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Field

> A field is a set F with two binary operations, + : F x F + F (addition) and
-1 F X F +— F (multiplication), which satisfy the following axioms:

Associativity: a+ (b+ ¢) = (a+ b) + c and a(bc) = (ab)c, Va,b,c € F

>

» Commutativity: a+ b= b+ aand ab = ba, Va,b € F

> Identity: 31,0 € F such that a+0=aand al = a, Vae F
>

Inverse: Va € F,3—a € F such that a+ (—a) =0
Vae F\{0},3a7' € F\ {0} such that aa™* =1

Distributivity: a(b+ c) = (ab) + (ac), Va,b,c € F

v

» Examples: real numbers R, complex numbers C, rational numbers Q



Vector Space

» A vector space over a field F is a set ) with two binary operations,
+: VYV x ViV (addition) and - : F x V +— V (scalar multiplication), which
satisfy the following axioms:

> Associativity: x+ (y+2z) = (x+y)+z Vx,y,zeV

Compatibility: a(bx) = (ab)x, Va,b € F and Vx € V
Commutativity: x+y =x+y, Vx,y € V

Identity: 30 € V and 1 € F such that x+0=xand Ix=x, YxeV
Inverse: Vx € V,3—x € V such that x4+ (—x) =0

vV v v v Y

Distributivity: a(x +y) = ax + by and (a+ b)x = ax + bx, Va,b € F and
Vx,y € V

> Examples: real vectors R?, complex vectors C?, rational vectors Q¢,
functions R? — R



Basis and Dimension

» A basis of a vector space V over a field F is a set B C V that satisfies:
» linear independence: for all finite {x1,...,xm} C B,
if a1x1 + -+ + amxm = 0 for some a1,...,am € F,thena; = ---=a, =0

> Bspans V: Vx € V, I x1,...,Xq € B and unique ai,...,aq € F such that
X = aiXy + - + adXd

» The dimension d of a vector space V is the cardinality of its bases



Inner Product and Norm

» An inner product on a vector space V over a field F is a function
(-,+) : V x V= F such that for all a € F and all x,y,z € V:

> (ax,y) = a(x,y) (homogeneity)
> (x+y,2) =(x,2) + (y,2) (additivity)
> (x,y) =y, x) (conjugate symmetry)
> (x,x) >0 (non-negativity)
> (x,x)=0iffx=0 (definiteness)
> A norm on a vector space V over a field F is a function || - || : V — R such

that for all a € F and all x,y € V:

[[ax|| = |al[[x]| (absolute homogeneity)
Ix +yll < |Ix|| +llyll  (triangle inequality)
]| >0 (non-negativity)

x| =0iffx=0 (definiteness)

vvyyvYyy



Euclidean Vector Space

» A Euclidean vector space R is a vector space with finite dimension d over
the real numbers R

» A Euclidean vector x € R is a collection of scalars x; € R for i = 1,...,d
organized as a column:
X1
X =
Xd
> The transpose of x € R? is organized as a row: x' = [x; -+ x|

» The Euclidean inner product between two vectors x,y € R? is:
d
T
(xy)=xy= iny,'
i=1

» The Euclidean norm of a vector x € R? is ||x||2 := \/(x,x) = VxTx



Matrices

> A real m x n matrix A is a rectangular array of scalars A; € R for
i=1,....mandj=1,...,n

» The set R™*" of real m x n matrices is a vector space

» The entries of the transpose AT € R"*™ of a matrix A € R™*" are
A,-JT- = Aji. The transpose satisfies: (AB)" = BT AT

» The trace of a matrix A € R™" is the sum of its diagonal entries:
tr(A) =Y _ Aj tr(ABC) = tr(BCA) = tr(CAB)
i=1
» The Frobenius inner product between two matrices X, Y € R™*" is:

(X,Y)=tr(XTY)

> The Frobenius norm of a matrix X € R™ " is: | X||g := 1/tr(X T X)



Matrix Determinant and Inverse

» The determinant of a matrix A € R"*" is:

det(A) : Z Ajcof;;(A det(AB) = det(A) det(B) = det(BA)

where cofjj(A) is the cofactor of the entry A; and is equal to (—1) times
the determinant of the (n— 1) x (n — 1) submatrix that results when the
ith-row and j*-col of A are removed. This recursive definition uses the fact
that the determinant of a scalar is the scalar itself.

» The adjugate is the transpose of the cofactor matrix:
adj(A) := cof(A)"

> The inverse A~! of A exists iff det(A) # 0 and satisfies:

A A= A= Zgﬁi (AB) L =BlA™!



Eigenvalues and Eigenvectors

» For any A € R"", if there exists q € C" \ {0} and X € C such that:
Aq = Aq
then q is an eigenvector corresponding to the eigenvalue ).

» The n eigenvalues of A € R"*" are the n roots of the characteristic
polynomial pa(s) of A:

pa(s) := det(sl — A)

» A real matrix can have complex eigenvalues and eigenvectors, which appear
in conjugate pairs.

> Eigenvectors are not unique since for any ¢ € C\ {0}, cq is an eigenvector
corresponding to the same eigenvalue.
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Diagonalization

> Let A be an eigenvalue of A € R™"
> Let pa(s) be the characteristic polynomial of A

> The algebraic multiplicity of \ is the number of times (s — \) occurs as a
factor of p(s)

» The geometric multiplicity of X\ is the dimension of its eigenspace
ker(A— \l)

» The geometric multiplicity of A is less than or equal to its algebraic
multiplicity

» A is diagonalizable if and only the sum of its eigenspace dimensions equals n

> |f the eigenvalues of A are distinct, then A is diagonalizable
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Eigenvalue Decomposition

> Eigen decomposition: if A € R"*" is diagonalizable, then n linearly
independent eigenvectors q; can be found:

Aqi:>\iqi7 i:17"'>n
The eigen decomposition of A is obtained by stacking the n equations:
A=QAQ!

» Jordan decomposition: A € R"*" can be decomposed using an invertible
matrix of generalized eigenvectors Q and an upper-triangular matrix J:

A=QJQ™T
» Jordan form of A: an upper-triangular block-diagonal matrix:
J = diag(B(A, m1), ..., Bk, my)) A1 000
0 0 mxm
where A1,..., A, are the eigenval- B(A, m) = e R™
ues of Aand my+---+my = n are : A1
their algebraic multiplicites. 0 0 0 A
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Singular Value Decomposition

» An eigen decomposition does not exist for A € R™*"

> A€ R™" with rank r < min{m, n} can be diagonalized by two orthogonal
matrices U € R™*™ and V € R"*" via singular value decomposition:

01

A=UsVT Y= c RN

Or

» U contains the m orthogonal eigenvectors of the symmetric matrix
AAT € R™™ and satisfies UTU = UUT = |

» V contains the n orthogonal eigenvectors of the symmetric matrix
ATA € R"™" and satisfies VTV = WT = |

» 3 contains the singular values o;, equal to the square roots of the r non-zero
eigenvalues of AAT or AT A, on its diagonal

> If Ais normal (AT A = AAT), its singular values are related to its eigenvalues
via g = ‘)\,‘
13



Matrix Pseudo Inverse

» The pseudo-inverse AT € R"™*™ of A € R™*" can be obtained from its SVD
A=UxXVT:

1/0’1

At = vytyT  wf = c RXM
1/0,

» The pseudo-inverse AT € R"™*™ satisfies the Moore-Penrose conditions:
> AATA=A
> ATAAT = AT
> (AAT) = AAT
> (ATA) = ATA
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Linear System of Equations
» Consider the linear system of equations Ax = b for x € R", b € R™, and
A e R™ with SVD A= UXZVT and rank r

» The column space or image of A is im(A) C R™ and is spanned by the r
columns of U corresponding to non-zero singular values

» The null space or kernel of A is ker(A) C R" and is spanned by the n — r
columns of V corresponding to zero singular values

» The row space or co-image of A is im(A") C R” and is spanned by the r
columns of V corresponding to non-zero singular values

» The left null space or co-kernel of A is ker(AT) C R™ and is spanned by
the m — r columns of U corresponding to zero singular values

» The domain of A is R" = ker(A) @ im(AT)

» The co-domain of A is R™ = ker(AT) @ im(A)
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Solution of Linear System of Equations

» Consider the linear system of equations Ax = b for x € R", b € R™, and
A e R™" with SVD A= UZVT and rank r

> If b € im(A), i.e., bTv =0 for all v € ker(AT), then Ax = b has one or
infinitely many solutions x = Afb + (/ — ATA)y for any y € R”

> If b ¢ im(A), then no solution exists and x = A'b is an approximate
solution with minimum ||x|| and ||Ax — b|| norms

» If m=n =r, then Ax = b has a unique solution x = A'b = A~'b
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Positive Semidefinite Matrices

» The product x" Ax with A € R"*" and x € R" is called quadratic form and
A can be assumed symmetric, A = AT because:

1
EXT(A +AN)x = x" Ax, ¥x € R”

> A symmetric matrix A € R"*" is positive semidefinite if xT Ax > 0 for all
x € R".

> A symmetric matrix A € R"*" is positive definite if it is positive
semidefinite and if x' Ax = 0 implies x = 0.

» All eigenvalues of a symmetric positive semidefinite matrix are non-negative.

> All eigenvalues of a symmetric positive definite matrix are positive.
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Matrix Derivatives (Numerator Layout)

» Derivatives of y € R™ and Y € R™*" by scalar x € R:

dn dvy dvi,
dx dx dx
ﬂ _ : c RmXI ﬂ _ : . c RMXn
o, | v Y
Tdx dx dx
» Derivatives of y € R and y € R™ by vector x € RP:
dyi dyi
dxy dxp
dy d d dy
-~ |y ... 9 1xp -7 _ mXxp
= % %o r ax | | e
[Vaxy]T (gradient transpose) da dxp
Jacobian
» Derivative of y € R by matrix X € RP*9:
dy ... _d
d dXi X1
7)/ — : : c RI*P
A
dX1q dXpq

18



Matrix Derivative Examples

4 x —_eel
> dXUX = eje;
d Ay —
> SAx=A
> LyTy=uT 4yl (product rule)

> IxTAx=x"(A+AT)
> M7 x) = —M7H(x) P M (x)
> & tr(AX"1B) = —X"1BAX !

> & logdet X = X1

19



Matrix Derivative Examples

d n d n
dxy Zj:l Ayxj - dx, Ej:l AvjXj A1
d Ay _ : : _
> X = : : : =1
d s X e.. 4N e
> Zj:l AmjXj dx, Zj:l AmjXj Ami
A T Ay — T dAX | T ATdx _ T T
> ox Ax=x TXHx A =x (A+A")

Aln

> MX)M~Yx)=1 = 0= [LMx)] M (x)+ M(x)[LM(x)]

dx

d tr(AX7!B) = tr(A d

X'B) = —tr(AX 'ejef X7'B)

> dX; dX;
— —e/ X 'BAX le; = —e] (X 1BAX 1) ¢
d 1 d <
logdet X = — X; fi (X
dax; 8 det(X) dx,--Z keofi(X)
> y U k=1
1 1
=_—— _cof;(X) = dj.(X) =e X e
der(x) %) = Gy din(X) = e X e



Outline

Unconstrained Optimization
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Unconstrained Optimization

> Unconstrained optimization problem over Euclidean vector space RY:

in f
L

> A global minimizer x, € RY satisfies f(x,) < f(x) for all x € R. The value
f(x.) is called global minimum.

> A local minimizer x, € RY satisfies f(x,) < f(x) for all x € N'(x,), where
N(x.) C R? is a neighborhood of x. (e.g., an open ball with small radius
centered at x,). The value f(x,) is called local minimum.

» The function f : R — R is differentiable at x € R if its gradient exists:

-
Vi(x) = [ng) —aafg) e R9

> A critical point x € R? satisfies V£(X) = 0 or Vf(X) = undefined

» All minimizers are critical points but not all critical points are minimizers. A
critical point is a local maximizer, a local minimizer, or neither (saddle point).
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Descent Direction

» Consider an unconstrained optimization problem:

in f
o T

Descent Direction Theorem

Suppose f is differentiable at X. If 3 x € R? such that V£(X)dx < 0, then
e > 0 such that (X 4+ adx) < f(X) for all « € (0, ¢).

» The vector dx is called a descent direction

» The theorem states that if a descent direction exists at X, then it is possible
to move to a new point that has a lower f value

> Steepest descent direction: dx = —%

» Based on this theorem, we derive conditions for optimality of x

23



Optimality Conditions

First-Order Necessary Condition

Suppose f is differentiable at X. If X is a local minimizer, then V£(X) = 0.

Second-Order Necessary Condition

Suppose f is twice-differentiable at X. If X is a local minimizer, then Vf(x) = 0
and V2f(x) = 0.

Second-Order Sufficient Condition

Suppose f is twice-differentiable at x. If V£(X) = 0 and V2f(X) = 0, then X is a
local minimizer.

| A\

Necessary and Sufficient Condition

Suppose f is differentiable at x. If  is convex, then X is a global minimizer if
and only if Vf(x) =0.

24



Convexity
> Aset D C R?is convex if Ax+ (1 — )y € D for all x,y € D, A € [0,1]

» A convex set contains the line segment between any two points in it
Convex set Non - convex set

> A function f : D — R with D C R? is convex if:
> D is a convex set
> O+ (1= N)y) < A(x) + (1= A)f(y) for all x,y € D, X € [0,1]

> First-order convexity condition: a differentiable f : D +— R with convex D
is convex iff f(y) > f(x) + Vf(x)" (y — x) for all x,y € D

> Second-order convexity condition: a twice-differentiable f : D — R with
convex D is convex iff V2f(x) = 0 for all x € D

25



Descent Optimization Methods

> A critical point of f can be obtained by solving Vf(x) = 0 but an explicit
solution may be difficult to obtain

> Descent method: iterative method to obtain a solution of Vf(x) =0

> Given initial guess xi, take step of size a, > 0 along descent direction dx:
Xk+1 = Xk + Qp0Xg

» Different descent methods differ in the way dxx and «ay are chosen

> x4 needs to be a descent direction: V£ (xx) dxx < 0, Vxx # X.

» «y needs to ensure sufficient decrease in f to guarantee convergence:
> The best step size choice is ax € arg min f(xx + adxk)
a>0

> In practice, ay is obtained via approximate line search methods

26
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Gradient Descent
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Gradient Descent (First-Order Method)

> ldea: —Vf(xx) points in the direction of steepest descent
> Gradient descent: let dx, := —Vf(xx) and iterate:
Xkt1 = Xk — @ VI (xk)
> Step size: a good choice for ay is % where L > 0 is the Lipschitz constant

of Vf(x):
|VF(x) = VF(X)| < L|x — x| vx, x' € RY

Gradient Descent Convergence

Suppose f is twice continuously differentiable with
ml < V2f(x) < LI,  Vx€R"

The iterates x, of gradient descent with step size ax = % satisfy:

(IVf(xk)|| = 0 and Xk — x«]| = O as k — oo.

28



Proof: Gradient Descent Convergence

» By the Mean Value Theorem for some c, between x,x and xx11:

Vi(xki1) = VF(xk) + V2F(cr)(Xkr1 — xk) = VF(xx) — ax V2 (ck)VF(xx)
> Let \; be the eigenvalues of V2f(cy) so that:

0<1—apl<1l—oy\<1-—am
> This is sufficient to show that ||V (xk)|| — O linearly:
IVF(xia) | < (1 = m/DIVFI| < (1 — m/LYL[TF(xo)]

» By the Mean Value Theorem for some €, between x, and x,:

Xr1— X = (Xk—%s ) =k (VF(xk) = VF(%i)) = (X=X ) =k V2 F (&) (X — %)
» Since ml < V2f (&) =< LI:

Iess — x| < (1= m/L)xk — x| < (1= m/L)" xo — .

29



Projected Gradient Descent

» Constrained optimization problem over a closed convex set C C R™:

inf
e 7

» Constrained optimality condition: for differentiable convex function f:

X, € argmin f(x) = (VF(x4),y — %) >0, VyeC
xeC

» Euclidean projection onto C:

Me(x) := argmin ||y — x||
yeC

> Projected gradient descent:

Xi+1 = Me(xk — aVE(xy)), a>0

30



Projected Gradient Descent

Projected Gradient Descent Convergence

Suppose f is twice continuously differentiable with
ml < V2f(x) < LI,  Vx€R"

The iterates x, of projected gradient descent with step size o = % satisfy:

ik = x.ll < (1= m/L)** x0 — xa].

» The proof is based on:

» Euclidean projection is non-expansive:
Me(x) = Me() < [x—yl,  VxyeR"

» Constrained optimizers are fixed points of the projected gradient descent
operator with a > 0:

X, € argmin f(x) & X = Me(xe — aVF(x4))
xeC
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Newton's and Gauss-Newton's Methods

32



Newton’s Method (Second-Order Method)

» Consider an unconstrained optimization problem:

in
L

> Newton’s method iteratively approximates f by a quadratic function

» For a small change dx to x,, we can approximate f using Taylor series:

0f (x) 1.+ [0°f(x)
f ~f —
(xx + 0x) =~ f(xx) + x|, ox + 25x oxoxT |,
gradient transpose He:;an
= CI((SX, Xk)
———

quadratic function in dx

» The symmetric Hessian matrix V2f(x,) needs to be positive-definite for this
method to work

33



Newton’s Method (Second-Order Method)

A q(6x,xV)  q(8x,x) fx)

f(x®) = q(0,x)

q(S5x-(®, x(0)

F() = (0,5

q(Sx*MW, x(1)
f®)

A 4

x* x@ D 5O
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Newton’s Method (Second-Order Method)

> Find dx that minimizes the quadratic approximation to f(xy + dx):

min q(dx, x
5x€IRd q( k)

» Since this is an unconstrained optimization problem, dx can be determined by
setting the derivative of g with respect to dx to zero:

_0q(dx,xk)
- 06x

» This is a linear system of equations in dx and can be solved uniquely when
the Hessian is invertible, i.e., V2f(x,) = O:

0 = VF(xk)" + ox V2f(xk)

Sx = — [V2F(xe)] "' VF(xx)
» Newton’s method:

-1
X1 =Xk — o [V2F(xi)] VF(xk), ak >0
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Newton’s Method (Second-Order Method)

» Like other descent methods, Newton's method converges to a local minimum

» Damped Newton phase: when the iterates are “far away” from the
optimum, the function value is decreased sublinearly, i.e., the step sizes ay
are small

» Quadratic convergence phase: when the iterates are “sufficiently close” to
the optimum, full Newton steps are taken, i.e., ay = 1, and the function
value converges quadratically to the optimum

> A disadvantage of Newton's method is the need to form the Hessian
V2f(xk), which can be numerically ill-conditioned or computationally
expensive in high-dimensional problems
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Gauss-Newton’s Method
» Gauss-Newton is an approximation to Newton's method that avoids
computing the Hessian. It is applicable when the objective function has the
following quadratic form:

f(x) = %e(x)—re(x) e(x) e R™

» Derivative and Hessian:

. Of (x) B + { Oe(x)
Jacobian: I . = e(x) ( x .
0 (x) oe(x)| ) (et
) X e(x e(x
Hessian: T — = < I X_Xk> ( x X=Xk>
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Gauss-Newton’s Method

» Near the minimum of f, the second term in the Hessian is small relative to
the first. The Hessian can be approximated without second derivatives:

.
[ 9e(x) Oe(x)
X=Xk - < Ox x—xk> < Ox x—xk>

> Approximation of f(xy + 0x):
1o (0] ) (o)
1. 1 [ Oe(x e(x
XXk> ox + 2(5x ( I XXk) < 7% XXk) 0x

> Setting the gradient of this new quadratic approximation of f with respect to

dx to zero, leads to the system:
ve()| ) (e oe()| )
e(x e(x e(x
( Ox xxk) < Ox xxk) ox = ( Ox xxk) e(x)
Xkr1 = X + QpdX, ag >0

0?f(x)
OxOxT

f(xk + 0x) =~ f(xx) + e(xk)—r (0&;(:)

» Gauss-Newton’'s method:

38



Gauss-Newton’s Method (Alternative Derivation)

» Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f(x):
ox
X=Xk
Oe(x)

-
f(xk + 0x) =~ % <e(xk) + < x| >6x> <e(xk) + (62(:) ) >5x>

» Minimizing this with respect to dx leads to the same system as before:

de(x) ! de(x) — de(x) '
<8x xzx) <8x x:xk> 5x—< B xzm) e(xx)

de(x)
ox

e(xx + 0x) = e(xk) + (

» Substituting into f leads to:
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Levenberg-Marquardt’s Method

» The Levenberg-Marquardt modification to the Gauss-Newton method uses
a positive diagonal matrix D to condition the Hessian approximation:

pet)| \' [ de( ZOINRY
(ax X_Xk> <6X X_Xk> +AD | 6x = — <6X X_Xk> e(Xk)

m
?ei(x)
> A\D compensates for the missing Hessian term ei(x -

p g IZI: /( k) <8X8XT .
» When X\ > 0 is large, the descent direction dx corresponds to a small step in
the direction of steepest descent. This helps when the Hessian approximation
is poor or poorly conditioned by providing a meaningful direction.
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Gauss-Newton’s Method (Summary)
» An iterative optimization approach for the unconstrained problem:

1
mxin f(x) := 5 Zej(x)Tej(x) ej(x) e R™, x e R”
j
» Given an initial guess xx, determine a descent direction dx by solving:
ZJ xk) " Ji(xk) + AD | 6x = — ZJj(xk)Tej(xk)

where J;(x) := 8%)((’() R™>*" X\ >0, D € R™" is a positive diagonal

matrix, e.g., D = diag (Z Ji(xk) " (xk))
» Obtain an updated estimate according to:

Xp+1 = Xk + ioX, ae >0

41
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Example
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Unconstrained Optimization Example

> Let f(x):= 3 Y7, [|Ajx + bj3 for x € R? and assume Y7 ; ATA; -0

> Solve the unconstrained optimization problem miny f(x) using:
» The necessary and sufficient optimality condition for convex function f
> Gradient descent
> Newton's method
» Gauss-Newton's method

> We will need V£(x) and V2f(x):

df (x 1~ d - T
d(x) =52 o Ax bl =D_(Ax+b) " A
j=1 i=t
a0’ [y "
Vi) = S0 = | AT+ (Do ATY
J=1 =t
d n
V) = ) = 340
j:l
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Necessary and Sufficient Optimality Condition

» Solve V£(x) =0 for x:

0= Vf(x ZATA X + Xn:AJTbj
j=1

0

P> The solution above is unique since we assumed that Z ATA; =0

=177
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Gradient Descent

» Start with an initial guess xg =0
> At iteration k, gradient descent uses the descent direction dxx = —VF(xk)

» Determine the Lipschitz constant of V£(x):

(ZA A) (x1 — x2)

[VF(x1) = VF(x2)|| = [Ix1 — xa|

» Choose step size ay = % and iterate:

Xp+1 = Xk + QX

1< 1<
=xc— 7 | DATA - | DoAY
j=1 j=1
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Newton’s Method

> Start with an initial guess xo =0

> At iteration k, Newton's method uses the descent direction:

Sxk = — [V2F(xi)] T VF(xe)

-1

= X — ZH:AJTAJ- XH:AJTbj
j=1 J=1

> With ax = 1, Newton's method converges in one iteration:

-1

n n
Xk4+1 :xk+(5xk:— ZAJTAJ ZA;rbj
j=1 =1
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Gauss-Newton’s Method
> f(x) is of the form 33", e;(x) "ej(x) for ej(x) := Ajx + b;
> The Jacobian of ej(x) is Jj(x) = A;
» Start with an initial guess xg = 0

» At iteration k, Gauss-Newton's method uses the descent direction:

Oxie == [ D 4i0xi) " j(xk) > Jilxi) Tej(x)
j=1 J=1

-1
n

=— ZAJTAJ- ZAJ-T(ijk + bj)
j=1 j=1
-1

= —x) — zn:AJTAj zn:AJTbj
j=1 j=1

> With o, = 1, in this problem, Gauss-Newton's method behaves like Newton's
method and converges in one iteration
a7
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