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Mobile Robot Autonomy

e Mobile robot autonomy is a research area relying on tools from:
Computer Vision & Signal Processing: to deal with real-world signals in real time (e.g.,
filtering sound, convolving images, recognizing objects)

Probability Theory & Estimation Theory: to deal with uncertainty caused by sensor and
actuator noise, computation and communication delays, and environment changes and
estimate robot and world states

Optimization Theory: to plan the best robot behavior according to a suitable performance
criterion

Control Theory: to execute the planned robot actions

Machine Learning: to improve the models and performance based on data (supervised,
self-supervised, unsupervised, and reinforcement learning)
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ECE 276A: Sensing & Estimation in Robotics

* The course will cover:
* Sensing: image formation, projective geometry, rotations, features, optical flow

* Estimation: optimization, probabilistic models, maximum likelihood estimation (MLE), Bayesian
filtering, simultaneous localization and mapping (SLAM), hidden Markov models

* Course website: https://natanaso.github.io/ece276a
* Schedule, reading materials, and assignments
* Grades: GradeScope (SIGN UP!)
* Discussion: Piazza (SIGN UP!)
* Office hours/TA sessions: TBD

* Piazza:
* Great place for discussion, | encourage you to use it!
* |n addition to asking questions, responding is a great way to strengthen your understanding!

* References (optional):
* State Estimation for Robotics: Barfoot
* Probabilistic Robotics: Thrun, Burgard & Fox
* An Invitation to 3-D Vision: Ma, Kosecka, Soatto & Sastry
* Bayesian Filtering and Smoothing: Sarkka


https://natanaso.github.io/ece276a

Teaching Team

* Teaching Assistant:
* Hanwen Cao
e PhD Student, ECE Department
* Email: hlcao@ucsd.edu

* |nstructor
* Nikolay Atanasov
» Assistant Professor, ECE Department
 Email: natanasov@ucsd.edu
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* Teaching Assistant:
e Vatsalya Chaubey
 MS Student, ECE Department
* Email: vchaubey@ucsd.edu

Teaching Assistant:
* Prithwiraj Paul
e MS Student, ECE Department
 Email: plpaul@ucsd.edu




Warning About Prerequisites

* Thisis a challenging graduate course

| want everyone to learn about robotics, so the prerequisites are not strictly enforced

As graduate students, | expect you to be mature and carefully evaluate whether you are
prepared to take the course

Prerequisites:
* Probability Theory: if you have not had a good course on probability theory, it is too early to take ECE276A

* Linear Algebra: if you have not had a good course on linear algebra, it is too early to take ECE276A

*  Programming experience: if you have not done a programming project of reasonable complexity before, it
is too early to take ECE276A

You will enjoy this course and learn a lot more if you have the right background

Every year some students ignore this, overestimate their prior preparation or available time,
and have an unpleasant experience



Grading

* Assignments:

e 1 academic integrity quiz (required) — due Jan 19" on Canvas
* 3 theoretical homework assignments (16% of the grade total)

* 3 programming assignments in python with project reports (18% of the grade each)
* Final exam (30% of the grade): calculator + double-sided cheat sheet

* There is sufficient time to complete every assignment if you start early

* Late submissions and deadline extensions will not be possible because our schedule is tight
(1 week background review, 3 weeks per project & homework, final exam)

* Letter grades will be assigned based on the class performance, i.e., you do not need to and will
not be able to get everything right in order to get a good grade
* Tentative rubric: 85+: A; 80-85: A-; 75-80: B+; 65-75: B; 60-65: B-; 55-60: C+; ...
* The rubric may be adjusted at the instructor’s discretion



Collaboration and Academic Integrity

* Every assignment in this course is individual

You are encouraged to discuss the assignments with other students in general terms
but the work you do and turn in should be completely your own

An important element of academic integrity is fully and correctly acknowledging any
materials taken from the work of others — provide references for papers and

acknowledge in writing people you discuss the assignments with

* Cheating will not be tolerated

Instances of academic dishonesty will be penalized via grade reduction and may be referred to
the Office of Student Conduct for adjudication



Project Report: Suggested Structure

1. Introduction: brief discussion of what the problem is and why it is important
It is important to monitor the humidity of plants and choose optimal watering times. In this paper, we
present an approach to select the best watering time in the week from given historical humidity data.

2. Problem Formulation: brief rigorous mathematical statement of the problem, not the solution!

Let f:R — IR be the average historical weakly humidity.
Problem: Find a watering time t™ € R such that t* = argmin f (t)
t

3. Technical Approach: description of the ideas, equations, algorithms used to solve the problem
The minimum of a function appears at one of its critical points
{seR| f'(s) = 0}. We find all the roots of f' and select the smallest one as the optimal watering time.

4. Results: figures showing qualitative and quantitative “
performance supported by discussion of what was
successful and what fails
The method performs well as shown in Fig. 1. The
performance could be improved if real-time humidity
measurements are used to update f.
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Project Report: Examples
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L INTRODUCTION
Autonomous robot sy stems increasingly require operation in
unstructured, partially known, and dynamically changing en-
wironmentz One core challenge for safe and robust navigation
is that the frue cost function of a navigation task, equiring
safe, dynamically feasible, and efficient behavior, is generally
not known while expert demonstrations can be utilized to
uncover the underlying cost function [1], [2]. In addition,
humans and animals can navigate swccessfully with partial
knowledge of the environment and adapt when facing new
obstacle configuration based on prior experience. Motivaed
by this observation, we focus on leamning a cost function from
jon that is not uni by accurate over the state
and control space but rather captures task-relevant information
and leads to desirable behavior
Our main contribution is an end-to-end differentiable model
that combines a cost function representation and an efficient
planning algodthm (see Fig. 1). The novelty of our approach
is that the proposad model is fully differentiable, which allows
using gradient-based optimization to improve the parameter-
ized cost function. Our experiments show that the end-to-end
differentiable mode] beamns task-specific cost functions and im-
proves opon Value leration Metworks (WIN) [3] and the Dyna-
Q) algorithm [4] by handling partial and noisy ohservations. In
summary, we offer the following contributions:

We graefully ackmowedge suppent from NSF CRID RI 11S-1753568

based on demc ng of states 1., controls
ui.,, and partial observations zi., sD that a control policy
generated based on the leamed cost incurs minimum loss
L(#). Both the cost function rprsntation & and the control
policy =¥ need to be diffemntiahle with respect to # for error
backpropagation. During testing in a new environment, online
obsrvations z;., and the trained parameters §* provide the
cost function necessary to generate a control policy.

» A cost function representation that incorporaes a log-
odds ion of the emvi
datable using a parameterized observation modal

« An efficient planning algorithm, which performs local
comvolutional operations encoding Bellman backups only
on 8 subset of promising staes. We guarantee that the
outpat policy is differentiable with mspect to the imput
«cost function.

= An end-to-end differentiable model that leams task-
specific cost functions from expert demomstrations by

ing policy loss through the

planning algorithm and the cost representation.

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment
with the task of reaching a goal stale T, € X. Let 7, € &
be the discrete time robot state. For a given comtrol imput
u, £ LI, the robot state evolves according to known deter-
ministic dynamics: .., = fiz, ). Let m*® be a function
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We also draw atention to some biclogical inspiration for
this problem. Motion camouflage [9] is a stmiegy wtilized
by dragonflies, which ensbles them to capture their prey by
minimizing the optical flow of their motion. Mischiati and
Krishnaprasad [8] consider the problem of mutual motion
where two agents each pursue each other, but

L INTRODUCTION

In this paper, we consider the problem of two rmbots
imteracting in an adversarial game whem each robot attempts
to estimate the state of its adversary, while keeping its own
stale hidden. This problem can hawe applications in search-
and-rescue applications, where the agent o be found is mobile,
and actively evades the sensing robot. In these problems, it is
imporiant o both accuraiely localize the target agent, whille
keeping one’s own state hidden so that the target’s ability to
actively evade is reduced.

Ther is moch prior work in the liemture concemning the
dynamics of pursuit-evasion in mobile robotic settings[3].
Am'uu.dns to the pursuit-evasion problem ame split between

- evader (; ), and using prob-
abilistic ﬁsurewurls which consider the expected case. A
commeon theme in the pursuit-evasion literature is the objective
of reducing the distance to the evader to zero, or forcing the
evader into a sensing footprint. In contrast, our problem is
formulated using a probabilistic approach which optimizes
an information theoretic quantity, namely entropy, shout the
distribution of the target to be tracked. Rather than closing
distance to the target, our approach aims o produce the best
estimaie of the target’s state, subject to the sensors available.
Owr previous work considers the information acquisition prob-
lem for target tracking [1], however this work essumes that
the target being tracked mowes independently of the semsing
robot, and crucially is not trying to actively evade the sensing
robot. In this work, the problem formulation is symmetric in
the sense that the adversary is trying to maximize information
gained about us, and also minimize the information we can
gain shout it

attempt to maintzin A constant bearing to avoid detection
by the other agent. Our problem is related, but rather than
considering pursuit-evasion, we consider the dymamics of an
adversarial informasion garhering game.

In the most general case, the information acquisition game
proposed is & stochastic game and is difficalt to solve. McE-
neaney [7] discusses a class of stochastic games with finite-
dimensional solutions and dynamic programming algorithms
o solve them With some assumptions on the motion and
observation mmtlsnflhzagmmun'gauu the problem
can be simplified to a game. 6]
introduces a cu f-di ionality free plus method
for deterministic game problems, which is likely to be very
applicable to Lhe linzar Gaussian VEISIDII of the information-
theometic game here. Addi and
Dawid [4] present a game-theoretic argument that max imizing
entropy and minimizing wurst-mse expected loss ame dnls
of each other A com on ady 1l
reasoning, is provided in the book by Kott and McEneaney
[5]. The approach taken in this work is a variant of Mone
Carlo Tee Search [11], for simultaneous action games. We
present the details of this approach in Sec. TIL

Il PROBLEM FORMULATION
Consider & two-player partial information game with simul-
tameous moves. Each player i € {1,2} has a state x;, that
evolves according to the following motion modsl:

(1

where u;, € 1f; is a finire space of admissible moves (control
inpuis) and w;, is a random wvarishle specifying the motion
noise. Player i can observe its own state Tie and chooses its
mewves with the objective of tracking the evolution of the state
of the other player. Each player is equipped with a sensor used
o collect information about the other player according to the
following observation model:

i = Pl Lo, T, 0,) 2y

camera, whese viewpoint can be controlled in order to improve
the recogniion results. The goal is to choose a muolb-view
camera trajectary in order to minimize the probability of having
misclassified ohjects and incorrect orientifion estimates. Instead
of using ajffine dynamic programming, the resulting stochastic
optimal contrel problem is addressed via an orfive Monte Carlo
tree search algorithm, which can handle various constraints and
provides exceptional performance in large state spuces. A key
insight is to use am active hypothesis testing policy to select
camera viewpoints during the rollout stage of the tree search.

1. INTRODUCTION

The goal of this paper is to chooss a saquence of views for
an RGE-I camera in order to identify the class and orientation
of an object of interest (see Fig. 1). Unlike many existing

5, which consider a nexi-best-view problem [1],
[2], [3]. we plan a multi-view camera tajectory o minimize
the probability of having misclassified objects and incorrect
orientation estimates. In previous work [4], we addesed o
similar stochastic optimal control problem by casting it as a
partially-ob=ervable Markowv decision process. A point-based
approximate solver [5] was used to obtain a non-greedy policy
offline. Smpe wpeated obsewnuous of the object from the
same int provide ion, it is desirable
o dlsall.o'w viewpoint mvisiting. The drawback of computing
a policy offline is that revisiting and ccclusion constraints are
hard to incorporate and if the environment were to change. the
computed policy would no longer be useful. The idea of this
paper is to apply Monke Carlo tee search (MCTS. [6]. [7])
tor the active object ecognition problem. MCTS is a best-first
onlire planning approach which can handle various constraints
and has exceptional performance in large challenging domains
such as game solving [8]. [9] and belief-space planning in
robatics [10], [11], [12].

II. PROELEM FORMULATION

Let the camera pose at time £ be ® € &' C SE(2), wher X
is a finile setof viewpoinis on a sphere centered at the object’s
location (see Fig. 1. At time £, the camera can move to any
of the viewpoints in & and pays a cost g(—1,%«) which
captures the energy expenditure. Let the e (unknown) class
of the observed object be ¢ £ C. We formulate hypotheses
about the class and orientation of the object

H e, r) : the object class is ¢ € C with orienation r € R(g),
M Lawi and B Riml am with the Deparimeni of Antoration Science
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Fig. L Setup for the active cbject moognition problem. The camera
peeition is estricied to a set of viewpodnts (green) on a sphere cen-
emd at the object’s location. The task is to choose a camera comtrol
policy, which mindmizes the movement cost and the probabdlity of
misclassification.
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Fig. 2 An example st of hypotheses about the class and odentation
of an unknown chject
where ®(c) C S0(3) is a small finite set of discrete’
origntations for each class ¢ £ C. For notational comvenience,
leti=1,....M be an enumeration of the set {{e,r) | ¢ €
C,r € Rie)} and denote the hypotheses by H; (see Fig 2).
Offline, a 3-D model database is used to train a viewpoint-
pose tree [4] by extracting point clouds from views on a sphere
around each model. A set of Fast Point Feature Histograms
[13] is extracted from each point cloud and the clouds are
arranged in a tree struciure according to their feature similarity
(see [4] for details). Given a query point cloud. the best-
matching cloud from the tee camies information about the
class and orientation of the observed object and about the
quality of the feature maich. Thus, the tee provides an
obmrvation 2, € Z. consisting of the class, orientation, and
confidence scom of the top match. The mode] database is usad
1o leamn the probability density function (pdf) gi- | =, H)
of x conditioned on any camers viewpoint € &' and any
hypothesis Hy, i = 1,...,M
Problem. Given a camera pose T € X, a prior pg € [0, 1%
on the rue hypothesis Hi, and a planning horizon T < oo,
choose @ sequence of functions e © (Z % AP = X for
t=0,....T = 1, which mirimizes the average movement
cost and the pmmﬁm of ar incorrect hypothesis:

thr\. 13+ APe(T)

nnr 2 T

xr.::,+1_p,[zm.zm], t=0,...,T-1,
o1 @ {20, ,3)s E=0,
2y re il | Ty Hi)y  t=0,...,T,
pe=blpey,zm), £=1,...,T,

IAfter & hypothesis is chosen, the disoete crenistion estimxie can be
mfined by aligning the observed object surface bo the cormsponding medel
in the Iraiing dambase, e.g., by using the ferative chssst peim algetithm.


https://natanaso.github.io/ref/Wang_LearningNavigation_SCR19.pdf
https://natanaso.github.io/ref/Wang_LearningNavigation_SCR19.pdf
https://natanaso.github.io/ref/Wang_LearningNavigation_SCR19.pdf
https://natanaso.github.io/ref/Schlotfeldt_AdversarialInfoAcquisition_RSS18_Workshop.pdf
https://natanaso.github.io/ref/Schlotfeldt_AdversarialInfoAcquisition_RSS18_Workshop.pdf
https://natanaso.github.io/ref/Schlotfeldt_AdversarialInfoAcquisition_RSS18_Workshop.pdf
https://natanaso.github.io/ref/Lauri_MonteCarloTreeSearch_ICRA15_Workshop.pdf
https://natanaso.github.io/ref/Lauri_MonteCarloTreeSearch_ICRA15_Workshop.pdf
https://natanaso.github.io/ref/Lauri_MonteCarloTreeSearch_ICRA15_Workshop.pdf

Syllabus

Date Lecture Material Assignment
Jan 09 | Introduction Matrix-calculus

Jan 11 | Unconstrained Optimization Barfoot-Ch.4.3.1

Jan 16 | Rotations Barfoot-Ch.6.1-6.3

Jan 18 | Catch up HW1
Jan 23 | Robot Motion and Observation Models Barfoot-Ch.6.4 PR1
Jan 25 | Localization and Odometry from Point Features

Jan 30 | Localization and Odometry from Point Features

Feb 01 | Matrix Lie Groups Barfoot-Ch.7.1-7.2, Hall Ch.2-3

Feb 06 | Matrix Lie Group Optimization Barfoot-Ch.7.1-7.2, Boumal-Ch.3

Feb 08 | Catch up HW2
Feb 13 | Bayes Filter Barfoot-Ch.4.2 PR2
Feb 15 | Bayes Filter Barfoot-Ch.4.2

Feb 20 | Particle Filter SLAM Thrun-Burgard-Fox-Ch.7-9

Feb 22 | Catch up

Feb 27 | Kalman Filter Barfoot-Ch.3.3, Sarkka-Ch4

Feb 29 | Kalman Filter Barfoot-Ch.3.3, Sarkka-Ch4 HW3, PR3
Mar o5 | EKF, UKF Barfoot-Ch.4.2, Sarkka-Chps

Mar o7 | Visual-Inertial SLAM

Mar 12 | Graph SLAM

Mar 14 | Visual Features Image-Features

Mar 21 | Final Exam




Structure of Robotics Problems

Time: t (discrete or continuous)

Robot state: x; (e.g., position, orientation,
velocity)

Environment state: m; (e.g., map of free space,
locations of objects)

Control input: u; (e.g., quadrotor thrust and
torque)

Observation: z; (e.g., image, laser scan, radio
signal, inertial measurements)

Motion Model: p(x;.q1|x us) --- describes the motion of the robot to a new state x;, 4 after
applying control input u; at state x;

Observation Model: p(z;|x;, m;) --- describes the observation z; of the robot depending on its
state x; and the map m; of the environment



Motion Models

e A motion model describe the kinematics
or dynamics of the robot state x;

* Wheeled robots:

» Differential drive (roomba)

* Ackermann drive (car, bicycle)
e Aerial robots:

* Fixed-wing aerial vehicle

* Quadrotor aerial vehicle
e Legged and humanoid robots:

* Quadruped
* Manipulator

ZW = ZC




Observation Models

* Position Sensor: directly measures position (e.g., GPS, laser scanner, IR sensor, RGBD camera)

» Velocity/Acceleration/Force Sensor: measures linear acceleration or angular velocity or pressure
or force (accelerometer, gyroscope, inertial measurement unit (IMU), tactile sensor)

* Bearing Sensor: measures angles (e.g., magnetometer, camera, microphone)

* Range Sensor: measures distances (e.g., radio)

AR
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Project 1: Orientation Tracking

* Use constrained gradient descent to track the 3D orientation of a rotating body using IMU
measurements and construct a panorama using RGB images
grav = [-0.00,-0.00,0.01] " grav = [-0.00,-0.01,1.01]
yaw = -0.24, pitch = -0.06, roll = 0.31 yaw = 3.35, pitch = 0.37, roll = 0.39
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Project 2: Particle Filter SLAM Montemerlo et al., FastSLAM, AAAI'02

e Simultaneous localization and mapping (SLAM) using a lidar scanner




Project 3: Visual Inertial SLAM Mur-Artal et al., OrbSLAM, IEEE T-RO’15

* Kalman filter tracking of the 3D pose of a moving robot based on IMU and camera measurements
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