Assumption: the data association A, : {1,...,M} — {1,..., N;}
stipulating that landmark j corresponds to observation z,; € R* with
i = A(j) at time t is known or provided by an external algorithm

Objective: given IMU measurements ug.7 with u; := [v,, w/]" € R® and
feature observations zg.7, estimate the IMU poses T, := w T} € SE(3)
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How to Deal with an SE(3) State in the EKF?

> Goal: estimate T; € SE(3) using an extended Kalman filter

> SE(3) = {T: {ORT ';] € R**4

R € SO(3),p € ]R3}

» Since T; is not a vector, we face multiple questions:
» How do we specify a “Gaussian” distribution over T;?

> What is the motion model for T,?

» How do we find derivatives with respect to T;?
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How Do We Specify a Gaussian Distribution in SE(3)?

> In R%, we can define a Gaussian distribution over a vector x as follows:
x=p+e €e~N(0X)

where g € RS is the deterministic mean and € € RS is a zero-mean Gaussian
random vector

> In SE(3), we can define a Gaussian distribution over a pose matrix T using a
perturbation € on the Lie algebra:

T=pexp(¢e) e~N(0,%)
where p € SE(3) is the deterministic mean and € € R is a zero-mean
Gaussian random vector corresponding to the 6 degrees of freedom of T

» Example:

> Let T € SE(3) be a random pose with mean p € SE(3) and covariance
T € R%®

> For Q € SE(3), the random variable Y = QT = Quexp(€) has mean
Qu € SE(3) and covariance ¥ € R®*®
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What Is the Motion Model for a Pose Matrix 77

» Continuous-time kinematics of pose T(t) € SE(3) under generalized velocity
¢(t) = [v(t)] € R®, expressed in body-frame coordinates:

w(t)
T(1) = T(£)S(1)

> Discrete-time pose kinematics with constant ((t) for t € [tk, tk+1):

Tir1 = Tieexp(TiCy)

where Ty = T(tx), Tk = tir1 — th, §p = (k)
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How Do We Find Derivatives With Respect to a Pose 77

» In RS, the derivative of a function f(x) can be obtained using first-order
Taylor series with perturbation dx € R:

F(x + 0x) ~ f(x) + {g}’:(x)} 5x

0
> 6 . . .
In R®, the derivative is Pox f(x 4+ 0x)

6x=0

> In SE(3), the derivative of a function f(T) can be obtained using first-order
Taylor series with perturbation 61 € RS:

F(T exp(6ep)) ~ F(T) + [g;(r)] )

0 ~
> o
In SE(3), the derivative is 550 f(T exp(d1))))

S1p=0
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Visual-Inertial Odometry

» Now, consider the localization-only problem

» We will simplify the prediction step by using kinematic rather than dynamic
equations of motion for the IMU pose

» Assumption: linear velocity v; € R3 instead of linear acceleration a, € R3
measurements are available

> Assumption: known world-frame landmark coordinates m € R3M

> Assumption: the data association A, : {1,...,M} — {1,..., N;}
stipulating that landmark j corresponds to observation z,; € R* with
i = A(j) at time t is known or provided by an external algorithm

> Objective: given IMU measurements ug. 7 with u, := [v/, w/]" € R® and
feature observations zg.7, estimate the IMU poses T, := w T} € SE(3)
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Pose Kinematics with Perturbation

> Motion model for the continuous-time IMU pose T (t) with noise w(t):

T=T(+w) u(t) = L“’J((’?)} € RS

» To consider a Gaussian distribution over T, express it as a nominal pose
p € SE(3) with small perturbation dpu € se(3):

T = pexp(dp) ~ p (/ + 5%)
» Substitute the nominal + perturbed pose in the kinematic equations:
p(/+§ﬁ> +u(5p) :u(/+6}¢) (6 + W)
N 0
o+ s+ e (0p) = i+ W+ Ol + S
jp=ph pdle+p (5p) = pW + popi

2~ ~ ~ A
jo= i O = Sud — 06u+w = (—ﬁéu> W
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Pose Kinematics with Perturbation

> Using T = pexp(dp) ~ p (/ + 571) the pose kinematics 7 = T ({i 4+ W)
can be split into nominal and perturbation kinematics:

A~

nominal :  f = pb N [
u:=

&
Sp=—udp+w 0

O <

:| c R6X6
perturbation :
» |n discrete-time with discretization 7;, the above becomes:

nominal : .y = p,exp (7ely)

perturbation :  dp, 1 = exp (—Ttﬁt) Ope, + Wy

» This is useful to separate the effect of the noise w; from the motion of the
deterministic part of T;. See Barfoot Ch. 7.2 for details.
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EKF Prediction Step
> Prior: T|zo.r, uo:t—1 ~ N (e, Teje) With gy, € SE(3) and Xy, € RO¥C

> This means that T, = fu,, exp(dft),) With gty ~ N(0, Ty

> Motion model: nominal kinematics of ), and perturbation kinematics of
Oy with time discretization 7;:

Hiiae = Mt €XP (¢0¢)

OMbpyq)e = €Xp (*Ttﬁt) Opbe|r + Wt
> EKF prediction step with w, ~ A/(0, W):

Hep1)e = M) P (¢lie)

.
A N
T = E[5,ut+1|t§uj+1lt] = exp (—Tut) i exp (—Tut> + W

where

ve 6 o @ v axa A _ @ U 6x6
u; = eR G, = eR u; = ~ | €R
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EKF Update Step

> Prior: Tii1]2o:t, 0.t ~ N(fei1)e, Leyr)e) With g q), € SE(3) and
6x6
Y €R

> Observation model: with measurement noise v; ~ N (0, V)
-1
Zep1i = h(Tep1, M) +ves1,i = Ko (0 Ty Tt+1mj) + Vg

» The observation model is the same as in the visual mapping problem but this
time the variable of interest is the IMU pose T;;1 € SE(3) instead of the
landmark positions m € R3M

» We need the observation model Jacobian H,,; € R*Vt+1X6 with respect to
the IMU pose Ty, evaluated at the IMU pose mean p, 4,
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EKF Update Step
> Let the elements of H,; € R*N#+1%6 corresponding to different observations i
be Ht+1,i € R4X6

» The first-order Taylor series approximation of observation i at time t 4+ 1
using an IMU pose perturbation dpu is:

!
zp11,i = Ko (OTI (Ht+1\reXP (M)) m_j) + Vg1,
~ K (o T, (I — 5}1) ;L;Lll‘th) + Vi1,
K (0Tt m = oT (ut m ) o ;
s o Iut+1|tmj ol Nt+1|tmj n)+ Vitl,i

1 dm —1 1 ©
~ Ksm (o T/thtmj) —Kqu (o T/utmtmj) oTi (Mt+1|tmj) I+ vy

Z .
t+1,i Heii

where for homogeneous coordinates s € R* and £ € se(3):
S © / s 6
Fo — @ — - 4x

§s=s7¢ M = [0 O}ER
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EKF Update Step

> Prior: Gaussian with mean g, ), € SE(3) and covariance ¥,y € R®*®

> Known: stereo calibration matrix Kj, extrinsics o Ty € SE(3), landmark
positions m € R3M new observations z,,; € R*Ne+t

> Predicted observation based on p, |, and known correspondences A;:

3 — -1 -
Zi11i = KT (o T/:“t+1|tmj) fori=1,..., Neyq

> Jacobian of Z¢yy ; with respect to Tyy1 evaluated at p, 4,

drm _ _ o}
He1,i = —st—q (o T"u’t+11|tmj) oTy (Mt-k—l1|tmj) c R4%6
» EKF update step:
-1
Keyr = ZeraeHiy (HepnZeapeHdp + 1@ V) Hii11
Beiijerr = Mepa)e P (Kepa(zesr — Ze11))") Hipr = :
Zt+1|t+1 = (I - Kt+1 Ht+1)zt+1\t Ht+1,Nt+1
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